Python matplotlib.pyplot 模块,grid() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.grid()

项目:melanoma-transfer    作者:learningtitans    | 项目源码 | 文件源码
def calc_auc(y_pred_proba, labels, exp_run_folder, classifier, fold):

    auc = roc_auc_score(labels, y_pred_proba)
    fpr, tpr, thresholds = roc_curve(labels, y_pred_proba)
    curve_roc = np.array([fpr, tpr])
    dataile_id = open(exp_run_folder+'/data/roc_{}_{}.txt'.format(classifier, fold), 'w+')
    np.savetxt(dataile_id, curve_roc)
    dataile_id.close()
    plt.plot(fpr, tpr, label='ROC curve: AUC={0:0.2f}'.format(auc))
    plt.xlabel('1-Specificity')
    plt.ylabel('Sensitivity')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.grid(True)
    plt.title('ROC Fold {}'.format(fold))
    plt.legend(loc="lower left")
    plt.savefig(exp_run_folder+'/data/roc_{}_{}.pdf'.format(classifier, fold), format='pdf')
    return auc
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        from matplotlib import pyplot
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        if np.max(dat.D[:, 5:]) == np.min(dat.D[:, 5:]):
            pyplot.text(0, dat.D[-1, 5],
                        'all axes scaling values equal to %s'
                        % str(dat.D[-1, 5]),
                        verticalalignment='center')
            return self  # nothing interesting to plot
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        # pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:bob.bio.base    作者:bioidiap    | 项目源码 | 文件源码
def _plot_epc(scores_dev, scores_eval, colors, labels, title, fontsize=10, position=None):
  if position is None: position = 'upper center'
  # open new page for current plot
  figure = pyplot.figure()

  # plot the DET curves
  for i in range(len(scores_dev)):
    x,y = bob.measure.epc(scores_dev[i][0], scores_dev[i][1], scores_eval[i][0], scores_eval[i][1], 100)
    pyplot.plot(x, y, color=colors[i], label=labels[i])

  # change axes accordingly
  pyplot.xlabel('alpha')
  pyplot.ylabel('HTER')
  pyplot.title(title)
  pyplot.axis([-0.01, 1.01, -0.01, 0.51])
  pyplot.grid(True)
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def save_fft(fil,audio_in):
    samples = len(audio_in)
    fft_size = 2**int(floor(log(samples)/log(2.0)))
    freq = fft(audio_in[0:fft_size])
    s_data = numpy.zeros(fft_size/2)
    x_data = numpy.zeros(fft_size/2)
    peak = 0;
    for j in xrange(fft_size/2):
        if (abs(freq[j]) > peak):
            peak = abs(freq[j])

    for j in xrange(fft_size/2):
        x_data[j] = log(2.0*(j+1.0)/fft_size);
        if (x_data[j] < -10):
            x_data[j] = -10
        s_data[j] = 10.0*log(abs(freq[j])/peak)/log(10.0)
    plt.ylim([-50,0])
    plt.plot(x_data,s_data)
    plt.title('fft log power')
    plt.grid()

    fields = fil.split('.')
    plt.savefig(fields[0]+'_fft.png', bbox_inches="tight")
    plt.clf()
    plt.close()
项目:luxpy    作者:ksmet1977    | 项目源码 | 文件源码
def plot_color_data(x,y,z=None, axh=None, show = True, cieobs =_cieobs, cspace = _cspace,  formatstr = 'k-', **kwargs):
    """
    Plot data.
    """

    if 'grid' in kwargs.keys():
        plt.grid(kwargs['grid']);kwargs.pop('grid')
    if z is not None:
        plt.plot(x,y,z,formatstr, linewidth = 2)
        plt.xlabel(_cspace_axes[cspace][0], kwargs)
    else:
        plt.plot(x,y,formatstr,linewidth = 2)

    plt.xlabel(_cspace_axes[cspace][1], kwargs)
    plt.ylabel(_cspace_axes[cspace][2], kwargs)

    if show == True:
        plt.show()
    else:
        return plt.gca()
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:base_function    作者:Rockyzsu    | 项目源码 | 文件源码
def boll():
    #??tushare??????
    df=ts.get_k_data('300580',start='2017-01-12',end='2017-05-26')
    #?????
    closed=df['close'].values

    upper,middle,lower=talib.BBANDS(closed,matype=talib.MA_Type.SMA)
    print upper,middle,lower
    plt.plot(upper)
    plt.plot(middle)
    plt.plot(lower)
    plt.grid()
    plt.show()
    diff1=upper-middle
    diff2=middle-lower
    print diff1
    print diff2
项目:base_function    作者:Rockyzsu    | 项目源码 | 文件源码
def hist_test():
    mu, sigma = 100, 15
    x = mu + sigma * np.random.randn(10000)

    # ??????
    n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)


    plt.xlabel('Smarts')
    plt.ylabel('Probability')
    #????
    plt.title('Histogram of IQ')
    #????
    plt.text(60, .025, r'$mu=100, sigma=15$')
    plt.axis([40, 160, 0, 0.03])
    plt.grid(True)
    plt.show()
项目:RecQ    作者:Coder-Yu    | 项目源码 | 文件源码
def distribution(y, title='',xLabel='',yLabel='',savePath='../visual/visualization/p1'):
        fig, ax1 = plt.subplots(1, 1, figsize=(8, 6), sharex=True)

        #sns.set(style="white")
        x = np.linspace(0, len(y), len(y))
        y.sort(reverse = True)
        plt.plot(x, y, color='green')
        ax1.set_xlabel(xLabel, fontsize=16)
        ax1.set_ylabel(yLabel, fontsize=16)
        ax1.set_xlim(0, len(y))
        # ax1.set_ylim(0,25000)
        ax1.set_title(title, fontsize=20)
        ax1.tick_params(axis='x', labelsize=16)
        ax1.tick_params(axis='y', labelsize=16)
        plt.grid(True)
        plt.savefig(savePath,bbox_inches='tight')
        #plt.show()
        plt.close('all')
项目:RecQ    作者:Coder-Yu    | 项目源码 | 文件源码
def scatter(x, y, color, title='',xLabel='',yLabel='',savePath='../visual/visualization/p2'):
        fig, ax1 = plt.subplots(1, 1, figsize=(8, 6), sharex=True)

        # sns.set(style="white")
        ax1.set_ylim(-10, max(y) + 20)
        ax1.set_xlim(-10, max(x) + 20)
        ax1.set_title(title, fontsize=20)
        ax1.set_xlabel(xLabel, fontsize=16)
        ax1.set_ylabel(yLabel, fontsize=16)
        ax1.tick_params(axis='x', labelsize=16)
        ax1.tick_params(axis='y', labelsize=16)
        plt.scatter(x, y, c=color, alpha=0.7, )
        plt.grid(True)
        plt.savefig(savePath,bbox_inches='tight')
        #plt.show()
        plt.close('all')
项目:RecQ    作者:Coder-Yu    | 项目源码 | 文件源码
def hist(x,y, bins, color,title='',xLabel='',yLabel='',savePath='../visual/visualization/p3'):
        fig, ax1 = plt.subplots(1, 1, figsize=(8, 6))
        #sns.set(style="white")

        ax1.grid(True)
        ax1.set_title(title, fontsize=20)
        ax1.set_xlabel(xLabel, fontsize=16)
        ax1.set_ylabel(yLabel, fontsize=16)
        ax1.tick_params(axis='x', labelsize=16)
        ax1.tick_params(axis='y', labelsize=16)
        ind = np.arange(0,1,1.0/len(x))
        ax1.set_xticks(ind+1.0/(2*len(x)))
        ax1.set_xticklabels(x)
        ax1.hist(y, bins, color=color)
        plt.savefig(savePath,bbox_inches='tight')
        #plt.show()
        plt.close('all')
项目:ExperimentPackage_PyTorch    作者:ICEORY    | 项目源码 | 文件源码
def draw(self):
        if not os.path.isdir(self.txt_folder):
            print "Folder not exist!"
            return False

        txt_file_list = os.listdir(self.txt_folder)
        for i in range(len(txt_file_list)):
            log_data_list = self.logparse(self.txt_folder + txt_file_list[i])
            for j in range(len(log_data_list)):
                plt.figure()
                input_data = log_data_list[j]["data"]
                plt.hist(input_data)
                plt.grid()
                title_str = "epoch:%d, block:%d, layer:%d" % (log_data_list[j]["epoch"],
                                                              log_data_list[j]["block"],
                                                              log_data_list[j]["layer"])
                plt.title(title_str)
                save_path = self.fig_folder + "epoch_%d_block_%d_layer_%d.png" % (log_data_list[j]["epoch"],
                                                                                  log_data_list[j]["block"],
                                                                                  log_data_list[j]["layer"])
                plt.savefig(save_path, format="png")
                plt.close()
项目:copper_price_forecast    作者:liyinwei    | 项目源码 | 文件源码
def model_visualization(y_true, y_pred):
    """
    ???????
    """
    x = range(1, len(y_true) + 1)

    plt.figure(figsize=(10, 6))
    plt.title('copper price forecast model evaluating')
    plt.xlabel('samples')
    plt.ylabel('actual price vs. predict price')
    plt.grid(x)

    plt.plot(x, y_true, '-', label='actual price')
    plt.plot(x, y_pred, '-', label='predict price')

    plt.legend(loc='upper right')

    plt.show()
项目:copper_price_forecast    作者:liyinwei    | 项目源码 | 文件源码
def plot_loss(loss, val_loss):
    """
    ????epochs?loss?val_loss
    """
    x = range(1, len(loss) + 1)

    plt.figure(figsize=(10, 6))
    plt.title('loss and val_loss of model')
    plt.xlabel('epochs')
    plt.ylabel('loss and val_loss')
    plt.grid(x)

    plt.plot(x, loss, '-', label='loss')
    plt.plot(x, val_loss, '-', label='val_loss')

    plt.legend(loc='upper right')

    plt.show()
项目:ANN-PONR-Python3    作者:anon-42    | 项目源码 | 文件源码
def plot_gradients(self, foo=False):
        ''' 
        Shows the difference between the computed gradients in the ANN modul 
        and the numerically calculated gradients.
        '''
        fig = plt.gcf()
        fig.canvas.set_window_title('Comparison of the computed gradients')
        numgrad, grad, qua, ok = ngc.compare_gradients(self.Net, 
                                                       self.inputdata_tr, 
                                                       self.outputdata_tr)
        print(qua, ok)
        y = numgrad-grad
        y2 = np.absolute(y)   
        plt.bar(np.arange(1,len(y)+1), y)
        plt.grid(1)
        plt.xlabel('Gradient')
        plt.ylabel('Difference')
        plt.show()

        if foo:
            print('numgrad: ', numgrad)
            print('grad: ', grad)
        print('difference: ', y)
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def plot_times(lab, element, time_slices=[0, 1, 2, 3, 4]):
    plt.figure()
    ax = plt.subplot(111)
    if element == 'Temperature':
        plt.title('Temperature profile')
        plt.xlabel('Temperature, C')
    else:
        plt.title(element + ' concentration')
        plt.xlabel('Concentration')
    plt.ylabel('Depth, cm')
    for tms in time_slices:
        lbl = 'at time: %.2f ' % (tms)
        plt.plot(lab.species[element]['concentration'][
                 :, int(tms / lab.dt)], -lab.x, lw=3, label=lbl)
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), ncol=2)
    ax.grid(linestyle='-', linewidth=0.2)
    return ax
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def plot_profile(lab, element):
    plt.figure()
    plt.plot(lab.profiles[element], -lab.x,
             sns.xkcd_rgb["denim blue"], lw=3, label=element)
    if element == 'Temperature':
        plt.title('Temperature profile')
        plt.xlabel('Temperature, C')
    elif element == 'pH':
        plt.title('pH profile')
        plt.xlabel('pH')
    else:
        plt.title('%s concentration' % (element, ))
        plt.xlabel('Concentration')
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    ax.grid(linestyle='-', linewidth=0.2)
    plt.legend()
    plt.tight_layout()
    return ax
项目:StrepHit    作者:Wikidata    | 项目源码 | 文件源码
def about_biographies_count(corpus):
    """ Finds how many items have/don't have a biography
    """
    count = with_bio = characters = 0
    for doc in load_scraped_items(corpus):
        count += 1
        if doc.get('bio') and len(doc['bio']) > 5:
            with_bio += 1
            characters += len(doc['bio'])

    print 'Total number of items:', count
    print 'Items with a biography %d (%.2f %%)' % (with_bio, 100. * with_bio / count)
    print 'Cumulative length of biographies: %d characters' % characters

    try:
        import matplotlib.pyplot as plt
    except ImportError:
        logger.warn('Cannot import matplotlib, skipping chart')
        return

    plt.bar([0, 1], [count - with_bio, with_bio], width=0.75)
    plt.xticks([0.375, 1.375], ['Without Biography', 'With Biography'])
    plt.grid(True, axis='y')
    plt.xlim((-0.5, 2.25))
    plt.show()
项目:YellowFin    作者:JianGoForIt    | 项目源码 | 文件源码
def plot_loss(loss_list, log_dir, iter_id):
  def running_mean(x, N):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / N
  plt.figure()
  plt.semilogy(loss_list, '.', alpha=0.2, label="Loss")
  plt.semilogy(running_mean(loss_list,100), label="Average Loss")
  plt.xlabel('Iterations')
  plt.ylabel('Loss')
  plt.legend()
  plt.grid()
  ax = plt.subplot(111)
  ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05),
        ncol=3, fancybox=True, shadow=True)
  plt.savefig(log_dir + "/fig_loss_iter_" + str(iter_id) + ".pdf")
  print("figure plotted")
  plt.close()
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def generate_hills(width, height, nhills):
    '''
    @param width float, terrain width
    @param height float, terrain height
    @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2
    '''
    # setup coordinate grid
    xmin, xmax = -width/2.0, width/2.0
    ymin, ymax = -height/2.0, height/2.0
    x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP]
    pos = np.empty(x.shape + (2,))
    pos[:, :, 0] = x; pos[:, :, 1] = y

    # generate hilltops
    xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)]
    mu = np.c_[xm.flat, ym.flat]
    sigma = float(width*height)/(nhills*8)
    for i in range(mu.shape[0]):
        mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma)

    # generate hills
    sigma = sigma + sigma*np.random.rand(mu.shape[0])
    rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ]
    hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0)
    return x, y, hfield
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def save_texture(x, y, hfield, fname, path=None):
    '''
    @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure this matches the <texturedir> of the
        <compiler> element in the env XML
    '''
    path = _checkpath(path)
    plt.figure()
    plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP)
    xmin, xmax = x.min(), x.max()
    ymin, ymax = y.min(), y.max()
    # for some reason plt.grid does not work here, so generate gridlines manually
    for i in np.arange(xmin,xmax,0.5):
        plt.plot([i,i], [ymin,ymax], 'k', linewidth=0.1)
    for i in np.arange(ymin,ymax,0.5):
        plt.plot([xmin,xmax],[i,i], 'k', linewidth=0.1)
    plt.savefig(os.path.join(path, fname), bbox_inches='tight')
    plt.close()
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:arlpy    作者:org-arl    | 项目源码 | 文件源码
def iqplot(data, spec='.', labels=None):
    """Plot signal points.

    :param data: complex baseband signal points
    :param spec: plot specifier (see :func:`matplotlib.pyplot.plot`)
    :param labels: label for each signal point

    >>> import arlpy
    >>> arlpy.comms.iqplot(arlpy.comms.psk(8))
    >>> arlpy.comms.iqplot(arlpy.comms.qam(16), 'rx')
    >>> arlpy.comms.iqplot(arlpy.comms.psk(4), labels=['00', '01', '11', '10'])
    """
    import matplotlib.pyplot as plt
    data = _np.asarray(data)
    if labels is None:
        plt.plot(data.real, data.imag, spec)
    else:
        if labels == True:
            labels = range(len(data))
        for i in range(len(data)):
            plt.text(data[i].real, data[i].imag, str(labels[i]))
    plt.axis([-2, 2, -2, 2])
    plt.grid()
    plt.show()
项目:python-machine-learning    作者:sho-87    | 项目源码 | 文件源码
def plot_training(history):
    """Plot the training curve.

    Parameters:
    history -- numpy array/list of cost values over all training iterations

    Returns:
    Plot of the cost for each iteration of training

    """
    plt.plot(range(1, len(history)+1), history)
    plt.grid(True)
    plt.xlim(1, len(history))
    plt.ylim(min(history), max(history))

    plt.title("Training Curve")
    plt.xlabel("Iteration")
    plt.ylabel("Cost")
项目:chainspace    作者:chainspace    | 项目源码 | 文件源码
def plot_shard_scaling(results, outfile):
    parsed_results = parse_shard_results(results)
    pyplot.xlabel('Number of shards')
    pyplot.ylabel('Average transactions / second')
    pyplot.grid(True)

    pyplot.errorbar(
        range(2, len(parsed_results)+2),
        [i[0] for i in parsed_results],
        [i[1] for i in parsed_results],
        marker='o',
        #color='black',
    )

    pyplot.savefig(outfile)
    pyplot.close()
项目:chainspace    作者:chainspace    | 项目源码 | 文件源码
def plot_client_latency(results, outfile, start_tps, step):
    parsed_results = parse_client_latency_results(results)
    pyplot.xlabel('Client-perceived latency (ms)')
    pyplot.ylabel('Probability')
    pyplot.grid(True)

    for i, tps in enumerate(parsed_results):
        tps = [x*1000 for x in tps]
        pyplot.plot(
            tps,
            [j/float(len(tps)) for j in range(len(tps))],
            label=str(start_tps+i*step) + ' t/s',
            marker=markers.MarkerStyle.filled_markers[i],
            markevery=500,
        )

    pyplot.legend()
    pyplot.savefig(outfile)
    pyplot.close()
项目:postlearn    作者:TomAugspurger    | 项目源码 | 文件源码
def extract_grid_scores(model):
    '''
    Extract grid scores from a model or pipeline.

    Parameters
    ----------
    model : Estimator or Pipeline
        must end in sklearn.model_selection.GridSearchCV

    Returns
    -------
    scores : list

    See Also
    --------
    unpack_grid_scores
    '''
    model = utils.model_from_pipeline(model)
    return model.grid_scores_
项目:postlearn    作者:TomAugspurger    | 项目源码 | 文件源码
def plot_grid_scores(model, x, y=None, hue=None, row=None, col=None, col_wrap=None,
                     **kwargs):
    '''
    Wrapper around seaborn.factorplot.

    Parameters
    ----------
    model : Pipeline or Estimator
    x, hue, row, col : str
        parameters grid searched over
    y : str
        the target of interest, default `'mean_'`

    Returns
    -------
    g : seaborn.FacetGrid
    '''
    scores = unpack_grid_scores(model)
    y = y or 'mean_'
    return sns.factorplot(x=x, y=y, hue=hue, row=row, col=col, data=scores,
                          col_wrap=col_wrap, **kwargs)
项目:weibo_scrawler_app    作者:coolspiderghy    | 项目源码 | 文件源码
def plot_hist(runornot):
    while runornot:
        plt.figure(1)
        timelist = ['year','month','day','hour','dayofweek']
        layoutlist = [231,232,234,235,236]
        for timeiterm in timelist:
            plt.subplot(layoutlist[timelist.index(timeiterm)])
            plt.hist(blog[timeiterm].values, bins = len(set(blog[timeiterm].values)), facecolor='blue', alpha=0.5)
            #plt.xlabel()
            plt.ylabel('freq')
            plt.title(timeiterm)
            #plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
            #plt.axis([40, 160, 0, 0.03])
            #plt.grid(True)
        plt.show()
        #.title('Histogram')
        plt.show()
项目:Fluid2d    作者:pvthinker    | 项目源码 | 文件源码
def plot_numvisc(diagfile):
    plt.figure()
    nc = Dataset(diagfile)
    t=nc.variables['t'][:]
    ke=nc.variables['ke'][:]
    dkdt=np.diff(ke)/np.diff(t)
    ens=nc.variables['enstrophy'][:]
    ensm=0.5*(ens[1:]+ens[:-1])
#    deltake[visc,res]=-(ke[-1]-ke[0])

#    deltaens[visc,res]=max(medfilt(ens,21))-ens[5]

    visc_tseries = -dkdt/ensm*4.4*np.pi
    visc_num = max(visc_tseries[t[1:]>0.02])
    #print('N=%4i / visc = %4.1e / num = %4.2e'%(N[res],Kdiff[visc],visc_num[res]))
    plt.semilogy(t[1:],visc_tseries)
    plt.xlabel('time')
    plt.ylabel('viscosity (-(1/2V)dE/dt)')
    plt.grid('on')
    plt.show()
项目:cma    作者:hardmaru    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:OpenCLGA    作者:PyOCL    | 项目源码 | 文件源码
def plot_grouping_result(group_id_set, group_ids, city_info):
    assert len(group_id_set) != 0
    import matplotlib.pyplot as plt
    markers = ['p', '*', '+', 'x', 'd', 'o', 'v', 's', 'h']
    colors = [(random.random(), random.random(), random.random()) for x in range(len(group_id_set))]
    while len(group_id_set) > 0:
        group_id = group_id_set.pop()
        clr = colors.pop()
        makr = markers[random.randint(0, len(markers)-1)]
        x = []
        y = []
        for idx, gid in enumerate(group_ids):
            if gid == group_id:
                x.append(city_info[idx][0])
                y.append(city_info[idx][1])
        plt.plot(x, y, color=clr, marker=makr)

    plt.ylabel('y')
    plt.xlabel('x')
    plt.grid(True)
    plt.show()
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotLoss(trainDf, testDf, workDir):
    # fig, ax = plt.subplots(1, 1, figsize=(5,2))
    fig, ax = plt.subplots(1, 1)
    # fig.tight_layout()

    trainEpoch = trainDf['epoch'].values
    trainLoss = trainDf['loss'].values

    N = len(trainEpoch) // math.ceil(trainEpoch[-1])
    trainEpoch_, trainLoss_ = rolling(N, trainEpoch, trainLoss)
    plt.plot(trainEpoch_, trainLoss_, label='Train')
    # plt.plot(trainEpoch, trainLoss, label='Train')
    if not testDf.empty:
        plt.plot(testDf['epoch'].values, testDf['loss'].values, label='Test')
    plt.xlabel("Epoch")
    plt.ylabel("MSE")
    plt.xlim(xmin=0)
    plt.grid(b=True, which='major', color='k', linestyle='-')
    plt.grid(b=True, which='minor', color='k', linestyle='--', alpha=0.2)
    plt.legend()
    ax.set_yscale('log')
    for ext in ['pdf', 'png']:
        f = os.path.join(workDir, "loss."+ext)
        fig.savefig(f)
        print("Created {}".format(f))
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotLoss(trainDf, testDf, workDir):
    # fig, ax = plt.subplots(1, 1, figsize=(5,2))
    fig, ax = plt.subplots(1, 1)
    # fig.tight_layout()

    trainEpoch = trainDf['epoch'].values
    trainLoss = trainDf['loss'].values

    N = np.argmax(trainEpoch==1.0)
    trainEpoch = trainEpoch[N:]
    trainLoss = [sum(trainLoss[i-N:i])/N for i in range(N, len(trainLoss))]
    plt.plot(trainEpoch, trainLoss, label='Train')
    if not testDf.empty:
        plt.plot(testDf['epoch'].values, testDf['loss'].values, label='Test')
    plt.xlabel("Epoch")
    plt.ylabel("MSE")
    plt.xlim(xmin=0)
    plt.grid(b=True, which='major', color='k', linestyle='-')
    plt.grid(b=True, which='minor', color='k', linestyle='--', alpha=0.2)
    plt.legend()
    ax.set_yscale('log')
    for ext in ['pdf', 'png']:
        f = os.path.join(workDir, "loss."+ext)
        fig.savefig(f)
        print("Created {}".format(f))
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotErr(trainDf, testDf, workDir):
    # fig, ax = plt.subplots(1, 1, figsize=(5,2))
    fig, ax = plt.subplots(1, 1)
    # fig.tight_layout()

    trainEpoch = trainDf['epoch'].values
    trainLoss = trainDf['err'].values

    N = np.argmax(trainEpoch==1.0)
    trainEpoch = trainEpoch[N:]
    trainLoss = [sum(trainLoss[i-N:i])/N for i in range(N, len(trainLoss))]
    plt.plot(trainEpoch, trainLoss, label='Train')
    if not testDf.empty:
        plt.plot(testDf['epoch'].values, testDf['err'].values, label='Test')
    plt.xlabel("Epoch")
    plt.ylabel("Error")
    plt.xlim(xmin=0)
    plt.grid(b=True, which='major', color='k', linestyle='-')
    plt.grid(b=True, which='minor', color='k', linestyle='--', alpha=0.2)
    plt.legend()
    ax.set_yscale('log')
    for ext in ['pdf', 'png']:
        f = os.path.join(workDir, "err."+ext)
        fig.savefig(f)
        print("Created {}".format(f))
项目:3DCNN    作者:bityangke    | 项目源码 | 文件源码
def plot_history(history, result_dir):
    plt.plot(history.history['acc'], marker='.')
    plt.plot(history.history['val_acc'], marker='.')
    plt.title('model accuracy')
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.grid()
    plt.legend(['acc', 'val_acc'], loc='lower right')
    plt.savefig(os.path.join(result_dir, 'model_accuracy.png'))
    plt.close()

    plt.plot(history.history['loss'], marker='.')
    plt.plot(history.history['val_loss'], marker='.')
    plt.title('model loss')
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.grid()
    plt.legend(['loss', 'val_loss'], loc='upper right')
    plt.savefig(os.path.join(result_dir, 'model_loss.png'))
    plt.close()
项目:3DCNN    作者:bityangke    | 项目源码 | 文件源码
def plot_history(history, result_dir):
    plt.plot(history.history['acc'], marker='.')
    plt.plot(history.history['val_acc'], marker='.')
    plt.title('model accuracy')
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.grid()
    plt.legend(['acc', 'val_acc'], loc='lower right')
    plt.savefig(os.path.join(result_dir, 'model_accuracy.png'))
    plt.close()

    plt.plot(history.history['loss'], marker='.')
    plt.plot(history.history['val_loss'], marker='.')
    plt.title('model loss')
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.grid()
    plt.legend(['loss', 'val_loss'], loc='upper right')
    plt.savefig(os.path.join(result_dir, 'model_loss.png'))
    plt.close()
项目:GY-91_and_PiCamera_RaspberryPi    作者:mikechan0731    | 项目源码 | 文件源码
def fft_test(self):
        #t = np.arange(0, 1.0, 1.0/8000)
        #signal = np.sin(2*np.pi*156.25*t)  + 2*np.sin(2*np.pi*234.375*t)
        axis = str(self.axis_combobox.currentText())
        signal = self.raw_data[axis] - self.bias_dict[axis]

        n = signal.size
        time_step = 0.007
        fftResult = (np.abs(np.fft.fft(signal)/n))**2
        freq = np.fft.fftfreq(n, d=time_step)

        plt.plot(1/freq, fftResult, 'g')
        plt.xlim(0)
        plt.grid('on')
        plt.title('Power Spectrum')
        plt.show()
项目:Math    作者:plean    | 项目源码 | 文件源码
def main():
    check_error()
    try:
        with open(sys.argv[1]) as f:
            tab = parse_file(f)
        if len(tab) <= 4:
            raise InvalidFile("Not enough data in file")
    except (PermissionError, FileNotFoundError) as e:
        print(e, file=sys.stderr)
        sys.exit(84)
    else:
        derv = bonjour(tab)
        tab = revers_tab(tab)
        plt.ylabel("pH")
        plt.xlabel("Volume")
        plt.grid(True)
        plt.plot(tab[0], tab[1])
        plt.plot(tab[0], derv)
        plt.axis([tab[0][0], tab[0][-1], min(tab[1][0], derv[0]), max(tab[1][-1], derv[-1])])
        plt.show()
项目:pylspm    作者:lseman    | 项目源码 | 文件源码
def PCAdo(block, name):
    cor_ = np.corrcoef(block.T)
    eig_vals, eig_vecs = np.linalg.eig(cor_)
    tot = sum(eig_vals)
    var_exp = [(i / tot) * 100 for i in sorted(eig_vals, reverse=True)]
    cum_var_exp = np.cumsum(var_exp)
    loadings = (eig_vecs * np.sqrt(eig_vals))

    eig_vals = np.sort(eig_vals)[::-1]
    print('Eigenvalues')
    print(eig_vals)
    print('Variance Explained')
    print(var_exp)
    print('Total Variance Explained')
    print(cum_var_exp)
    print('Loadings')
    print(abs(loadings[:, 0]))

    PAcorrect = PA(block.shape[0], block.shape[1])

    print('Parallel Analisys')
    pa = (eig_vals - (PAcorrect - 1))
    print(pa)

    print('Correlation Matrix')
    print(pd.DataFrame.corr(block))

    plt.plot(range(1,len(pa)+1), pa, '-o')
    plt.grid(True)
    plt.xlabel('Fatores')
    plt.ylabel('Componentes')

    plt.savefig('imgs/PCA' + name, bbox_inches='tight')
    plt.clf()
    plt.cla()
#    plt.show()
项目:pyfds    作者:emtpb    | 项目源码 | 文件源码
def show_setup(self, halt=True):
        """Open a plot window that shows the simulation setup including boundaries, outputs and 
        material regions.

        Args:
            halt: Halt script execution until plot window is closed.
        """

        pp.figure()
        self.axes = pp.gca()
        self.axes.set_xlim(0, max(self.field.x.vector) / self._x_axis_factor)
        self.axes.set_ylim(-self.scale, self.scale)
        self.axes.set_xlabel('{0} / {1}m'.format(self.x_label, self._x_axis_prefix))
        self.axes.set_ylabel(self.y_label)
        pp.grid(True)

        if self.show_materials:
            for mat_region in self.field.material_regions:
                self.plot_region(mat_region.region)

        if self.show_boundaries:
            for name, component in self.field_components.items():
                for boundary in component.boundaries:
                    self.plot_region(boundary.region)

        if self.show_output:
            for name, component in self.field_components.items():
                for output in component.outputs:
                    self.plot_region(output.region)

        if halt:
            pp.show()
项目:snake_game    作者:wing3s    | 项目源码 | 文件源码
def save_image(folder='images'):
    """
    Coroutine of image saving
    """
    from matplotlib import pyplot as plt
    from matplotlib import colors

    if folder not in os.listdir('.'):
        os.mkdir(folder)
    frame_cnt = it.count()

    cmap = colors.ListedColormap(['#009688', '#E0F2F1', '#004D40'])
    bounds = [0, 0.25, 0.75, 1]
    norm = colors.BoundaryNorm(bounds, cmap.N)

    while True:
        screen = (yield)
        shape = screen.shape
        plt.imshow(
            screen,
            interpolation='none',
            cmap=cmap,
            norm=norm,
            aspect='equal',
            extent=(0, shape[1], 0, shape[0]))
        plt.grid(True)
        plt.axis('off')
        plt.savefig('%s/frame%06i.png' % (folder, frame_cnt.next()))
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def plot_correlations(self, iabscissa=1):
        """spectrum of correlation matrix and largest correlation"""
        if not hasattr(self, 'corrspec'):
            self.load()
        if len(self.corrspec) < 2:
            return self
        x = self.corrspec[:, iabscissa]
        y = self.corrspec[:, 6:]  # principle axes
        ys = self.corrspec[:, :6]  # "special" values

        from matplotlib.pyplot import semilogy, text, grid, axis, title
        self._enter_plotting()
        semilogy(x, y, '-c')
        # hold(True)
        semilogy(x[:], np.max(y, 1) / np.min(y, 1), '-r')
        text(x[-1], np.max(y[-1, :]) / np.min(y[-1, :]), 'axis ratio')
        if ys is not None:
            semilogy(x, 1 + ys[:, 2], '-b')
            text(x[-1], 1 + ys[-1, 2], '1 + min(corr)')
            semilogy(x, 1 - ys[:, 5], '-b')
            text(x[-1], 1 - ys[-1, 5], '1 - max(corr)')
            semilogy(x[:], 1 + ys[:, 3], '-k')
            text(x[-1], 1 + ys[-1, 3], '1 + max(neg corr)')
            semilogy(x[:], 1 - ys[:, 4], '-k')
            text(x[-1], 1 - ys[-1, 4], '1 - min(pos corr)')
        grid(True)
        ax = array(axis())
        # ax[1] = max(minxend, ax[1])
        axis(ax)
        title('Spectrum (roots) of correlation matrix')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:bob.bio.base    作者:bioidiap    | 项目源码 | 文件源码
def _plot_roc(frrs, colors, labels, title, fontsize=10, position=None, farfrrs=None):
  if position is None: position = 'lower right'
  figure = pyplot.figure()

  # plot FAR and CAR for each algorithm
  for i in range(len(frrs)):
    pyplot.semilogx([f for f in frrs[i][0]], [1. - f for f in frrs[i][1]], color=colors[i], label=labels[i])
    if isinstance(farfrrs, list):
      pyplot.plot(farfrrs[i][0], (1.-farfrrs[i][1]), 'o', color=colors[i], markeredgecolor=colors[i])

  # plot vertical bar, if desired
  if farfrrs is not None:
    if isinstance(farfrrs, float):
      pyplot.plot([farfrrs,farfrrs],[0.,1.], "--", color='black')
    else:
      pyplot.plot([x[0] for x in farfrrs], [(1.-x[1]) for x in farfrrs], '--', color='black')

  _add_far_labels(frrs[0][0][0])

  # set label, legend and title
  pyplot.xlabel('FMR')
  pyplot.ylabel('1 - FNMR')
  pyplot.grid(True, color=(0.6,0.6,0.6))
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
项目:bob.bio.base    作者:bioidiap    | 项目源码 | 文件源码
def _plot_det(dets, colors, labels, title, fontsize=10, position=None):
  if position is None: position = 'upper right'
  # open new page for current plot
  figure = pyplot.figure(figsize=(matplotlib.rcParams['figure.figsize'][0],
                                  matplotlib.rcParams['figure.figsize'][0] * 0.975))
  pyplot.grid(True)

  # plot the DET curves
  for i in range(len(dets)):
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], label=labels[i])

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
  pyplot.xticks(ticks, [l if i % 2 else "" for i,l in enumerate(labels)])
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

  pyplot.xlabel('FMR')
  pyplot.ylabel('FNMR')
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_deviance(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        deviance = sol.MDL.trace('deviance')[:]
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, deviance, "-", color="C3", label="Model deviance\nDIC = %.2f\nBPIC = %.2f" %(sol.MDL.DIC,sol.MDL.BPIC))
        plt.xlabel("Iteration")
        plt.ylabel("Model deviance")
        plt.legend(numpoints=1, loc="best", fontsize=9)
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/ModelDeviance/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving model deviance figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'ModelDeviance-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_logp(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        logp = logp_trace(sol.MDL)
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, logp, "-", color="C3")
        plt.xlabel("Iteration")
        plt.ylabel("Log-likelihood")
        plt.legend(numpoints=1, loc="best", fontsize=9)
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/LogLikelihood/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving logp trace figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'LogLikelihood-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_deviance(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        deviance = sol.MDL.trace('deviance')[:]
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, deviance, "-", color="C3", label="Model deviance\nDIC = %.2f\nBPIC = %.2f" %(sol.MDL.DIC,sol.MDL.BPIC))
        plt.xlabel("Iteration")
        plt.ylabel("Model deviance")
        plt.legend(numpoints=1, loc="best")
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/ModelDeviance/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving model deviance figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'ModelDeviance-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_logp(sol, save=False, draw=True, save_as_png=True, fig_dpi=144):
    if save_as_png:
        save_as = 'png'
    else:
        save_as = 'pdf'
    filename = sol.filename.replace("\\", "/").split("/")[-1].split(".")[0]
    model = get_model_type(sol)
    if draw or save:
        fig, ax = plt.subplots(figsize=(4,3))
        logp = logp_trace(sol.MDL)
        sampler_state = sol.MDL.get_state()["sampler"]
        x = np.arange(sampler_state["_burn"]+1, sampler_state["_iter"]+1, sampler_state["_thin"])
        plt.plot(x, logp, "-", color="C3")
        plt.xlabel("Iteration")
        plt.ylabel("Log-likelihood")
        plt.legend(numpoints=1, loc="best")
        plt.grid('on')
        if sampler_state["_burn"] == 0:
            plt.xscale('log')
        else:
            plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))
        fig.tight_layout()
    if save:
        save_where = '/Figures/LogLikelihood/'
        working_path = getcwd().replace("\\", "/")+"/"
        save_path = working_path+save_where
        print("\nSaving logp trace figure in:\n", save_path)
        if not path.exists(save_path):
            makedirs(save_path)
        fig.savefig(save_path+'LogLikelihood-%s-%s.%s'%(model,filename,save_as), dpi=fig_dpi, bbox_inches='tight')
    try:    plt.close(fig)
    except: pass
    if draw:    return fig
    else:       return None
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def superpose(cdfs, outputpath, data):
    border_x = 0.5
    dx = 0.001
    x = np.arange(0, border_x, dx)
    plt.ioff()
    fig = plt.figure(figsize=(10,8))
    plt.xticks([0.01, 0.02, 0.05, 0.07, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5])
    plt.yticks([0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0])
    plt.xticks(rotation=70)
    plt.grid(b=True, which='major', axis='both', linestyle='dotted')
    floating = 3
    prec = "%." + str(floating) + "f"
    for cdf in cdfs:
        title = cdf["title"]
        auc = cdf["auc"]
        cdf01 = cdf["cdf01"]
        cdf_val = cdf["cdf"]
        plt.plot(x, cdf_val, marker=',',
                 label=title + ", CDF(0.1)=" + str(prec % (cdf01*100)) + "%, AUC=" +
                 str(prec % np.float(auc)) + "%")
    plt.legend(loc=4, prop={'size': 8}, fancybox=True, shadow=True)
    fig.suptitle('Cumulative distribution function (CDF) of NRMSE over ' + data + ' test set.')
    plt.xlabel('NRMSE')
    plt.ylabel('Data proportion')
    fig.savefig(outputpath, bbox_inches='tight', format='eps', dpi=1000)
    plt.ion()