Python matplotlib.pyplot 模块,close() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.close()

项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def plot_sent_trajectories(sents, decode_plot):

    font = {'family' : 'normal',
            'size'   : 14}

    matplotlib.rc('font', **font) 
    i = 0    
    l = ["Portuguese","Catalan"]

    axes = plt.gca()
    #axes.set_xlim([xmin,xmax])
    axes.set_ylim([-1,1])

    for sent, enc in zip(sents, decode_plot):
    if i==2: continue
        i += 1
        #times = np.arange(len(enc))
        times = np.linspace(0,1,len(enc))
        plt.plot(times, enc, label=l[i-1])
    plt.title("Hidden Node Trajectories")
    plt.xlabel('timestep')
    plt.ylabel('trajectories')
    plt.legend(loc='best')
    plt.savefig("final_tests/cr_por_cat_hidden_cell_trajectories", bbox_inches="tight")
    plt.close()
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def saveHintonPlot(self, matrix, num_tests, max_weight=None, ax=None):
        """Draw Hinton diagram for visualizing a weight matrix."""
        fig,ax = plt.subplots(1,1)

        if not max_weight:
            max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))

        ax.patch.set_facecolor('gray')
        ax.set_aspect('equal', 'box')
        ax.xaxis.set_major_locator(plt.NullLocator())
        ax.yaxis.set_major_locator(plt.NullLocator())

        for (x, y), w in np.ndenumerate(matrix):
            color = 'white' if w > 0 else 'black'
            size = np.sqrt(np.abs(0.5*w/num_tests)) # Need to scale so that it is between 0 and 0.5
            rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                                 facecolor=color, edgecolor=color)
            ax.add_patch(rect)

        ax.autoscale_view()
        ax.invert_yaxis()
        plt.savefig(self.figures_path + self.save_prefix + '-Hinton.eps')
        plt.close()
项目:seq2seq    作者:google    | 项目源码 | 文件源码
def after_run(self, _run_context, run_values):
    fetches_batch = run_values.results
    for fetches in unbatch_dict(fetches_batch):
      # Convert to unicode
      fetches["predicted_tokens"] = np.char.decode(
          fetches["predicted_tokens"].astype("S"), "utf-8")
      fetches["features.source_tokens"] = np.char.decode(
          fetches["features.source_tokens"].astype("S"), "utf-8")

      if self.params["dump_plots"]:
        output_path = os.path.join(self.params["output_dir"],
                                   "{:05d}.png".format(self._idx))
        _create_figure(fetches)
        plt.savefig(output_path)
        plt.close()
        tf.logging.info("Wrote %s", output_path)
        self._idx += 1
      self._attention_scores_accum.append(_get_scores(fetches))
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def write_stage_alerts(stage, path, alerts_file="alerts.list"):
    alerts = load_alerts()
    out_file = os.path.join(path, alerts_file)
    if not os.path.exists(path):
        os.makedirs(path)
    out_handle = open(out_file, "w")
    keys = ["metric", "threshold", "compare", "action", "message"]
    if not alerts.has_key(stage):
        martian.throw("No alerts found for stage %s" % stage)
    for alert in alerts[stage]:
        out_handle.write("#\n")
        out_handle.write(alert["metric"]+"\n")
        out_handle.write(str(alert["threshold"])+"\n")
        out_handle.write(alert["compare"]+"\n")
        out_handle.write(alert["action"]+"\n")
        out_handle.write(alert["message"]+"\n") 
    out_handle.close()
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def make_python_fig(self, code: str,
                        exts: Tuple[str, ...]=('pdf', 'svg'),
                        tight_layout=True) -> str:
        hashsum = hashlib.md5(code.encode('utf8')).hexdigest()
        prefix = hashsum[:2]
        path = os.path.join(self.figures_dir, prefix, hashsum)
        needfigure = False
        for ext in exts:
            if not os.path.isfile(os.path.join(
                    path, self.default_figname + "." + ext)):
                needfigure = True
                break

        if needfigure:
            make_sure_path_exists(path)
            gl = self.pythonfigure_globals
            plt.close()
            exec(code, gl)
            if tight_layout:
                plt.tight_layout()
            for ext in exts:
                plt.savefig(os.path.join(
                    path, self.default_figname + "." + ext))
        return os.path.join(prefix, hashsum)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def QuASAR_rep_wrapper(outdir,parameters,samplename1,samplename2,running_mode):
    script_comparison_file=outdir+'/scripts/QuASAR-Rep/'+samplename1+'.vs.'+samplename2+'/'+samplename1+'.vs.'+samplename2+'.QuASAR-Rep.sh'
    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(script_comparison_file)])
    script_comparison=open(script_comparison_file,'w')
    script_comparison.write("#!/bin/sh"+'\n')
    script_comparison.write('. '+bashrc_file+'\n')
    outpath=outdir+'/results/reproducibility/'+samplename1+'.vs.'+samplename2+'/QuASAR-Rep/'+samplename1+'.vs.'+samplename2+'.QuASAR-Rep.scores.txt'
    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(outpath)])
    quasar_data=outdir+'/data/forQuASAR'
    quasar_transform1=quasar_data+'/'+samplename1+'.quasar_transform'
    quasar_transform2=quasar_data+'/'+samplename2+'.quasar_transform'
    script_comparison.write('${mypython} '+os.path.dirname(os.path.dirname(os.path.abspath(os.path.dirname(os.path.realpath(__file__)))))+"/hifive/bin/find_quasar_replicate_score"+' '+quasar_transform1+' '+quasar_transform2+' '+outpath+'\n') 
    script_comparison.write('${mypython} '+os.path.abspath(os.path.dirname(os.path.realpath(__file__)))+"/plot_quasar_scatter.py"+' '+quasar_transform1+' '+quasar_transform2+' '+outpath+'\n')
    #split the scores by chromosomes
    script_comparison.write('${mypython} '+os.path.abspath(os.path.dirname(os.path.realpath(__file__)))+"/quasar_split_by_chromosomes.py"+' '+outpath+'\n')
    script_comparison.close()
    run_script(script_comparison_file,running_mode)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def GenomeDISCO_wrapper(outdir,parameters,concise_analysis,samplename1,samplename2,chromo,running_mode,f1,f2,nodefile):
    script_comparison_file=outdir+'/scripts/GenomeDISCO/'+samplename1+'.'+samplename2+'/'+chromo+'.'+samplename1+'.'+samplename2+'.sh'                     

    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(script_comparison_file)])              
    script_comparison=open(script_comparison_file,'w')                                                
    script_comparison.write("#!/bin/sh"+'\n')                                                         
    script_comparison.write('. '+bashrc_file+'\n')                                               
    if os.path.isfile(f1) and os.path.getsize(f1)>20:                                                 
        if os.path.isfile(f2) and os.path.getsize(f2)>20:                                             
            concise_analysis_text=''                                                                  
            if concise_analysis:                                                                      
                concise_analysis_text=' --concise_analysis'                                           
            #get the sample that goes for subsampling
            subsampling=parameters['GenomeDISCO']['subsampling']
            if parameters['GenomeDISCO']['subsampling']!='NA' and parameters['GenomeDISCO']['subsampling']!='lowest':
                subsampling_sample=parameters['GenomeDISCO']['subsampling']
                subsampling=outdir+'/data/edges/'+subsampling_sample+'/'+subsampling_sample+'.'+chromo+'.gz'

            outpath=outdir+'/results/reproducibility/'+samplename1+'.vs.'+samplename2+'/GenomeDISCO/'
            subp.check_output(['bash','-c','mkdir -p '+outpath])                                      
            script_comparison.write("$mypython -W ignore "+os.path.abspath(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))+"/genomedisco/compute_reproducibility.py")+" --m1 "+f1+" --m2 "+f2+" --m1name "+samplename1+" --m2name "+samplename2+" --node_file "+nodefile+" --outdir "+outpath+" --outpref "+chromo+" --m_subsample "+subsampling+" --approximation 10000000 --norm "+parameters['GenomeDISCO']['norm']+" --method RandomWalks "+" --tmin "+parameters['GenomeDISCO']['tmin']+" --tmax "+parameters['GenomeDISCO']['tmax']+concise_analysis_text+'\n')                                               
            script_comparison.close()                                                                 
            run_script(script_comparison_file,running_mode)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def fill_hdf5_with_sparse_by_chunk(mym1,mym2,fname,chunksize):
    start1=0
    end1=0
    n=mym1.shape[0]

    f=h5py.File(fname,'w')
    m1hdf5=f.create_dataset('m1',shape=(n,n),dtype='float')
    m2hdf5=f.create_dataset('m2',shape=(n,n),dtype='float')

    while end1<n:
        end1=np.min([n,(start1+chunksize)])
        print 'start1: '+str(start1)

        if (end1-start1)==1:
            m1hdf5[start1,:]=mym1[start1,:].toarray()
            m2hdf5[start1,:]=mym2[start1,:].toarray()
        else:
            m1hdf5[start1:end1,:]=mym1[start1:end1,:].toarray()
            m2hdf5[start1:end1,:]=mym2[start1:end1,:].toarray()
        start1=end1
    print 'sum of 1'
    print m1hdf5[:,:].sum()
    print m2hdf5[:,:].sum()
    f.close()
项目:sampleRNN_ICLR2017    作者:soroushmehr    | 项目源码 | 文件源码
def plot_traing_info(x, ylist, path):
    """
    Loads log file and plot x and y values as provided by input.
    Saves as <path>/train_log.png
    """
    file_name = os.path.join(path, __train_log_file_name)
    try:
        with open(file_name, "rb") as f:
            log = pickle.load(f)
    except IOError:  # first time
        warnings.warn("There is no {} file here!!!".format(file_name))
        return
    plt.figure()
    x_vals = log[x]
    for y in ylist:
        y_vals = log[y]
        if len(y_vals) != len(x_vals):
            warning.warn("One of y's: {} does not have the same length as x:{}".format(y, x))
        plt.plot(x_vals, y_vals, label=y)
        # assert len(y_vals) == len(x_vals), "not the same len"
    plt.xlabel(x)
    plt.legend()
    #plt.show()
    plt.savefig(file_name[:-3]+'png', bbox_inches='tight')
    plt.close('all')
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def isotropic_mean_shift(self):
        """normalized last mean shift, under random selection N(0,I)

        distributed.

        Caveat: while it is finite and close to sqrt(n) under random
        selection, the length of the normalized mean shift under
        *systematic* selection (e.g. on a linear function) tends to
        infinity for mueff -> infty. Hence it must be used with great
        care for large mueff.
        """
        z = self.sm.transform_inverse((self.mean - self.mean_old) /
                                      self.sigma_vec.scaling)
        # works unless a re-parametrisation has been done
        # assert Mh.vequals_approximately(z, np.dot(es.B, (1. / es.D) *
        #         np.dot(es.B.T, (es.mean - es.mean_old) / es.sigma_vec)))
        z /= self.sigma * self.sp.cmean
        z *= self.sp.weights.mueff**0.5
        return z
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def plotValResults(self, save_path=None, label=None):
        if label is not None:
            accs = self.training_val_results['acc'][label]
            aucs = self.training_val_results['auc'][label]
        else:
            accs = self.training_val_results['acc']
            aucs = self.training_val_results['auc']
        plt.figure()
        plt.plot([i * ACCURACY_LOGGED_EVERY_N_STEPS for i in range(len(accs))], accs)
        plt.plot([i * ACCURACY_LOGGED_EVERY_N_STEPS for i in range(len(aucs))], aucs)
        plt.xlabel('Training step')
        plt.ylabel('Validation accuracy')
        plt.legend(['Accuracy','AUC'])
        if save_path is None:
            plt.show()
        else:
            plt.savefig(save_path)
        plt.close()
项目:chainer-visualization    作者:hvy    | 项目源码 | 文件源码
def save_ims(filename, ims, dpi=100, scale=0.5):
    n, c, h, w = ims.shape

    rows = int(math.ceil(math.sqrt(n)))
    cols = int(round(math.sqrt(n)))

    fig, axes = plt.subplots(rows, cols, figsize=(w*cols/dpi*scale, h*rows/dpi*scale), dpi=dpi)

    for i, ax in enumerate(axes.flat):
        if i < n:
            ax.imshow(ims[i].transpose((1, 2, 0)))
        ax.set_xticks([])
        ax.set_yticks([])
        ax.axis('off')

    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0.1, hspace=0.1)
    plt.savefig(filename, dpi=dpi, bbox_inces='tight', transparent=True)
    plt.clf()
    plt.close()
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def plot_slice_3d_3axis(input, pid, img_dir=None, idx=None):
    # to convert cuda arrays to numpy array
    input = np.asarray(input)

    fig, ax = plt.subplots(2, 2, figsize=[8, 8])
    fig.canvas.set_window_title(pid)
    ax[0, 0].imshow(input[idx[0], :, :], cmap=plt.cm.gray)
    ax[1, 0].imshow(input[:, idx[1], :], cmap=plt.cm.gray)
    ax[0, 1].imshow(input[:, :, idx[2]], cmap=plt.cm.gray)

    if img_dir is not None:
        fig.savefig(img_dir + '/%s.png' % (pid), bbox_inches='tight')
    else:
        plt.show()
    fig.clf()
    plt.close('all')
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def plot_all_slices(input, pid, img_dir=None):
    # to convert cuda arrays to numpy array
    input = np.asarray(input)

    for idx in range(0, input.shape[0]-3, 4):
        fig, ax = plt.subplots(2, 2, figsize=[8, 8])
        fig.canvas.set_window_title(pid)
        ax[0, 0].imshow(input[idx, :, :], cmap=plt.cm.gray)
        ax[1, 0].imshow(input[idx+1, :, :], cmap=plt.cm.gray)
        ax[0, 1].imshow(input[idx+2, :, :], cmap=plt.cm.gray)
        ax[1, 1].imshow(input[idx+3, :, :], cmap=plt.cm.gray)

        if img_dir is not None:
            fig.savefig(img_dir + '_' + str(pid) + '_' + str(idx) + '.png' , bbox_inches='tight')
        else:
            plt.show()
        fig.clf()
        plt.close('all')
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def plot_all_slices(ct_scan, mask, pid, img_dir=None):
    # to convert cuda arrays to numpy array
    ct_scan = np.asarray(ct_scan)
    mask = np.asarray(mask)

    for idx in range(0, mask.shape[0]-3, 2):
        fig, ax = plt.subplots(2, 2, figsize=[8, 8])
        fig.canvas.set_window_title(pid)
        ax[0, 0].imshow(mask[idx, :, :], cmap=plt.cm.gray)
        ax[1, 0].imshow(ct_scan[idx+1, :, :], cmap=plt.cm.gray)
        ax[0, 1].imshow(mask[idx+2, :, :], cmap=plt.cm.gray)
        ax[1, 1].imshow(ct_scan[idx+3, :, :], cmap=plt.cm.gray)

        if img_dir is not None:
            fig.savefig(img_dir + '_' + str(pid) + '_' + str(idx) + '.png' , bbox_inches='tight')
        else:
            plt.show()
        fig.clf()
        plt.close('all')
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def plot_4_slices(input, pid, img_dir=None, idx=None):
    # to convert cuda arrays to numpy array
    input = np.asarray(input)

    fig, ax = plt.subplots(2, 2, figsize=[8, 8])
    fig.canvas.set_window_title(pid)
    ax[0, 0].imshow(input[idx[0], :, :], cmap=plt.cm.gray)
    ax[1, 0].imshow(input[:, idx[1], :], cmap=plt.cm.gray)
    ax[0, 1].imshow(input[:, :, idx[2]], cmap=plt.cm.gray)
    ax[1, 1].imshow(input[:, :, idx[2]], cmap=plt.cm.gray)

    if img_dir is not None:
        fig.savefig(img_dir + '/%s.png' % (pid), bbox_inches='tight')
    else:
        plt.show()
    fig.clf()
    plt.close('all')
项目:MLPractices    作者:carefree0910    | 项目源码 | 文件源码
def draw_results(self):
        metrics_log, cost_log = {}, {}
        for key, value in sorted(self._logs.items()):
            metrics_log[key], cost_log[key] = value[:-1], value[-1]

        for i, name in enumerate(sorted(self._metric_names)):
            plt.figure()
            plt.title("Metric Type: {}".format(name))
            for key, log in sorted(metrics_log.items()):
                xs = np.arange(len(log[i])) + 1
                plt.plot(xs, log[i], label="Data Type: {}".format(key))
            plt.legend(loc=4)
            plt.show()
            plt.close()

        plt.figure()
        plt.title("Cost")
        for key, loss in sorted(cost_log.items()):
            xs = np.arange(len(loss)) + 1
            plt.plot(xs, loss, label="Data Type: {}".format(key))
        plt.legend()
        plt.show()
项目:MLPractices    作者:carefree0910    | 项目源码 | 文件源码
def get_graphs_from_logs():
        with open("Results/logs.dat", "rb") as file:
            logs = pickle.load(file)
        for (hus, ep, bt), log in logs.items():
            hus = list(map(lambda _c: str(_c), hus))
            title = "hus: {} ep: {} bt: {}".format(
                "- " + " -> ".join(hus) + " -", ep, bt
            )
            fb_log, acc_log = log["fb_log"], log["acc_log"]
            xs = np.arange(len(fb_log)) + 1
            plt.figure()
            plt.title(title)
            plt.plot(xs, fb_log)
            plt.plot(xs, acc_log, c="g")
            plt.savefig("Results/img/" + "{}_{}_{}".format(
                "-".join(hus), ep, bt
            ))
            plt.close()
项目:ProductAnalysis    作者:Jasonhy    | 项目源码 | 文件源码
def make_comment_plot(data,p_id):
    """
    ????????
    :param datas:
    :return:
    """
    if data:
        temps = "".join(data).replace(" ", "").replace("\r\n", "")
        values = re.findall(r'(\d+)', temps)
        c_values = [int(value) for value in values]
        c_keys = re.findall('[\u4e00-\u9fa5]+', temps)
        print(c_keys)
        s = pd.Series(c_values, index=c_keys,name='???')
        s = s[3:6]
        s_sum = s.sum()
        s = s.apply(lambda x: x / s_sum)
        s.plot.pie(autopct='%0.2f%%', fontsize=8, colors=['g', 'y', 'r'])
        plt.savefig("static/upload/%s_c.png" % p_id,dpi=90)
        plt.close()

        return file_hepler.get_image_path("%s_c.png" % p_id)
    else:
        return file_hepler.get_image_path("no_good_comments.png")
项目:ProductAnalysis    作者:Jasonhy    | 项目源码 | 文件源码
def make_overview_plot(data,p_id):
    """
    ????
    :param datas:
    :return:
    """
    if data:
        temps = "".join(data)
        values = re.findall(r'(\d+)', temps)
        c_values = [int(value) for value in values]
        c_keys = re.findall('[\u4e00-\u9fa5]+', temps)
        s = pd.Series(c_values, index=c_keys)
        s.plot.bar(figsize=(6, 8), fontsize=8)

        plt.savefig("static/upload/%s_o.png" % p_id,dpi=90)
        plt.close()
        return file_hepler.get_image_path("%s_o.png" % p_id)
    else:
        return file_hepler.get_image_path("no_overview.png")
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def debug_plot_over_img(self, img, x, y, bb_d, bb_gt):
        """Plot the landmarks over the image with the bbox."""
        plt.close("all")
        fig = plt.figure()  # , figsize=(15, 10.8), dpi=200
        ax = plt.Axes(fig, [0., 0., 1., 1.])
        ax.set_axis_off()
        ax.imshow(img, aspect="auto", cmap='Greys_r')
        ax.scatter(x, y, s=10, color='r')
        rect1 = patches.Rectangle(
            (bb_d[0], bb_d[1]), bb_d[2]-bb_d[0], bb_d[3]-bb_d[1],
            linewidth=1, edgecolor='r', facecolor='none')
        ax.add_patch(rect1)
        rect2 = patches.Rectangle(
            (bb_gt[0], bb_gt[1]), bb_gt[2]-bb_gt[0], bb_gt[3]-bb_gt[1],
            linewidth=1, edgecolor='b', facecolor='none')
        ax.add_patch(rect2)
        fig.add_axes(ax)

        return fig
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_over_img(self, img, x, y, x_pr, y_pr, bb_gt):
        """Plot the landmarks over the image with the bbox."""
        plt.close("all")
        fig = plt.figure(frameon=False)  # , figsize=(15, 10.8), dpi=200
        ax = plt.Axes(fig, [0., 0., 1., 1.])
        ax.set_axis_off()
        ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), aspect="auto")
        ax.scatter(x, y, s=10, color='r')
        ax.scatter(x_pr, y_pr, s=10, color='g')
        rect = patches.Rectangle(
            (bb_gt[0], bb_gt[1]), bb_gt[2]-bb_gt[0], bb_gt[3]-bb_gt[1],
            linewidth=1, edgecolor='b', facecolor='none')
        ax.add_patch(rect)
        fig.add_axes(ax)

        return fig
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_cdf_model_and_meansh(self, cdfs, tag, cdf0_1s, aucs, bx, dx):
        plt.close("all")
        x = np.arange(0, bx, dx)
        fig, ax = plt.subplots(nrows=1, ncols=1)
        ax.plot(x, cdfs[0], label="CDF model")
        ax.plot(x, cdfs[1], label="CDF mean shape")
        ax.grid(True)
        plt.xlabel("NRMSE")
        plt.ylabel("Data proportion")
        plt.legend(loc=4, prop={'size': 8}, fancybox=True, shadow=True)
        plt.title(
            "CDF curve: " + tag + ". Model: CDF0.1: " +
            str(prec2 % cdf0_1s[0]) + " . AUC:" + str(prec2 % aucs[0]) +
            ".\n" + ". MSh: CDF0.1: " +
            str(prec2 % cdf0_1s[1]) + " . AUC:" + str(prec2 % aucs[1]) + ".\n")
        return fig
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def load_tr_vl_ts(self, path,nlabels, task, share=True):
        """load mnist dataset for classification.

        """
        f = gzip.open(path, 'rb')
        train_set, valid_set, test_set = pickle.load(f)
        f.close()
        # share the data
        train_set_x, train_set_y = self.shared_dataset_xy(train_set, nlabels = nlabels, train=True, task=task)
        valid_set_x, valid_set_y = self.shared_dataset_xy(valid_set)
        test_set_x, test_set_y   = self.shared_dataset_xy(test_set)
        if share:
            reval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)]
        else:
            if task=='cls':
                train_set = (train_set[0], self.labels(train_set[1], nlabels)) # train_y
            reval = [train_set, valid_set, test_set]
        return reval
项目:Keras_FB    作者:InvidHead    | 项目源码 | 文件源码
def gpu_status(self,av_type_list):
        for t in av_type_list:
            cmd='nvidia-smi -q --display='+t
            #print('\nCMD:',cmd,'\n')
            r=os.popen(cmd)
            info=r.readlines()
            r.close()
            content = " ".join(info)
            #print('\ncontent:',content,'\n')
            index=content.find('Attached GPUs')
            s=content[index:].replace(' ','').rstrip('\n')
            self.t_send(s)
            time.sleep(.5)
        #th.exit()
#==============================================================================
# 
#==============================================================================
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def save_fft(fil,audio_in):
    samples = len(audio_in)
    fft_size = 2**int(floor(log(samples)/log(2.0)))
    freq = fft(audio_in[0:fft_size])
    s_data = numpy.zeros(fft_size/2)
    x_data = numpy.zeros(fft_size/2)
    peak = 0;
    for j in xrange(fft_size/2):
        if (abs(freq[j]) > peak):
            peak = abs(freq[j])

    for j in xrange(fft_size/2):
        x_data[j] = log(2.0*(j+1.0)/fft_size);
        if (x_data[j] < -10):
            x_data[j] = -10
        s_data[j] = 10.0*log(abs(freq[j])/peak)/log(10.0)
    plt.ylim([-50,0])
    plt.plot(x_data,s_data)
    plt.title('fft log power')
    plt.grid()

    fields = fil.split('.')
    plt.savefig(fields[0]+'_fft.png', bbox_inches="tight")
    plt.clf()
    plt.close()
项目:DeblurGAN    作者:KupynOrest    | 项目源码 | 文件源码
def __plot_canvas(self, show, save):
        if self.x is None:
            raise Exception("Please run fit() method first")
        else:
            plt.close()
            plt.plot(self.x.real, self.x.imag, '-', color='blue')

            plt.xlim((0, self.canvas))
            plt.ylim((0, self.canvas))
            if show and save:
                plt.savefig(self.path_to_save)
                plt.show()
            elif save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                plt.savefig(self.path_to_save)
            elif show:
                plt.show()
项目:DeblurGAN    作者:KupynOrest    | 项目源码 | 文件源码
def __plot_canvas(self, show, save):
        if len(self.PSFs) == 0:
            raise Exception("Please run fit() method first.")
        else:
            plt.close()
            fig, axes = plt.subplots(1, self.PSFnumber, figsize=(10, 10))
            for i in range(self.PSFnumber):
                axes[i].imshow(self.PSFs[i], cmap='gray')
            if show and save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                plt.savefig(self.path_to_save)
                plt.show()
            elif save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                plt.savefig(self.path_to_save)
            elif show:
                plt.show()
项目:DeblurGAN    作者:KupynOrest    | 项目源码 | 文件源码
def __plot_canvas(self, show, save):
        if len(self.result) == 0:
            raise Exception('Please run blur_image() method first.')
        else:
            plt.close()
            plt.axis('off')
            fig, axes = plt.subplots(1, len(self.result), figsize=(10, 10))
            if len(self.result) > 1:
                for i in range(len(self.result)):
                        axes[i].imshow(self.result[i])
            else:
                plt.axis('off')

                plt.imshow(self.result[0])
            if show and save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                cv2.imwrite(os.path.join(self.path_to_save, self.image_path.split('/')[-1]), self.result[0] * 255)
                plt.show()
            elif save:
                if self.path_to_save is None:
                    raise Exception('Please create Trajectory instance with path_to_save')
                cv2.imwrite(os.path.join(self.path_to_save, self.image_path.split('/')[-1]), self.result[0] * 255)
            elif show:
                plt.show()
项目:acdc_segmenter    作者:baumgach    | 项目源码 | 文件源码
def boxplot_metrics(df, eval_dir):
    """
    Create summary boxplots of all geometric measures.

    :param df:
    :param eval_dir:
    :return:
    """

    boxplots_file = os.path.join(eval_dir, 'boxplots.eps')

    fig, axes = plt.subplots(3, 1)
    fig.set_figheight(14)
    fig.set_figwidth(7)

    sns.boxplot(x='struc', y='dice', hue='phase', data=df, palette="PRGn", ax=axes[0])
    sns.boxplot(x='struc', y='hd', hue='phase', data=df, palette="PRGn", ax=axes[1])
    sns.boxplot(x='struc', y='assd', hue='phase', data=df, palette="PRGn", ax=axes[2])

    plt.savefig(boxplots_file)
    plt.close()

    return 0
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def draw_test(self):
    """
    Compare ggplot object to image determined by `right`

    Parameters
    ----------
    self : ggplot
        ggplot object

    This function is meant to monkey patch ggplot.draw_test
    so that tests can draw and not care about cleaning up
    the MPL figure.
    """
    try:
        figure = self.draw()
    except Exception as err:
        plt.close('all')
        raise err
    else:
        if figure:
            plt.close(figure)
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot_joints_step(self, stamp):
        if self.plots == '':
            return

        mean_joints = self.get_mean_joints()
        std_joints = self.get_std_joints()
        f = plt.figure(facecolor="white", figsize=(16, 12))
        ax = f.add_subplot(111)
        ax.set_title('Mean +- {}std'.format(self.std_factor))
        color_id = 0
        for joint_id, joint_mean in enumerate(mean_joints):
            ax.plot(self.x, joint_mean, label='Joint {}'.format(joint_id), color=self.colors[color_id], linestyle='dashed')
            plt.fill_between(self.x, joint_mean - self.std_factor*std_joints[joint_id],
                             joint_mean + self.std_factor*std_joints[joint_id],
                             alpha=0.1, color=self.colors[color_id])
            color_id = (color_id + 1) % len(self.colors)
        plt.legend(loc='upper left')
        self._mk_dirs()
        filename = '_'.join(['joints', stamp])
        plt.savefig(join(self.plots, filename) + '.svg', dpi=100, transparent=False)
        plt.close('all')
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot_demos(self):
        if self.plots == '':
            return
        yt = self.Y.transpose(2, 0, 1)
        for joint_id, joint in enumerate(yt):
            f = plt.figure(facecolor="white", figsize=(16, 12))
            ax = f.add_subplot(111)
            ax.set_title('Joint {}'.format(joint_id))
            for demo_id, demo in enumerate(joint):
                ax.plot(self.x, demo, label='Demo {}'.format(demo_id))
            plt.legend()
            # Save or show plots
            self._mk_dirs()
            filename = 'demos_of_joint_{}'.format(joint_id)
            plt.savefig(join(self.plots, filename) + '.svg', dpi=100, transparent=False)
            plt.close('all')
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_convergence(history, prefix='', prefix2=''):
    plt.figure(figsize=(8, 5))
    ax = plt.subplot(111)

    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    plt.plot(history["TC"], '-', lw=2.5, color=tableau20[0])
    x = len(history["TC"])
    y = np.max(history["TC"])
    plt.text(0.5 * x, 0.8 * y, "TC", fontsize=18, fontweight='bold', color=tableau20[0])

    if history.has_key("additivity"):
        plt.plot(history["additivity"], '-', lw=2.5, color=tableau20[1])
        plt.text(0.5 * x, 0.3 * y, "additivity", fontsize=18, fontweight='bold', color=tableau20[1])

    plt.ylabel('TC', fontsize=12, fontweight='bold')
    plt.xlabel('# Iterations', fontsize=12, fontweight='bold')
    plt.suptitle('Convergence', fontsize=12)
    filename = '{}/summary/convergence{}.pdf'.format(prefix, prefix2)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    plt.savefig(filename, bbox_inches="tight")
    plt.close('all')
    return True
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.argsort(- mis[j, :])[:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.yticks(rotation=0)
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
项目:face_detection    作者:chintak    | 项目源码 | 文件源码
def plot_learning_curve(_, history, folder, debug=True):
    arr = np.asarray(
        map(lambda k: [k['epoch'], k['train_loss'], k['valid_loss']], history))
    plt.figure()
    plt.plot(arr[:, 0], arr[:, 1], 'r', marker='o',
             label='Training loss', linewidth=2.0)
    plt.plot(arr[:, 0], arr[:, 2], 'b', marker='o',
             label='Validation loss', linewidth=2.0)
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.ylim([0.0, np.max(arr[:, 1:]) * 1.3])
    plt.title('Learning curve')
    plt.legend()
    if not debug:
        plt.savefig('%s/learning_curve.png' % folder, bbox_inches='tight')
        plt.close()
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def plot_grid(images,w=10,path="plan.png",verbose=False):
    import matplotlib.pyplot as plt
    l = 0
    images = fix_images(images)
    l = len(images)
    h = int(math.ceil(l/w))
    plt.figure(figsize=(w*1.5, h*1.5))
    for i,image in enumerate(images):
        ax = plt.subplot(h,w,i+1)
        try:
            plt.imshow(image,interpolation='nearest',cmap='gray',)
        except TypeError:
            TypeError("Invalid dimensions for image data: image={}".format(np.array(image).shape))
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    print(path) if verbose else None
    plt.tight_layout()
    plt.savefig(path)
    plt.close()

# contiguous image
项目:geco_data    作者:stefco    | 项目源码 | 文件源码
def t_lim(self):
        """Return a tuple containing the left and right t-limits for this
        plot."""
        tmin = self.t_axis.min()
        tmax = self.t_axis.max()
        if self.plot_properties.has_key('xlim_left'):
            left = self.plot_properties['xlim_left']
        # if the start is very close to zero, i.e. less than 2% of the full
        # timespan, round the left limit to zero
        elif float(tmin) / (tmax - tmin) < 2e-2:
            left = 0
        else:
            left = tmin
        if self.plot_properties.has_key('xlim_right'):
            right = self.plot_properties['xlim_right']
        else:
            right = self.t_axis.max()
        return (left, right)
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def read_yield_sn1a_tables(self,sn1a_table,isotopes):
        f1=open(sn1a_table)
        lines=f1.readlines()
        f1.close()
        iso_1a=[]
        yield_1a=[]
        for line in lines:
            #for header
            if '#' in line:
                continue
            iso_1a.append(line.split()[0])
            yield_1a.append(float(line.split()[1]))             


        yields=[]
        #fill up the missing isotope yields with zero
        for iso in isotopes:
            if iso in iso_1a:
                idx=iso_1a.index(iso)
                yields.append(yield_1a[idx])
            else:
                yields.append(0.)       
        return yields
项目:NuGridPy    作者:NuGrid    | 项目源码 | 文件源码
def set_plot_kipp_CO(self, startfirstTP=False,savefig=''):

        '''

        plots kippenhahn diagrams with c/o ratio

        '''

        if startfirstTP==True:
            t0_model=self.set_find_first_TP()
        else:
            t0_model=len(self.run_historydata)*[0]
        m=self.run_historydata
            i=0
            for case in m:
                case.kippenhahn_CO(i,'model',t0_model=t0_model[i])
                title(self.run_label[i])
            if len(savefig)>0:
                plt.savefig(savefig+self.run_label[i]+'.png')
                plt.close()
                i += 1
项目:xenoGI    作者:ecbush    | 项目源码 | 文件源码
def scoreHists(scoresFN,outFN,numBins,geneNames,scoreType):
    '''Read through a scores file, and separate into all pairwise comparisons. Then plot hist of each.'''

    # currently, this seems to require a display for interactive
    # plots. would be nice to make it run without that...

    pairD = readScorePairs(scoresFN,geneNames,scoreType)

    pyplot.ioff() # turn off interactive mode
    with PdfPages(outFN) as pdf:
        for key in pairD:
            fig = pyplot.figure()
            pyplot.hist(pairD[key],bins=numBins)
            pyplot.title('-'.join(key))
            pdf.savefig()
            pyplot.close()
项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def heatmap(src_sent, tgt_sent, att_weights, idx):

    plt.figure(figsize=(8, 6), dpi=80)
    att_probs = np.stack(att_weights, axis=1)

    plt.imshow(att_weights, cmap='gray', interpolation='nearest')
    #src_sent = [ str(s) for s in src_sent]
    #tgt_sent = [ str(s) for s in tgt_sent]
    #plt.xticks(range(0, len(tgt_sent)), tgt_sent, rotation='vertical')
    #plt.yticks(range(0, len(src_sent)), src_sent)
    plt.xticks(range(0, len(tgt_sent)),"")
    plt.yticks(range(0, len(src_sent)),"")
    plt.axis('off')
    plt.savefig("att_matrix_"+str(idx), bbox_inches='tight')
    plt.close()
项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def plot_trajectories(src_sent, src_encoding, idx):

    # encoding is (time_steps, hidden_dim)
    #pca = PCA(n_components=1)

    #pca_result = pca.fit_transform(src_encoding)
    times = np.arange(src_encoding.shape[0])
    plt.plot(times, src_encoding)
    plt.title(" ".join(src_sent))
    plt.xlabel('timestep')
    plt.ylabel('trajectories')
    plt.savefig("misc_hidden_cell_trajectories_"+str(idx), bbox_inches="tight")
    plt.close()
项目:nanoQC    作者:wdecoster    | 项目源码 | 文件源码
def length_histogram(fqin, name):
    '''
    Create a histogram, and return the bin edges of the bin containing the most reads
    '''
    logging.info("Creating length histogram to find bin with most reads.")
    lengths = get_lengths(fqin)
    plt.hist(lengths, bins='auto')
    plt.savefig(name, format='png', dpi=100)
    plt.close("all")
    hist, bin_edges = np.histogram(lengths, bins='auto')
    maxindex = np.argmax(hist)
    return (bin_edges[maxindex], bin_edges[maxindex + 1])
项目:NS_Proj    作者:drstarry    | 项目源码 | 文件源码
def password_strength():
    # different length
    x = [6, 7, 8, 9]
    y = []
    for _x in x:
        _y = []
        for c in range(1, 5):
            _y.append(enumeration(c, _x, _x))
        y.append(tuple(_y))
    plt.xlabel('Number of digits')
    plt.ylabel('Number of guesses needed to crack')
    plt.title('Password strength based on password length')
    plt.plot(x, y)
    plt.savefig('variable_len.png')
    plt.close()

    # different combinations
    c = range(5)
    y = []
    for _c in c:
        _y = []
        for l in range(6, 10):
            _y.append(enumeration(_c, l, l))
        y.append(tuple(_y))
    plt.xlabel('Number of character sets contained')
    plt.ylabel('Number of guesses needed to crack')
    plt.title('Password strength based on character sets')
    plt.plot(c, y)
    plt.savefig('variable_con.png')
    plt.close()
项目:IgDiscover    作者:NBISweden    | 项目源码 | 文件源码
def plot_clustermap(sequences, title, plotpath, size=300, dpi=200):
    """
    Plot a clustermap of the given sequences

    size -- Downsample to this many sequences
    title -- plot title

    Return the number of clusters.
    """
    logger.info('Clustering %d sequences (downsampled to at most %d)', len(sequences), size)
    sequences = downsampled(sequences, size)
    df, linkage, clusters = cluster_sequences(sequences)

    palette = sns.color_palette([(0.15, 0.15, 0.15)])
    palette += sns.color_palette('Spectral', n_colors=max(clusters), desat=0.9)
    row_colors = [ palette[cluster_id] for cluster_id in clusters ]
    cm = sns.clustermap(df,
            row_linkage=linkage,
            col_linkage=linkage,
            row_colors=row_colors,
            linewidths=None,
            linecolor='none',
            figsize=(210/25.4, 210/25.4),
            cmap='Blues',
            xticklabels=False,
            yticklabels=False
    )
    if title is not None:
        cm.fig.suptitle(title)
    cm.savefig(plotpath, dpi=dpi)

    # free the memory used by the plot
    import matplotlib.pyplot as plt
    plt.close('all')

    return len(set(clusters))
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def quasar_makePartition(outdir,nodes,resolution,restriction_fragment_level,subset_chromosomes,running_mode):
    quasar_data=outdir+'/data/forQuASAR'
    subp.check_output(['bash','-c','mkdir -p '+quasar_data])
    nodes_partition=quasar_data+'/nodes.partition'
    partition_script_file=outdir+'/scripts/forQuASAR/QuASARpartition.sh'
    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(partition_script_file)])
    partition_script=open(partition_script_file,'w')
    partition_script.write("#!/bin/sh"+'\n')
    partition_script.write('. '+bashrc_file+'\n')
    partition_script.write('${mypython} '+os.path.dirname(os.path.realpath(__file__))+"/make_partition_from_bedfile.py --nodes "+nodes+' --partition '+nodes_partition+' --subset_chromosomes '+subset_chromosomes+' --resolution '+resolution+'\n')
    partition_script.close()
    run_script(partition_script_file,running_mode)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def quasar_qc_wrapper(outdir,parameters,samplename,running_mode):
    script_comparison_file=outdir+'/scripts/QuASAR-QC/'+samplename+'/'+samplename+'.QuASAR-QC.sh'
    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(script_comparison_file)])
    script_comparison=open(script_comparison_file,'w')
    script_comparison.write("#!/bin/sh"+'\n')
    script_comparison.write('. '+bashrc_file+'\n')
    outpath=outdir+'/results/qc/'+samplename+'/QuASAR-QC/'+samplename+'QuASAR-QC.scores.txt'
    quasar_data=outdir+'/data/forQuASAR'
    quasar_transform=quasar_data+'/'+samplename+'.quasar_transform'
    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(outpath)])
    script_comparison.write('${mypython} '+os.path.dirname(os.path.abspath(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))))+"/hifive/bin/find_quasar_quality_score"+' '+quasar_transform+' '+outpath+'\n')
    script_comparison.write('${mypython} '+os.path.abspath(os.path.dirname(os.path.realpath(__file__)))+"/quasar_split_by_chromosomes_qc.py"+' '+outpath+' '+samplename+'\n')
    script_comparison.close()
    run_script(script_comparison_file,running_mode)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def HiCRep_wrapper(outdir,parameters,concise_analysis,samplename1,samplename2,chromo,running_mode,f1,f2,nodefile,resolution):
    script_comparison_file=outdir+'/scripts/HiCRep/'+samplename1+'.'+samplename2+'/'+chromo+'.'+samplename1+'.vs.'+samplename2+'.sh'
    subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(script_comparison_file)])
    script_comparison=open(script_comparison_file,'w')
    script_comparison.write("#!/bin/sh"+'\n')
    script_comparison.write('. '+bashrc_file+'\n')
    if os.path.isfile(f1) and os.path.getsize(f1)>20:
        if os.path.isfile(f2) and os.path.getsize(f2)>20:
            outpath=outdir+'/results/reproducibility/'+samplename1+'.vs.'+samplename2+'/HiCRep/'+chromo+'.'+samplename1+'.vs.'+samplename2+'.scores.txt'
            subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(outpath)])
            hicrepcode=os.path.abspath(os.path.dirname(os.path.realpath(__file__))+"/HiCRep_wrapper.R")
            script_comparison.write("Rscript "+hicrepcode+' '+f1+' '+f2+' '+outpath+' '+parameters['HiCRep']['maxdist']+' '+str(resolution)+' '+nodefile+' '+parameters['HiCRep']['h']+' '+samplename1+' '+samplename2+'\n')
            script_comparison.close()
            run_script(script_comparison_file,running_mode)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def compute_reproducibility(datatype,metadata_pairs,outdir,norm,tmin,tmax,running_mode,concise_analysis):
    outdir=os.path.abspath(outdir)
    metadata_pairs=os.path.abspath(metadata_pairs)

    for chromo_line in gzip.open(outdir+'/data/metadata/chromosomes.gz','r').readlines():
        chromo=chromo_line.strip()
        if chromo not in ['chr1']:
            continue
        for line in open(metadata_pairs,'r').readlines():
            items=line.strip().split()
            samplename1,samplename2=items[0],items[1]

            print 'GenomeDISCO | '+strftime("%c")+' | Computing reproducibility for '+samplename1+'.vs.'+samplename2+' '+chromo

            script_comparison_file=outdir+'/scripts/reproducibility/'+samplename1+'.vs.'+samplename2+'/'+chromo+'.'+samplename1+'.vs.'+samplename2+'.genomedisco.sh'
            subp.check_output(['bash','-c','mkdir -p '+os.path.dirname(script_comparison_file)])
            script_comparison=open(script_comparison_file,'w')
            script_comparison.write("#!/bin/sh"+'\n')
            script_comparison.write('source '+bashrc_file+'\n')
            f1=outdir+'/data/edges/'+samplename1+'/'+samplename1+'.'+chromo+'.gz'
            f2=outdir+'/data/edges/'+samplename2+'/'+samplename2+'.'+chromo+'.gz'
            nodefile=outdir+'/data/nodes/nodes.'+chromo+'.gz'
            if os.path.isfile(f1) and os.path.getsize(f1)>20:
                if os.path.isfile(f2) and os.path.getsize(f2)>20:
                    concise_analysis_text=''
                    if concise_analysis:
                        concise_analysis_text=' --concise_analysis'
                    outpath=outdir+'/results/genomedisco/'+samplename1+'.vs.'+samplename2
                    subp.check_output(['bash','-c','mkdir -p '+outpath])
                    #todo: remove hardcoded blacklist
                    blacklist='/home/oursu/blacklist.gz'
                    script_comparison.write("$mypython -W ignore "+os.path.abspath("/srv/gsfs0/projects/snyder/oursu/software/git/public_genomedisco/genomedisco/genomedisco/compute_reproducibility.py")+" --m1 "+f1+" --m2 "+f2+" --m1name "+samplename1+" --m2name "+samplename2+" --node_file "+nodefile+" --outdir "+outpath+" --outpref "+chromo+" --m_subsample lowest --approximation 10000000 --norm "+norm+" --method RandomWalks "+" --tmin "+str(tmin)+" --tmax "+str(tmax)+" --transition --blacklist "+blacklist+concise_analysis_text+'\n')
                    script_comparison.close()
                    run_script(script_comparison_file,running_mode)

    print 'GenomeDISCO | '+strftime("%c")+' | ============================='