Python matplotlib.pyplot 模块,clf() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.clf()

项目:pyballd    作者:Yurlungur    | 项目源码 | 文件源码
def plot_interpolation(orderx,ordery):
    s = PseudoSpectralDiscretization2D(orderx,XMIN,XMAX,
                                ordery,YMIN,YMAX)
    Xc,Yc = s.get_x2d()
    x = np.linspace(XMIN,XMAX,100)
    y = np.linspace(YMIN,YMAX,100)
    Xf,Yf = np.meshgrid(x,y,indexing='ij')
    f_coarse = f(Xc,Yc)
    f_interpolator = s.to_continuum(f_coarse)
    f_num = f_interpolator(Xf,Yf)
    plt.pcolor(Xf,Yf,f_num)
    cb = plt.colorbar()
    cb.set_label('interpolated function',fontsize=16)
    plt.xlabel('x')
    plt.ylabel('y')
    for postfix in ['.png','.pdf']:
        name = 'orthopoly_interpolated_function'+postfix
        if USE_FIGS_DIR:
            name = 'figs/' + name
        plt.savefig(name,
                    bbox_inches='tight')
    plt.clf()
项目:voxcelchain    作者:hiroaki-kaneda    | 项目源码 | 文件源码
def create_graph():
    logfile = 'result/log'
    xs = []
    ys = []
    ls = []
    f = open(logfile, 'r')
    data = json.load(f)

    print(data)

    for d in data:
        xs.append(d["iteration"])
        ys.append(d["main/accuracy"])
        ls.append(d["main/loss"])

    plt.clf()
    plt.cla()
    plt.hlines(1, 0, np.max(xs), colors='r', linestyles="dashed")  # y=-1, 1??????
    plt.title(r"loss/accuracy")
    plt.plot(xs, ys, label="accuracy")
    plt.plot(xs, ls, label="loss")
    plt.legend()
    plt.savefig("result/log.png")
项目:bnn-analysis    作者:myshkov    | 项目源码 | 文件源码
def save_fig(file_name, clear=True):
    if not os.path.exists(FIGURES_DIR):
        os.makedirs(FIGURES_DIR)

    if file_name is not None:
        plt.savefig(FIGURES_DIR + '/' + file_name + '.png')

        # save for report
        # if "--timestamp" in file_name:
        #     dir = FIGURES_DIR + "/final"
        #     if not os.path.exists(dir):
        #         os.makedirs(dir)
        #
        #     file_name = file_name[:file_name.find("--timestamp")]
        #     plt.savefig(dir + '/' + file_name + '.png', dpi=DPI)

    if clear:
        plt.clf()
项目:GANGogh    作者:rkjones4    | 项目源码 | 文件源码
def flush():
    prints = []

    for name, vals in _since_last_flush.items():
        prints.append("{}\t{}".format(name, np.mean(list(vals.values()))))
        _since_beginning[name].update(vals)

        x_vals = np.sort(list(_since_beginning[name].keys()))
        y_vals = [_since_beginning[name][x] for x in x_vals]

        plt.clf()
        plt.plot(x_vals, y_vals)
        plt.xlabel('iteration')
        plt.ylabel(name)
        plt.savefig('generated/'+name.replace(' ', '_')+'.jpg')

    print("iter {}\t{}".format(_iter[0], "\t".join(prints)))
    _since_last_flush.clear()

    with open('log.pkl', 'wb') as f:
        pickle.dump(dict(_since_beginning), f, 4)
项目:chainer-visualization    作者:hvy    | 项目源码 | 文件源码
def save_ims(filename, ims, dpi=100, scale=0.5):
    n, c, h, w = ims.shape

    rows = int(math.ceil(math.sqrt(n)))
    cols = int(round(math.sqrt(n)))

    fig, axes = plt.subplots(rows, cols, figsize=(w*cols/dpi*scale, h*rows/dpi*scale), dpi=dpi)

    for i, ax in enumerate(axes.flat):
        if i < n:
            ax.imshow(ims[i].transpose((1, 2, 0)))
        ax.set_xticks([])
        ax.set_yticks([])
        ax.axis('off')

    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0.1, hspace=0.1)
    plt.savefig(filename, dpi=dpi, bbox_inces='tight', transparent=True)
    plt.clf()
    plt.close()
项目:OpenTDA    作者:outlace    | 项目源码 | 文件源码
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show()
项目:OpenTDA    作者:outlace    | 项目源码 | 文件源码
def drawComplex(data, ph, axes=[-6, 8, -6, 6]):
    plt.clf()
    plt.axis(axes)  # axes = [x1, x2, y1, y2]
    plt.scatter(data[:, 0], data[:, 1])  # plotting just for clarity
    for i, txt in enumerate(data):
        plt.annotate(i, (data[i][0] + 0.05, data[i][1]))  # add labels

    # add lines for edges
    for edge in [e for e in ph.ripsComplex if len(e) == 2]:
        # print(edge)
        pt1, pt2 = [data[pt] for pt in [n for n in edge]]
        # plt.gca().add_line(plt.Line2D(pt1,pt2))
        line = plt.Polygon([pt1, pt2], closed=None, fill=None, edgecolor='r')
        plt.gca().add_line(line)

    # add triangles
    for triangle in [t for t in ph.ripsComplex if len(t) == 3]:
        pt1, pt2, pt3 = [data[pt] for pt in [n for n in triangle]]
        line = plt.Polygon([pt1, pt2, pt3], closed=False,
                           color="blue", alpha=0.3, fill=True, edgecolor=None)
        plt.gca().add_line(line)
    plt.show()
项目:OpenTDA    作者:outlace    | 项目源码 | 文件源码
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show()
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def save_fft(fil,audio_in):
    samples = len(audio_in)
    fft_size = 2**int(floor(log(samples)/log(2.0)))
    freq = fft(audio_in[0:fft_size])
    s_data = numpy.zeros(fft_size/2)
    x_data = numpy.zeros(fft_size/2)
    peak = 0;
    for j in xrange(fft_size/2):
        if (abs(freq[j]) > peak):
            peak = abs(freq[j])

    for j in xrange(fft_size/2):
        x_data[j] = log(2.0*(j+1.0)/fft_size);
        if (x_data[j] < -10):
            x_data[j] = -10
        s_data[j] = 10.0*log(abs(freq[j])/peak)/log(10.0)
    plt.ylim([-50,0])
    plt.plot(x_data,s_data)
    plt.title('fft log power')
    plt.grid()

    fields = fil.split('.')
    plt.savefig(fields[0]+'_fft.png', bbox_inches="tight")
    plt.clf()
    plt.close()
项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def fast_run(args):
    model = Model(args)
    feed = {}
    #feed[model.train_batch]=False
    xx,ss,yy=model.inputs(args.input_path)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    tf.train.start_queue_runners(sess=sess)
    xxx,sss,yyy=sess.run([xx,ss,yy])
    #print(yyy)
    #print(yyy[1])
    print('len:',xxx.shape)
    import matplotlib.cm as cm
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    plt.figure(figsize=(16,4))
    #plt.imshow()
    plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
    plt.savefig("img.jpg")
    plt.clf() ; plt.cla()
项目:OpenAPS    作者:medicinexlab    | 项目源码 | 文件源码
def _plot_old_pred_data(old_pred_data, show_pred_plot, save_pred_plot, show_clarke_plot, save_clarke_plot, id_str, algorithm_str, minutes_str):
    actual_bg_array = old_pred_data.result_actual_bg_array
    actual_bg_time_array = old_pred_data.result_actual_bg_time_array
    pred_array = old_pred_data.result_pred_array
    pred_time_array = old_pred_data.result_pred_time_array

    #Root mean squared error
    rms = math.sqrt(metrics.mean_squared_error(actual_bg_array, pred_array))
    print "                Root Mean Squared Error: " + str(rms)
    print "                Mean Absolute Error: " + str(metrics.mean_absolute_error(actual_bg_array, pred_array))
    print "                R^2 Coefficient of Determination: " + str(metrics.r2_score(actual_bg_array, pred_array))

    plot, zone = ClarkeErrorGrid.clarke_error_grid(actual_bg_array, pred_array, id_str + " " + algorithm_str + " " + minutes_str)
    print "                Percent A:{}".format(float(zone[0]) / (zone[0] + zone[1] + zone[2] + zone[3] + zone[4]))
    print "                Percent C, D, E:{}".format(float(zone[2] + zone[3] + zone[4])/ (zone[0] + zone[1] + zone[2] + zone[3] + zone[4]))
    print "                Zones are A:{}, B:{}, C:{}, D:{}, E:{}\n".format(zone[0],zone[1],zone[2],zone[3],zone[4])
    if save_clarke_plot: plt.savefig(id_str + algorithm_str.replace(" ", "") + minutes_str + "clarke.png")
    if show_clarke_plot: plot.show()

    plt.clf()
    plt.plot(actual_bg_time_array, actual_bg_array, label="Actual BG", color='black', linestyle='-')
    plt.plot(pred_time_array, pred_array, label="BG Prediction", color='black', linestyle=':')
    plt.title(id_str + " " + algorithm_str + " " + minutes_str + " BG Analysis")
    plt.ylabel("Blood Glucose Level (mg/dl)")
    plt.xlabel("Time (minutes)")
    plt.legend(loc='upper left')

    # SHOW/SAVE PLOT DEPENDING ON THE BOOLEAN PARAMETER
    if save_pred_plot: plt.savefig(id_str + algorithm_str.replace(" ","") + minutes_str + "plot.png")
    if show_pred_plot: plt.show()


#Function to analyze the old OpenAPS data
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.argsort(- mis[j, :])[:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.yticks(rotation=0)
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
项目:ndparse    作者:neurodata    | 项目源码 | 文件源码
def display_pr_curve(precision, recall):
    # following examples from sklearn

    # TODO:  f1 operating point

    import pylab as plt
    # Plot Precision-Recall curve
    plt.clf()
    plt.plot(recall, precision, label='Precision-Recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title('Precision-Recall example: Max f1={0:0.2f}'.format(max_f1))
    plt.legend(loc="lower left")
    plt.show()
项目:image-quantizer    作者:se7entyse7en    | 项目源码 | 文件源码
def render(self, show=True, new_figure=True):
        """Render the quantized image

        :param bool show: if the quantized image is also to be shown and not
                          only drawn.
        :param bool new_figure: if a new figure is to be used.

        """
        if new_figure:
            plt.figure()
            plt.clf()

        plt.title('{method} ({n_colors})'.format(
            method=self._method, n_colors=self._n_colors))
        plt.imshow(self._quantized_raster / 255.0)

        plt.draw()
        if show:
            plt.show()
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def sample(self, filename, save_samples):
        gan = self.gan
        generator = gan.generator.sample

        sess = gan.session
        config = gan.config
        x_v, z_v = sess.run([gan.inputs.x, gan.encoder.z])

        sample = sess.run(generator, {gan.inputs.x: x_v, gan.encoder.z: z_v})

        plt.clf()
        fig = plt.figure(figsize=(3,3))
        plt.scatter(*zip(*x_v), c='b')
        plt.scatter(*zip(*sample), c='r')
        plt.xlim([-2, 2])
        plt.ylim([-2, 2])
        plt.ylabel("z")
        fig.canvas.draw()
        data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
        data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
        #plt.savefig(filename)
        self.plot(data, filename, save_samples)
        return [{'image': filename, 'label': '2d'}]
项目:probability_GAN    作者:MaureenZOU    | 项目源码 | 文件源码
def view(realDtb, fakeDtb, discriminator, outDir):
        plt.clf()

        axes = plt.gca()
        axes.set_xlim([-1,10])
        axes.set_ylim([0,0.6])
        axes.set_autoscale_on(False)

        plt.axhline(y = discriminator)
        plt.plot()

        real_mean = np.mean(realDtb)
        real_std = np.std(realDtb)
        real_pdf = norm.pdf(realDtb, real_mean, real_std)
        plt.plot(realDtb, real_pdf)

        fake_mean = np.mean(fakeDtb)
        fake_std = np.std(fakeDtb)
        fake_pdf = norm.pdf(fakeDtb, fake_mean, fake_std)
        plt.plot(fakeDtb, fake_pdf)

        plt.pause(0.00001)
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def cellplot(fs, csf):
    """
    Plots PSF kernels

    --------------------------------------------------------------------------
    Usage:

    Call:  cellplot(fs, csf)

    Input: fs   PSF kernels, i.e. 3d array with kernels indexed by 0th index
           csf  size of kernels in x and y direction

    Output: Shows stack of PSF kernels arranged according to csf
    --------------------------------------------------------------------------

    Copyright (C) 2011 Michael Hirsch
    """    

    mp.clf()
    for i in range(np.prod(csf)):
        mp.subplot(csf[0],csf[1],i+1)
        mp.imshow(fs[i])
        mp.axis('off')
    mp.draw()
项目:bmcmc    作者:sanjibs    | 项目源码 | 文件源码
def myplot(self):
        # Plot the results
        plt.clf()
        burn=1000
        x=np.arange(self.eargs['dsize'])+1
        stats=[[],[]]
        for i,y in enumerate(self.data['y']):
            stats[0].append(np.mean(y))
            stats[1].append(self.eargs['sigma']/np.sqrt(y.size))
        plt.errorbar(x,stats[0],yerr=stats[1],fmt='.b',lw=3,ms=12,alpha=0.8) 
        plt.errorbar(x,self.mu['alpha'],yerr=self.sigma['alpha'],fmt='.g',lw=3,ms=12,alpha=0.8)

        temp1=np.mean(self.chain['mu'][burn:])
        plt.plot([0,self.eargs['dsize']+1],[temp1,temp1],'k--')
        plt.xlim([0,self.eargs['dsize']+1])
        plt.ylabel(r'$\alpha_j$')
        plt.xlabel(r'Group $j$')
项目:crypto-forcast    作者:7yl4r    | 项目源码 | 文件源码
def plotImage(dta, saveFigName):
    plt.clf()
    dx, dy = 1, 1
    # generate 2 2d grids for the x & y bounds
    with np.errstate(invalid='ignore'):
        y, x = np.mgrid[
            slice(0, len(dta)   , dx),
            slice(0, len(dta[0]), dy)
        ]
        z = dta
        z_min, z_max = -np.abs(z).max(), np.abs(z).max()

        #try:
        c = plt.pcolormesh(x, y, z, cmap='hsv', vmin=z_min, vmax=z_max)
        #except ??? as err:  # data not regular?
        #   c = plt.pcolor(x, y, z, cmap='hsv', vmin=z_min, vmax=z_max)
        d = plt.colorbar(c, orientation='vertical')
        lx = plt.xlabel("index")
        ly = plt.ylabel("season length")
        plt.savefig(str(saveFigName))
项目:crypto-forcast    作者:7yl4r    | 项目源码 | 文件源码
def plotACFAndPACF(dta, saveFigName=None):
    fig = plt.figure(figsize=(12,8))
    ax1 = fig.add_subplot(211)
    # squeeze = Remove single-dimensional entries from the shape of an array.
    # Plots lags on the horizontal and the correlations on vertical axis
    ax1.set_ylabel('correlation')
    ax1.set_xlabel('lag')
    fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1)

    # partial act
    # Plots lags on the horizontal and the correlations on vertical axis
    ax2 = fig.add_subplot(212)
    ax1.set_ylabel('correlation')
    ax1.set_xlabel('lag')
    fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2)

    if (saveFigName==None):
        plt.show()
    else:
        plt.savefig(config.plot_dir+str(saveFigName), bbox_inches='tight')
    plt.clf()
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def generate_plot(plot_dir, iteration, data_in, output_g, output_d, train_data, args):
    data_in = data_in.squeeze()
    generated = output_g['generated']
    plt.plot(data_in[0], data_in[1], 'gx')
    plt.plot(generated[0], generated[1], 'r.')
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.gca().set_aspect('equal', adjustable='box')
    plt.axis('off')
    title = 'Iteration {} \n Gen. Cost {:.2E}  Disc. Cost {:.2E}'.format(
        iteration, float(output_g['batch_cost']), float(output_d['batch_cost']))
    plt.title(title)
    plt.savefig(plot_dir + '/' + str(iteration) + 'Generated.png')
    plt.clf()

    # plot and save loss and gradients
    for key in train_data.keys():
        data = np.array(train_data[key]).T
        plt.plot(data[0], data[1])
        plt.title(key + ' for ' + args.loss_type)
        plt.xlabel('Iterations')
        plt.ylabel(key)
        plt.savefig(plot_dir + '/' + key + '.png')
        plt.clf()
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def plot_generated(gen_series, gt_series, predict_seq):
    """
    Plots the generated time series over the ground truth series
    """
    plt.clf()
    fig, ax = plt.subplots(figsize=(20, 10))
    ax.plot(range(gen_series.shape[0]), gen_series[:, 0],
            linestyle=':',
            marker='s', label='generated_x')
    ax.plot(range(gen_series.shape[0]), gen_series[:, 1],
            linestyle=':',
            marker='o', label='generated_y')
    ax.plot(range(gt_series.shape[0]), gt_series[:, 0],
            linestyle=':',
            marker='d', label='gt_x')
    ax.plot(range(gt_series.shape[0]), gt_series[:, 1],
            linestyle=':',
            marker='D', label='gt_y')
    ax.legend()
    ax.grid()
    title = 'Lissajous Curve Generated Series and Ground Truth\n' \
            'Predict Sequence:%s' % predict_seq
    ax.set_title(title)
    fig.savefig('GeneratedCurve_Time_PredictSeq_%s.png' % predict_seq, dpi=128)
项目:VLTPF    作者:avigan    | 项目源码 | 文件源码
def fit_peak(x, y, display=False):
    '''
    Fit a Gaussian (with linear trend)

    Parameters
    ----------
    x : array_like
        x values

    y : array_like
        y values

    display : bool
        Display the result of the fit

    Returns
    -------
    par    
        Fit parameters: Gaussian amplitude, Gaussian mean, Gaussian
        stddev, line slope, line intercept
    '''

    # fit: Gaussian + constant
    g_init = models.Gaussian1D(amplitude=y.max(), mean=x[np.argmax(y)]) + models.Linear1D(slope=0, intercept=0)
    fitter = fitting.LevMarLSQFitter()
    fit = fitter(g_init, x, y)

    if display:
        plt.clf()
        plt.plot(x, y, color='k')
        plt.plot(x, fit(x), color='r')
        plt.tight_layout()

    return fit.parameters
项目:Kiddo    作者:Subarno    | 项目源码 | 文件源码
def visualize(X, Y, classes, samples_per_class=10):
    nb_classes = len(classes)

    for y, cls in enumerate(classes):
        idxs = np.flatnonzero(Y == y)
        idxs = np.random.choice(idxs, samples_per_class, replace=False)

        for i, idx in enumerate(idxs):
            plt_idx = i * nb_classes + y + 1
            plt.subplot(samples_per_class, nb_classes, plt_idx)
            plt.imshow(X[idx], cmap='gray')
            plt.axis('off')
            if i == 0:
                plt.title(cls)
    #plt.show()
    plt.savefig('img/data.png')
    plt.clf()
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def plot_weight_histogram(model, outfile, lower=-0.25, upper=0.25):
    n = len(model.params)
    plt.clf()
    for (i, theano_shared_params) in enumerate(model.params):
        weights = theano_shared_params.get_value()
        values = weights.flatten()
        plt.subplot(n,1,i+1)
        frame = plt.gca()
        frame.axes.get_yaxis().set_ticks([])
        if i != n-1:  ## only keep bottom one
            frame.axes.get_xaxis().set_ticks([])
        plt.hist(values, 100)
        plt.xlim(lower, upper)
        print('   param no. %s'%(i))
        print(get_stats(theano_shared_params))
    plt.savefig(outfile)
    print('Made plot %s'%(outfile))
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def show_image(im: Image, fig=None, title: str = '', pol=0, chan=0, cm='rainbow'):
    """ Show an Image with coordinates using matplotlib

    :param im:
    :param fig:
    :param title:
    :return:
    """
    import matplotlib.pyplot as plt

    assert isinstance(im, Image)
    if not fig:
        fig = plt.figure()
    plt.clf()
    fig.add_subplot(111, projection=im.wcs.sub(['longitude', 'latitude']))
    if len(im.data.shape) == 4:
        plt.imshow(numpy.real(im.data[chan, pol, :, :]), origin='lower', cmap=cm)
    elif len(im.data.shape) == 2:
        plt.imshow(numpy.real(im.data[:, :]), origin='lower', cmap=cm)
    plt.xlabel('RA---SIN')
    plt.ylabel('DEC--SIN')
    plt.title(title)
    plt.colorbar()
    return fig
项目:traffic_video_analysis    作者:polltooh    | 项目源码 | 文件源码
def plot_conf_mat(densmap_name):
    fig = plt.figure(figsize = (20,20))
    plt.clf()
    ax = fig.add_subplot(111)
    #ax.set_aspect(1)
    densmap = np.fromfile(densmap_name, np.float32)
    densmap = densmap.reshape(227, 227)
    densmap *= 100
    densmap[densmap > 1] = 1
    res = ax.imshow(densmap, cmap = plt.cm.jet,
            interpolation = 'nearest')

    plt.savefig('density.jpg')
    img = cv2.imread("density.jpg")
    img = cv2.resize(img, (227,227))
    cv2.imshow("i", img)#
    cv2.waitKey(0)
    #plt.show()
项目:Dstl-Satellite-Imagery-Feature-Detection    作者:DeepVoltaire    | 项目源码 | 文件源码
def visualize_scores(avg_scores, ind_scores_over_time, trs, name):
    """
    Visualizes the validation Jaccard Scores for all ten classes over the epochs.
    """
    plt.plot(avg_scores, lw=3)
    for z in range(10):
        plt.plot(ind_scores_over_time[z], ls="--")
    plt.title('Jaccard Scores')
    plt.ylabel('Score')
    plt.xlabel('Epoch')
    legend = plt.legend(["Avg Score", "Buildings", "Structures", "Road", "Track", "Trees", "Crops", "Waterway",
                  "Standing Water", "Trucks", "Cars"], loc='upper left', frameon=True)
    frame = legend.get_frame()
    frame.set_facecolor('white')
    os.makedirs("../plots", exist_ok=True)
    plt.savefig("../plots/scores_{}.png".format(name), bbox_inches="tight", pad_inches=1)
    plt.clf()
    plt.cla()
    plt.close()
项目:aikaterna-cogs    作者:aikaterna    | 项目源码 | 文件源码
def create_chart(self, top, others):
        plt.clf()
        sizes = [x[1] for x in top]
        labels = ["{} {:g}%".format(x[0], x[1]) for x in top]
        if len(top) >= 10:
            sizes = sizes + [others]
            labels = labels + ["Others {:g}%".format(others)]

        title = plt.title('User activity in the last 5000 messages')
        title.set_va("top")
        title.set_ha("left")
        plt.gca().axis("equal")
        colors = ['r', 'darkorange', 'gold', 'y', 'olivedrab', 'green', 'darkcyan', 'mediumblue', 'darkblue', 'blueviolet', 'indigo']
        pie = plt.pie(sizes, colors=colors, startangle=0)
        plt.legend(pie[0], labels, bbox_to_anchor=(0.7, 0.5), loc="center", fontsize=10,
                   bbox_transform=plt.gcf().transFigure)
        plt.subplots_adjust(left=0.0, bottom=0.1, right=0.45)
        image_object = BytesIO()
        plt.savefig(image_object, format='PNG')
        image_object.seek(0)
        return image_object
项目:SecuML    作者:ANSSI-FR    | 项目源码 | 文件源码
def plotEvolutionMonitoring(self, estimator = None):
        if estimator is None:
            for e in self.homogeneity_estimators + self.adjusted_estimators:
                self.plotEvolutionMonitoring(estimator = e)
        else:
            iterations = range(self.monitoring.iteration_number)
            plt.clf()
            max_value = 1
            clusterings = self.annotations.getClusteringsEvaluations()
            for l in clusterings.keys():
                color = colors_tools.getLabelColor(l)
                label = l + '_' + estimator
                plt.plot(iterations, self.data.loc[:][label],
                        label = l.title() + ' Clustering',
                        color = color, linewidth = 4, marker = 'o')
            plt.ylim(0, max_value)
            plt.xlabel('Iteration')
            plt.ylabel(estimator)
            lgd = plt.legend(bbox_to_anchor = (0., 1.02, 1., .102), loc = 3,
                    ncol = 2, mode = 'expand', borderaxespad = 0.,
                    fontsize = 'large')
            filename  = self.output_directory
            filename += estimator + '_monitoring.png'
            plt.savefig(filename, bbox_extra_artists=(lgd,), bbox_inches='tight')
            plt.clf()
项目:radwatch-analysis    作者:bearing    | 项目源码 | 文件源码
def save_peak(sample, energy):
    """
    Plot peak using Spectrum_Peak_Visualization and save into a PNG file.
    """
    cwd = os.getcwd()
    sample_name = os.path.splitext(sample.filename)[0]
    sample_folder = os.path.join(cwd, sample_name)
    # if folder exists, skip next step. Otherwise, create folder for PNGs
    if not os.path.exists(sample_folder):
        try:
            os.makedirs(sample_folder)
        except OSError:
            pass
    label = sample_name + '_' + str(energy) + '_peak'
    fwhm = 0.05 * (energy)**0.5
    energy_range = [(energy - 11 * fwhm), (energy + 11 * fwhm)]
    # generate plot PNG using plotter
    plotter.gamma_plotter(
        sample, energy_range=energy_range, use='peaks', title_text=label)
    PNG_name = label + '.png'
    # move PNGs to newly created folder
    plt.savefig(os.path.join(sample_folder, PNG_name))
    plt.clf()
项目:BATS-Bayesian-Adaptive-Trial-Simulator    作者:ContaTP    | 项目源码 | 文件源码
def exportPlot(self):

        # Combine to one 
        self.plot_output_file, filetype = QtWidgets.QFileDialog.getSaveFileName(self, "Export Plots To...", "", "PDF(*.pdf)")
        if filetype == "PDF(*.pdf)":

            pdf = matplotlib.backends.backend_pdf.PdfPages(self.plot_output_file)
            for key in list(self.plot_file.keys()):

                for i in range(1, len(self.plot_file[key])):

                    fig = plt.figure()
                    img = mpimg.imread(self.plot_file[key][i])
                    plt.imshow(img)
                    plt.axis('off')
                    pdf.savefig(fig)
                    plt.clf()
                    plt.close()

            pdf.close()
            sys.stdout.write("Output plot files to %s"%(self.plot_output_file))      
            self.exportPlot_flag = 1
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def plot(data, dec, filename="data.png"):
    idx    = dec[ np.where(dec != 51)[0] ]
    convex = data[idx, :] 

    x = data[1:, 0]
    y = data[1:, 1]
    convex_x = convex[1:, 0]
    convex_y = convex[1:, 1]

    plt.scatter(x, y)
    plt.plot(convex_x, convex_y, color="orange")
    plt.xlim(0.0, 1.0)
    plt.ylim(0.0, 1.0)
    plt.savefig(filename)

    plt.clf()
    plt.close()
项目:BayesVP    作者:cameronliang    | 项目源码 | 文件源码
def corner_plot(self):
        """
        Make triangle plot for visuaizaliton of the 
        multi-dimensional posterior
        """
        plt.clf()
        plt.figure(1)
        if self.n_params == 3:
            self.samples[:,2] = self.samples[:,2] * 1e5  
            fig = corner.corner(self.samples,bins=30,quantiles=(0.16,0.5, 0.84),
            labels=[r'$\log N\,[\rm cm^{-3}]$',r'$b\,[\rm km s^{-1}]$',r'$z \times 1e5$'],
            show_titles=True,title_kwargs={"fontsize": 16})
        else:
            self.samples[:,2] = self.samples[:,2] * 1e5  
            fig = corner.corner(self.samples,bins=30,quantiles=(0.16,0.5, 0.84),
            show_titles=True,title_kwargs={"fontsize": 16})

        output_name = self.config_param.processed_product_path + '/corner_' + self.config_param.chain_short_fname + '.png'

        plt.savefig(output_name,bbox_inches='tight')
        plt.clf()

        print('Written %s' % output_name)
项目:BayesVP    作者:cameronliang    | 项目源码 | 文件源码
def plot_gr_indicator(self):
        """
        Make plot for the evolution of GR indicator 
        as a function of steps
        """
        gr_fname = self.config_param.chain_fname + '_GR.dat'
        data = np.loadtxt(gr_fname,unpack=True)
        steps = data[0]; grs = data[1:]

        plt.figure(1,figsize=(6,6))
        for i in xrange(len(grs)):
            plt.plot(steps,grs[i],label=str(i))
        plt.legend(loc='best')
        plt.xscale('log')

        plt.xlabel(r'$N(\rm{steps})$')
        plt.ylabel(r'$R_{\rm GR}$')

        output_name = self.config_param.processed_product_path + '/GR_' + self.config_param.chain_short_fname + '.pdf' 
        plt.savefig(output_name,bbox_inches='tight',dpi=100)
        plt.clf()

        print('Written %s' % output_name)
项目:tensorflow_end2end_speech_recognition    作者:hirofumi0810    | 项目源码 | 文件源码
def plot_loss(train_losses, dev_losses, steps, save_path):
    """Save history of training & dev loss as figure.
    Args:
        train_losses (list): train losses
        dev_losses (list): dev losses
        steps (list): steps
    """
    # Save as csv file
    loss_graph = np.column_stack((steps, train_losses, dev_losses))
    if os.path.isfile(os.path.join(save_path, "ler.csv")):
        os.remove(os.path.join(save_path, "ler.csv"))
    np.savetxt(os.path.join(save_path, "loss.csv"), loss_graph, delimiter=",")

    # TODO: error check for inf loss

    # Plot & save as png file
    plt.clf()
    plt.plot(steps, train_losses, blue, label="Train")
    plt.plot(steps, dev_losses, orange, label="Dev")
    plt.xlabel('step', fontsize=12)
    plt.ylabel('loss', fontsize=12)
    plt.legend(loc="upper right", fontsize=12)
    if os.path.isfile(os.path.join(save_path, "loss.png")):
        os.remove(os.path.join(save_path, "loss.png"))
    plt.savefig(os.path.join(save_path, "loss.png"), dvi=500)
项目:gym-kidney    作者:camoy    | 项目源码 | 文件源码
def _render(self, mode = "human", close = False):
        if close:
            return

        import matplotlib.pyplot as plt

        if self.tick == 0:
            plt.ion()

        G = self.G
        attrs = nx.get_node_attributes(G, "ndd")
        values = ["red" if attrs[v] else "blue" for v in G.nodes()]

        plt.clf()
        nx.draw(G,
            pos = nx.circular_layout(G),
            node_color = values)
        plt.pause(0.01)

        return []
项目:strategy    作者:kanghua309    | 项目源码 | 文件源码
def _render(self, mode='human', close=False):
        if self.inited == False: return
        if self.render_on == 0:
            # self.fig = plt.figure(figsize=(10, 4))
            self.fig = plt.figure(figsize=(12, 6))
            self.render_on = 1
            plt.ion()

        plt.clf()
        self._plot_trades()
        plt.suptitle("Code: " + self.src.symbol + ' ' + \
                     "Round:" + str(self.reset_count) + "-" + \
                     "Step:" + str(self.src.idx - self.src.orgin_idx) + "  (" + \
                     "from:" + self.src.reset_start_day + " " + \
                     "to:" + self.src.reset_end_day + ")")
        plt.pause(0.001)
        return self.fig
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def plot(self, filename):
        r"""Save an image file of the transfer function.

        This function loads up matplotlib, plots the transfer function and saves.

        Parameters
        ----------
        filename : string
            The file to save out the plot as.

        Examples
        --------

        >>> tf = TransferFunction( (-10.0, -5.0) )
        >>> tf.add_gaussian(-9.0, 0.01, 1.0)
        >>> tf.plot("sample.png")
        """
        import matplotlib
        matplotlib.use("Agg")
        import pylab
        pylab.clf()
        pylab.plot(self.x, self.y, 'xk-')
        pylab.xlim(*self.x_bounds)
        pylab.ylim(0.0, 1.0)
        pylab.savefig(filename)
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def show(self):
        r"""Display an image of the transfer function

        This function loads up matplotlib and displays the current transfer function.

        Parameters
        ----------

        Examples
        --------

        >>> tf = TransferFunction( (-10.0, -5.0) )
        >>> tf.add_gaussian(-9.0, 0.01, 1.0)
        >>> tf.show()
        """
        import pylab
        pylab.clf()
        pylab.plot(self.x, self.y, 'xk-')
        pylab.xlim(*self.x_bounds)
        pylab.ylim(0.0, 1.0)
        pylab.draw()
项目:rl-rc-car    作者:harvitronix    | 项目源码 | 文件源码
def visualize_polar(state):
    plt.clf()

    sonar = state[0][-1:]
    readings = state[0][:-1]

    r = []
    t = []
    for i, s in enumerate(readings):
        r.append(math.radians(i * 6))
        t.append(s)

    ax = plt.subplot(111, polar=True)

    ax.set_theta_zero_location('W')
    ax.set_theta_direction(-1)
    ax.set_ylim(bottom=0, top=105)

    plt.plot(r, t)
    plt.scatter(math.radians(90), sonar, s=50)
    plt.draw()
    plt.pause(0.1)
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotD(initD, latestD, workDir):
    def p(D, fname):
        plt.clf()
        lim = max(np.abs(np.min(D)), np.abs(np.max(D)))
        clim = (-lim, lim)
        plt.imshow(D, cmap='bwr', interpolation='nearest', clim=clim)
        plt.colorbar()
        plt.savefig(os.path.join(workDir, fname))

    p(initD, 'initD.png')
    p(latestD, 'latestD.png')

    latestDs = latestD**6
    latestDs = latestDs/np.sum(latestDs, axis=1)[:,None]
    I = np.argsort(latestDs.dot(np.arange(latestDs.shape[1])))
    latestDs = latestD[I]
    initDs = initD[I]

    p(initDs, 'initD_sorted.png')
    p(latestDs, 'latestD_sorted.png')

    # Dcombined = np.concatenate((initDs, np.zeros((initD.shape[0], 10)), latestDs), axis=1)
    # p(Dcombined, 'Dcombined.png')
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotD(initD, latestD, workDir):
    def p(D, fname):
        plt.clf()
        lim = max(np.abs(np.min(D)), np.abs(np.max(D)))
        clim = (-lim, lim)
        plt.imshow(D, cmap='bwr', interpolation='nearest', clim=clim)
        plt.colorbar()
        plt.savefig(os.path.join(workDir, fname))

    p(initD, 'initD.png')
    p(latestD, 'latestD.png')

    latestDs = latestD**6
    latestDs = latestDs/np.sum(latestDs, axis=1)[:,None]
    I = np.argsort(latestDs.dot(np.arange(latestDs.shape[1])))
    latestDs = latestD[I]
    initDs = initD[I]

    p(initDs, 'initD_sorted.png')
    p(latestDs, 'latestD_sorted.png')

    # Dcombined = np.concatenate((initDs, np.zeros((initD.shape[0], 10)), latestDs), axis=1)
    # p(Dcombined, 'Dcombined.png')
项目:prototype    作者:chutsu    | 项目源码 | 文件源码
def test_plot(self):
        fig = plt.figure()
        ax = fig.gca(projection='3d')

        gimbal = GimbalPlot()

        gimbal.plot(ax)

        debug = False
        if debug:
            axis_equal_3dplot(ax)
            ax.set_xlabel("x")
            ax.set_ylabel("y")
            ax.set_zlabel("z")
            plt.show()
        plt.clf()
项目:DeepSense    作者:yscacaca    | 项目源码 | 文件源码
def flush():
    prints = []

    for name, vals in _since_last_flush.items():
        prints.append("{}\t{}".format(name, np.mean(vals.values())))
        _since_beginning[name].update(vals)

        x_vals = np.sort(_since_beginning[name].keys())
        y_vals = [_since_beginning[name][x] for x in x_vals]

        plt.clf()
        plt.plot(x_vals, y_vals)
        plt.xlabel('iteration')
        plt.ylabel(name)
        plt.savefig(name.replace(' ', '_')+'.jpg')

    print "iter {}\t{}".format(_iter[0], "\t".join(prints))
    _since_last_flush.clear()

    with open('log.pkl', 'wb') as f:
        pickle.dump(dict(_since_beginning), f, pickle.HIGHEST_PROTOCOL)
项目:DeepSense    作者:yscacaca    | 项目源码 | 文件源码
def flush():
    prints = []

    for name, vals in _since_last_flush.items():
        prints.append("{}\t{}".format(name, np.mean(vals.values())))
        _since_beginning[name].update(vals)

        x_vals = np.sort(_since_beginning[name].keys())
        y_vals = [_since_beginning[name][x] for x in x_vals]

        plt.clf()
        plt.plot(x_vals, y_vals)
        plt.xlabel('iteration')
        plt.ylabel(name)
        plt.savefig(name.replace(' ', '_')+'.jpg')

    print "iter {}\t{}".format(_iter[0], "\t".join(prints))
    _since_last_flush.clear()

    with open('log.pkl', 'wb') as f:
        pickle.dump(dict(_since_beginning), f, pickle.HIGHEST_PROTOCOL)
项目:sparks    作者:ImpactHorizon    | 项目源码 | 文件源码
def save_heatmap(heatmap, mask):
    plt.clf()
    xmin, xmax, ymin, ymax = 0, heatmap.shape[1], heatmap.shape[0], 0
    extent = xmin, xmax, ymin, ymax
    alpha=1.0
    if mask is not None:
        alpha=0.5
        xmin, xmax, ymin, ymax = (0, max(heatmap.shape[1], mask.shape[1]), 
                                    max(heatmap.shape[0], mask.shape[0]), 0)
        extent = xmin, xmax, ymin, ymax
        plt.imshow(mask, extent=extent)
        plt.hold(True)
    plt.suptitle("Heatmap of sampled tiles.")
    plt.imshow(heatmap, cmap='gnuplot', interpolation='nearest', extent=extent,
                alpha=alpha)
    return plt
项目:sparks    作者:ImpactHorizon    | 项目源码 | 文件源码
def save_histogram_with_otsu(name, histograms, otsu):
    plt.clf()
    figure, axarr = plt.subplots(3)
    figure.tight_layout()
    for x, otsu_value in zip(range(3), otsu):
        axarr[x].bar(np.arange(0, histograms[x].size), 
                        np.log2(np.where(histograms[x] >= 1, 
                                            histograms[x], 
                                            1)), 
                        1.0)
        axarr[x].grid(True)
        axarr[x].set_ylabel("log2")
        for val in otsu_value:
            axarr[x].axvline(x=val, color="r")
        axarr[x].set_xlim(0, histograms[x].size)

    axarr[0].set_title('Hue')
    axarr[1].set_title('Saturation')
    axarr[2].set_title('Value')
    return plt
项目:sparks    作者:ImpactHorizon    | 项目源码 | 文件源码
def save_thresholds_heatmap(hmap, hist, bins, heatmap_otsu, mini): 
    plt.clf()       
    width = 0.7 * (bins[1] - bins[0])
    center = (bins[:-1] + bins[1:]) / 2

    ax = plt.subplot(1, 2, 1)
    ax.bar(center, hist, width=width)
    ax.grid(True)
    ax.set_xlim(0.0, 1.0)
    ax.set_title('Values histogram')
    ax.set_ylabel("Percent of samples (%)")
    ax.axvline(x=heatmap_otsu, color="r")  
    ax = plt.subplot(2, 2, 2)    
    ax.set_title('Values heatmap')
    ax.imshow(hmap, cmap='hot', interpolation='nearest')
    ax = plt.subplot(2, 2, 4)
    ax.set_title("Original mini")
    ax.imshow(mini)
    return plt
项目:ccf-price-prediction    作者:wqlin    | 项目源码 | 文件源码
def plot(self, sort_csv_file, forecast_csv_file, save_fig_file):
        sort_df = pd.read_csv(sort_csv_file)
        sort_df['date'] = pd.to_datetime(sort_df['date'], format='%Y-%m-%d')
        sort_df = sort_df.set_index(pd.DatetimeIndex(sort_df['date']))

        forecast_df = pd.read_csv(forecast_csv_file, header=None,
                                  names=['date', 'aver'])
        forecast_df['date'] = pd.to_datetime(forecast_df['date'], format='%Y-%m-%d')
        forecast_df = forecast_df.set_index(pd.DatetimeIndex(forecast_df['date']))
        forecast_df['aver'].plot(figsize=(20, 20), c='r', linewidth=3.0)
        ax = sort_df['aver'].plot(figsize=(20, 20), linewidth=3.0)
        plt.ylabel('price')
        plt.xlabel('date')
        ax.set_ylim(sort_df['aver'].min() * 0.8, sort_df['aver'].max() * 1.2)
        plt.savefig(save_fig_file)
        plt.cla()
        plt.clf()
        plt.close()