Python matplotlib.pyplot 模块,colorbar() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.colorbar()

项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def plot_pts(points, values, colorbar=True, subplot_loc=None, mytitle=None, show_axis='on', vmin=None, vmax=None, xlim=(0,1), ylim=(0,1)):
    if subplot_loc is not None:
        plt.subplot(subplot_loc)

    pp = plt.scatter(points[:,0], points[:,1], c=values.get_local(), marker=",", s=20, vmin=vmin, vmax=vmax)

    plt.axis(show_axis)

    if colorbar:
        plt.colorbar(pp, fraction=.1, pad=0.2)
    else:
        plt.gca().set_aspect('equal')

    if mytitle is not None:
        plt.title(mytitle, fontsize=20)

    if xlim is not None:
        plt.xlim(xlim)

    if ylim is not None:
        plt.ylim(ylim)

    return pp
项目:pyballd    作者:Yurlungur    | 项目源码 | 文件源码
def plot_interpolation(orderx,ordery):
    s = PseudoSpectralDiscretization2D(orderx,XMIN,XMAX,
                                ordery,YMIN,YMAX)
    Xc,Yc = s.get_x2d()
    x = np.linspace(XMIN,XMAX,100)
    y = np.linspace(YMIN,YMAX,100)
    Xf,Yf = np.meshgrid(x,y,indexing='ij')
    f_coarse = f(Xc,Yc)
    f_interpolator = s.to_continuum(f_coarse)
    f_num = f_interpolator(Xf,Yf)
    plt.pcolor(Xf,Yf,f_num)
    cb = plt.colorbar()
    cb.set_label('interpolated function',fontsize=16)
    plt.xlabel('x')
    plt.ylabel('y')
    for postfix in ['.png','.pdf']:
        name = 'orthopoly_interpolated_function'+postfix
        if USE_FIGS_DIR:
            name = 'figs/' + name
        plt.savefig(name,
                    bbox_inches='tight')
    plt.clf()
项目:cube_browser    作者:SciTools    | 项目源码 | 文件源码
def legend(self, mappable):

        fig = plt.gcf()
        posn = self.axes.get_position()
        extent = self.axes.get_extent()
        aspect = (extent[1] - extent[0]) / (extent[3] - extent[2])

        self.cb_depth = 0.02
        self.cb_sep = 0.01
        if aspect < 1.2:
            self.cbar_ax = fig.add_axes([posn.x1 + self.cb_sep, posn.y0,
                                         self.cb_depth, posn.height])
            plt.colorbar(mappable, ax=self.axes, orientation='vertical',
                         cax=self.cbar_ax)

        else:
            self.cbar_ax = fig.add_axes([posn.x0, posn.y0 - 6*self.cb_sep,
                                         posn.width, 2*self.cb_depth])
            plt.colorbar(mappable, ax=self.axes, orientation='horizontal',
                         cax=self.cbar_ax)

        fig.canvas.mpl_connect('resize_event', self.resize_colourbar)
        self.resize_colourbar(None)
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def plot_spectra(results):
    plt.figure(figsize=(10, 4))
    plt.imshow(
        np.concatenate(
            [np.flipud(results['x'].T),
             np.flipud(results['xh'].T),
             np.flipud(results['x_conv'].T)],
            0),
        aspect='auto',
        cmap='jet',
    )
    plt.colorbar()
    plt.title('Upper: Real input; Mid: Reconstrution; Lower: Conversion to target.')
    plt.savefig(
        os.path.join(
            args.logdir,
            '{}.png'.format(
                os.path.split(str(results['f'], 'utf-8'))[-1]
            )
        )
    )
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys, block=True):
    # Colormaps: jet, Greys
    cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap)

    # Show confidences
    for i, cas in enumerate(cm): 
        for j, c in enumerate(cas): 
            if c > 0: 
                plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000')

    f = plt.figure(1)
    f.clf()
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show(block=block)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, clf_target_names, title='Confusion matrix', cmap=plt.cm.jet):
    target_names = map(lambda key: key.replace('_','-'), clf_target_names)

    for idx in range(len(cm)): 
        cm[idx,:] = (cm[idx,:] * 100.0 / np.sum(cm[idx,:])).astype(np.int)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    # plt.matshow(cm)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(clf_target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    # plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys):
    # Colormaps: jet, Greys
    cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap)

    # Show confidences
    for i, cas in enumerate(cm): 
        for j, c in enumerate(cas): 
            if c > 0: 
                plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000')

    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show(block=True)
项目:Flavor-Network    作者:lingcheng99    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, col, title, cmap=plt.cm.viridis):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    for i in range(cm.shape[0]):
        plt.annotate("%.2f" %cm[i][i],xy=(i,i),
                    horizontalalignment='center',
                    verticalalignment='center')
    plt.title(title,fontsize=18)
    plt.colorbar(fraction=0.046, pad=0.04)
    tick_marks = np.arange(len(col.unique()))
    plt.xticks(tick_marks, sorted(col.unique()),rotation=90)
    plt.yticks(tick_marks, sorted(col.unique()))
    plt.tight_layout()
    plt.ylabel('True label',fontsize=18)
    plt.xlabel('Predicted label',fontsize=18)

#using flavor network to project recipes from ingredient matrix to flavor matrix
项目:AnomalyDetection    作者:JayZhuCoding    | 项目源码 | 文件源码
def plot_training_parameters(self):
        fr = open("training_param.csv", "r")
        fr.readline()
        lines = fr.readlines()
        fr.close()
        n = 100
        nu = np.empty(n, dtype=np.float64)
        gamma = np.empty(n, dtype=np.float64)
        diff = np.empty([n, n], dtype=np.float64)
        for row in range(len(lines)):
            m = lines[row].strip().split(",")
            i = row / n
            j = row % n
            nu[i] = Decimal(m[0])
            gamma[j] = Decimal(m[1])
            diff[i][j] = Decimal(m[2])
        plt.pcolor(gamma, nu, diff, cmap="coolwarm")
        plt.title("The Difference of Guassian Classifier with Different nu, gamma")
        plt.xlabel("gamma")
        plt.ylabel("nu")
        plt.xscale("log")
        plt.yscale("log")
        plt.colorbar()
        plt.show()
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def Plot_ChargesDensity(XYZ, sig0, sig1, R, E0, ax):

    xr, yr, zr = np.unique(XYZ[:, 0]), np.unique(XYZ[:, 1]), np.unique(XYZ[:, 2])
    xcirc = xr[np.abs(xr) <= R]

    Et, Ep, Es = get_ElectricField(XYZ, sig0, sig1, R, E0)
    rho = get_ChargesDensity(XYZ, sig0, sig1, R, Et, Ep)

    ax.set_xlim([xr.min(), xr.max()])
    ax.set_ylim([yr.min(), yr.max()])
    ax.set_aspect('equal')
    Cplot = ax.pcolor(xr, yr, rho.reshape(xr.size, yr.size))
    cb1 = plt.colorbar(Cplot, ax=ax)
    cb1.set_label(label= 'Charge Density ($C/m^2$)', size=ftsize_label) #weight='bold')
    cb1.ax.tick_params(labelsize=ftsize_axis)
    ax.plot(xcirc, np.sqrt(R**2-xcirc**2), '--k', xcirc, -np.sqrt(R**2-xcirc**2), '--k')
    ax.set_ylabel('Y coordinate ($m$)', fontsize=ftsize_label)
    ax.set_xlabel('X coordinate ($m$)', fontsize=ftsize_label)
    ax.tick_params(labelsize=ftsize_axis)
    ax.set_title('Charges Density', fontsize=ftsize_title)

    return ax
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def showHeightMap(x,y,z,zi):
    ''' show height map in maptplotlib '''
    zi=zi.transpose()

    plt.imshow(zi, vmin=z.min(), vmax=z.max(), origin='lower',
               extent=[ y.min(), y.max(),x.min(), x.max()])

    plt.colorbar()

    CS = plt.contour(zi,15,linewidths=0.5,colors='k',
               extent=[ y.min(), y.max(),x.min(), x.max()])
    CS = plt.contourf(zi,15,cmap=plt.cm.rainbow, 
               extent=[ y.min(), y.max(),x.min(), x.max()])

    z=z.transpose()
    plt.scatter(y, x, c=z)

    # achsen umkehren
    #plt.gca().invert_xaxis()
    #plt.gca().invert_yaxis()

    plt.show()
    return
项目:semantic-segmentation    作者:albertbuchard    | 项目源码 | 文件源码
def fft_convolve(X,Y, inv = 0):

    XF = np.fft.rfft2(X)
    YF = np.fft.rfft2(Y)
#    YF0 = np.copy(YF)
#    YF.imag = 0
#    XF.imag = 0
    if inv == 1:
 #       plt.imshow(np.real(YF)); plt.colorbar(); plt.show()
        YF = np.conj(YF)

    SF = XF*YF

    S = np.fft.irfft2(SF)
    n1,n2 = np.shape(S)

    S = np.roll(S,-n1/2+1,axis = 0)
    S = np.roll(S,-n2/2+1,axis = 1)

    return np.real(S)
项目:semantic-segmentation    作者:albertbuchard    | 项目源码 | 文件源码
def epsilon_enhance(img, g, rho, mu, tau):
    alpha0 = ridgelet(img)
    alpha = np.abs(alpha0)
    lvl,na1,na2 = np.shape(alpha)
    n1,n2 = np.shape(img)
    sigma = MAD(img)
    level = mk_thresh(n1,n2)*sigma
    alpha_enhanced = np.copy(alpha)*0
    for i in range(lvl-1):
        alpha_enhanced[i, np.where(alpha[i,:,:]<mu)] = (mu/(alpha[i,np.where(alpha[i,:,:].astype(float)<mu)]))**g
        plt.imshow(np.log10(alpha_enhanced[i,:,:])); plt.title('mu');plt.colorbar(); plt.show()
        alpha_enhanced[i, np.where(alpha[i,:,:]<2*tau*level[i])] = ((alpha[i, np.where(alpha[i,:,:]<2*tau*level[i])].astype(float)-tau*level[i])/(tau*level[i]))*(mu/(tau*level[i]))**g +(2*tau*level[i]-alpha[i, np.where(alpha[i,:,:]<2*tau*level[i])].astype(float))/(tau*level[i]) 
        plt.imshow(np.log10(alpha_enhanced[i,:,:])); plt.title('2sigma');plt.colorbar(); plt.show()
        alpha_enhanced[i, np.where(alpha[i,:,:]<tau*level[i])] = 1.
        plt.imshow(np.log10(alpha_enhanced[i,:,:])); plt.title('1'); plt.colorbar(); plt.show()
        alpha_enhanced[i, np.where(alpha[i,:,:]>=mu)] = (mu/alpha[i,np.where(alpha[i,:,:]>=mu)].astype(float))**rho       
        plt.imshow(np.log10(alpha_enhanced[i,:,:]));plt.title('final'); plt.colorbar(); plt.show()
    alpha_enhanced[-1,:,:] = 1
    return alpha0*alpha_enhanced
项目:Epileptic-Seizure-Prediction    作者:cedricsimar    | 项目源码 | 文件源码
def pretty_spectrogram(spectrogram):

    """
    Gent Master thesis spectrogram plot function
    """

    spectrogram = np.transpose(spectrogram, (2,1,0))

    ax = plt.gca()
    ax.set_yticks(range(0,6))
    ax.set_yticklabels([ 'delta', 'theta', 'alpha',
                        'beta', 'low-gamma', 'high-gamma'])
    for label in (ax.get_xticklabels() + ax.get_yticklabels()):
        label.set_fontsize(20)
    ax.set_xticks(range(0,10))
    ax.set_xticklabels(range(0,10))
    plt.imshow(spectrogram[0, :, :], aspect='auto', origin='lower', interpolation='none')
    cbar = plt.colorbar()
    cbar.ax.tick_params(labelsize=20)
    plt.xlabel('Time, Epoch', fontsize=20)
    plt.show()
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def phase_diagram_mesh(points, values,
                                title="Phase diagram",
                                xlabel="Pulse Duration (s)",
                                ylabel="Pulse Amplitude (V)",
                                shading="flat",
                                voronoi=False, **kwargs):
    # fig = plt.figure()
    if voronoi:
        from scipy.spatial import Voronoi, voronoi_plot_2d
        points[:,0] *= 1e9
        vor = Voronoi(points)
        cmap = mpl.cm.get_cmap('RdGy')
        # colorize
        for pr, v in zip(vor.point_region, values):
            region = vor.regions[pr]
            if not -1 in region:
                polygon = [vor.vertices[i] for i in region]
                plt.fill(*zip(*polygon), color=cmap(v))
    else:
        mesh = scaled_Delaunay(points)
        xs = mesh.points[:,0]
        ys = mesh.points[:,1]
        plt.tripcolor(xs,ys,mesh.simplices.copy(),values, cmap="RdGy",shading=shading,**kwargs)
    plt.xlim(min(xs),max(xs))
    plt.ylim(min(ys),max(ys))
    plt.title(title, size=18)
    plt.xlabel(xlabel, size=16)
    plt.ylabel(ylabel, size=16)
    cb = plt.colorbar()
    cb.set_label("Probability",size=16)
    return mesh
项目:squeezenet-keras    作者:chasingbob    | 项目源码 | 文件源码
def update(self, conf_mat, classes, normalize=False):
        """This function prints and plots the confusion matrix.
        Normalization can be applied by setting `normalize=True`.
        """
        plt.imshow(conf_mat, interpolation='nearest', cmap=self.cmap)
        plt.title(self.title)
        plt.colorbar()
        tick_marks = np.arange(len(classes))
        plt.xticks(tick_marks, classes, rotation=45)
        plt.yticks(tick_marks, classes)

        if normalize:
            conf_mat = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]

        thresh = conf_mat.max() / 2.
        for i, j in itertools.product(range(conf_mat.shape[0]), range(conf_mat.shape[1])):
            plt.text(j, i, conf_mat[i, j],                                          
                         horizontalalignment="center",
                         color="white" if conf_mat[i, j] > thresh else "black")

        plt.tight_layout()                                                    
        plt.ylabel('True label')                                              
        plt.xlabel('Predicted label')                                         
        plt.draw()
项目:johnson-county-ddj-public    作者:dssg    | 项目源码 | 文件源码
def plot_normalized_confusion_matrix_at_depth(self):
        """ Returns a normalized confusion matrix.

        :returns: normalized confusion matrix
        :rtype: matplotlib figure
        """
        cm = metrics.confusion_matrix(self.predictions['label'], self.y_pred)
        np.set_printoptions(precision = 2)
        fig = plt.figure()
        cm_normalized = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]

        plt.imshow(cm_normalized, interpolation = 'nearest',
                   cmap = plt.cm.Blues)
        plt.title("Normalized Confusion Matrix")
        plt.colorbar()
        tick_marks = np.arange(len(self.labels))
        plt.xticks(tick_marks, self.labels, rotation = 45)
        plt.yticks(tick_marks, self.labels)
        plt.tight_layout()
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        return(fig)
项目:crypto-forcast    作者:7yl4r    | 项目源码 | 文件源码
def plotImage(dta, saveFigName):
    plt.clf()
    dx, dy = 1, 1
    # generate 2 2d grids for the x & y bounds
    with np.errstate(invalid='ignore'):
        y, x = np.mgrid[
            slice(0, len(dta)   , dx),
            slice(0, len(dta[0]), dy)
        ]
        z = dta
        z_min, z_max = -np.abs(z).max(), np.abs(z).max()

        #try:
        c = plt.pcolormesh(x, y, z, cmap='hsv', vmin=z_min, vmax=z_max)
        #except ??? as err:  # data not regular?
        #   c = plt.pcolor(x, y, z, cmap='hsv', vmin=z_min, vmax=z_max)
        d = plt.colorbar(c, orientation='vertical')
        lx = plt.xlabel("index")
        ly = plt.ylabel("season length")
        plt.savefig(str(saveFigName))
项目:hyperchamber    作者:255BITS    | 项目源码 | 文件源码
def sample(config, vae):
    x_sample = mnist.test.next_batch(100)[0]
    x_reconstruct = vae.reconstruct(x_sample)

    plt.figure(figsize=(8, 12))
    for i in range(5):

        plt.subplot(5, 2, 2*i + 1)
        plt.imshow(x_sample[i].reshape(28, 28), vmin=0, vmax=1)
        plt.title("Test input")
        plt.colorbar()
        plt.subplot(5, 2, 2*i + 2)
        plt.imshow(x_reconstruct[i].reshape(28, 28), vmin=0, vmax=1)
        plt.title("Reconstruction")
        plt.colorbar()
    plt.tight_layout()
    img = "samples/reconstruction.png"
    plt.savefig(img)
    hc.io.sample(config, [{"label": "Reconstruction", "image": img}])
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def saturation_index_countour(lab, elem1, elem2, Ks, labels=False):
    plt.figure()
    plt.title('Saturation index %s%s' % (elem1, elem2))
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    plt.xlabel('Time')
    z = np.log10((lab.species[elem1]['concentration'][:, ::n] + 1e-8) * (
        lab.species[elem2]['concentration'][:, ::n] + 1e-8) / lab.constants[Ks])
    lim = np.max(abs(z))
    lim = np.linspace(-lim - 0.1, +lim + 0.1, 51)
    X, Y = np.meshgrid(lab.time[::n], -lab.x)
    plt.xlabel('Time')
    CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(sns.color_palette(
        "RdBu_r", 101)), origin='lower', levels=lim, extend='both')
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    # cbar = plt.colorbar(CS)
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('Saturation index %s%s' % (elem1, elem2))
    return ax
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def contour_plot_of_rates(lab, r, labels=False, last_year=False):
    plt.figure()
    plt.title('{}'.format(r))
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    if last_year:
        k = n - int(1 / lab.dt)
    else:
        k = 1
    z = lab.estimated_rates[r][:, k - 1:-1:n]
    # lim = np.max(np.abs(z))
    # lim = np.linspace(-lim - 0.1, +lim + 0.1, 51)
    X, Y = np.meshgrid(lab.time[k::n], -lab.x)
    plt.xlabel('Time')
    CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(
        sns.color_palette("Blues", 51)))
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('Rate %s [M/V/T]' % r)
    return ax
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def contour_plot_of_delta(lab, element, labels=False, last_year=False):
    plt.figure()
    plt.title('Rate of %s consumption/production' % element)
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    if last_year:
        k = n - int(1 / lab.dt)
    else:
        k = 1
    z = lab.species[element]['rates'][:, k - 1:-1:n]
    lim = np.max(np.abs(z))
    lim = np.linspace(-lim - 0.1, +lim + 0.1, 51)
    X, Y = np.meshgrid(lab.time[k:-1:n], -lab.x)
    plt.xlabel('Time')
    CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(sns.color_palette(
        "RdBu_r", 101)), origin='lower', levels=lim, extend='both')
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('Rate of %s change $[\Delta/T]$' % element)
    return ax
项目:casingSimulations    作者:lheagy    | 项目源码 | 文件源码
def plot(self, ax=None, clim=[None, None], pcolorOpts=None):
        """
        plot the electrical conductivity and relative permeability

        :param matplotlib.axes ax: axis
        :param list clim: list of numpy arrays: colorbar limits
        :param dict pcolorOpts: dictionary of pcolor options
        """

        if ax is None:
            fig, ax = plt.subplots(1, 2, figsize=(12, 4))

        if not isinstance(pcolorOpts, list):
            pcolorOpts = [pcolorOpts]*2

        self.plot_sigma(ax=ax[0], clim=clim[0], pcolorOpts=pcolorOpts[0])
        self.plot_mur(ax=ax[1], clim=clim[1], pcolorOpts=pcolorOpts[1])

        plt.tight_layout()
        return ax
项目:brainpipe    作者:EtienneCmb    | 项目源码 | 文件源码
def _2Dplot(X, xvec, yvec, title='', xlabel='', ylabel='', cmap='viridis',
            cblabel='', maxplot=10, interp=(1, 1), **kwargs):
    """Simple 2D plot"""
    def _sub2Dplot(X):
        if (interp[0], interp[1]) != (1, 1):
            X, xV, yV = mapinterpolation(X, x=xvec, y=yvec, interpx=interp[1],
                                         interpy=interp[0])
        else:
            xV, yV = xvec, yvec
        im = plt.imshow(X, cmap=cmap, aspect='auto', extent=[xV[
            0], xV[-1], yV[-1], yV[0]], **kwargs)
        ax = plt.gca()
        ax.set_xlabel(xlabel), ax.set_ylabel(ylabel)
        ax.set_title(title)
        ax.invert_yaxis()
        cb = plt.colorbar(im)
        cb.set_label(cblabel)
        return ax

    return _sub(X, _sub2Dplot, maxplot=maxplot)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def show_image(im: Image, fig=None, title: str = '', pol=0, chan=0, cm='rainbow'):
    """ Show an Image with coordinates using matplotlib

    :param im:
    :param fig:
    :param title:
    :return:
    """
    import matplotlib.pyplot as plt

    assert isinstance(im, Image)
    if not fig:
        fig = plt.figure()
    plt.clf()
    fig.add_subplot(111, projection=im.wcs.sub(['longitude', 'latitude']))
    if len(im.data.shape) == 4:
        plt.imshow(numpy.real(im.data[chan, pol, :, :]), origin='lower', cmap=cm)
    elif len(im.data.shape) == 2:
        plt.imshow(numpy.real(im.data[:, :]), origin='lower', cmap=cm)
    plt.xlabel('RA---SIN')
    plt.ylabel('DEC--SIN')
    plt.title(title)
    plt.colorbar()
    return fig
项目:tadtool    作者:vaquerizaslab    | 项目源码 | 文件源码
def __init__(self, hic_matrix, regions=None, colormap='RdBu', norm="log",
                 vmin=None, vmax=None, show_colorbar=True, blend_masked=False):
        if regions is None:
            for i in range(hic_matrix.shape[0]):
                regions.append(GenomicRegion(chromosome='', start=i, end=i))
        self.regions = regions
        self.hic_matrix = hic_matrix

        self.colormap = copy.copy(mpl.cm.get_cmap(colormap))
        if blend_masked:
            self.colormap.set_bad(self.colormap(0))
        self._vmin = vmin
        self._vmax = vmax
        self.norm = prepare_normalization(norm=norm, vmin=vmin, vmax=vmax)
        self.colorbar = None
        self.slider = None
        self.show_colorbar = show_colorbar
项目:RealtimeFacialEmotionRecognition    作者:sushant3095    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, names=None, title='Confusion Matrix', cmap=plt.cm.Blues):
    plt.figure(4)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()

    # Add labels to confusion matrix:
    if names is None:
        names = range(cm.shape[0])

    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)

    plt.tight_layout()
    plt.ylabel('Correct label')
    plt.xlabel('Predicted label')
    plt.show()

# Generate confusion matrix for Jaffe
# results = list of tuples of (correct label, predicted label)
#           e.g. [ ('HA', 3) ]
# categories = list of category names
# Returns confusion matrix; rows are correct labels and columns are predictions
项目:Deep-subspace-clustering-networks    作者:panji1990    | 项目源码 | 文件源码
def test_face(Img, CAE, n_input):

    batch_x_test = Img[200:300,:]
    batch_x_test= np.reshape(batch_x_test,[100,n_input[0],n_input[1],1])
    CAE.restore()
    x_re = CAE.reconstruct(batch_x_test)

    plt.figure(figsize=(8,12))
    for i in range(5):
        plt.subplot(5,2,2*i+1)
        plt.imshow(batch_x_test[i,:,:,0], vmin=0, vmax=255, cmap="gray") #
        plt.title("Test input")
        plt.colorbar()
        plt.subplot(5, 2, 2*i + 2)
        plt.imshow(x_re[i,:,:,0], vmin=0, vmax=255, cmap="gray")
        plt.title("Reconstruction")
        plt.colorbar()
        plt.tight_layout()
    plt.show()
    return
项目:NTM-Keras    作者:SigmaQuan    | 项目源码 | 文件源码
def show(w, w_title):
    """
    Show a weight matrix.
    :param w: the weight matrix.
    :param w_title: the title of the weight matrix
    :return: None.
    """
    # show w_z matrix of update gate.
    axes_w = plt.gca()
    plt.imshow(w)
    plt.colorbar()
    # plt.colorbar(orientation="horizontal")
    plt.xlabel("$w_{1}$")
    plt.ylabel("$w_{2}$")
    axes_w.set_xticks([])
    axes_w.set_yticks([])
    matrix_size = "$:\ %d \\times\ %d$" % (len(w[0]), len(w))
    w_title += matrix_size
    plt.title(w_title)

    # show the matrix.
    plt.show()
项目:NTM-Keras    作者:SigmaQuan    | 项目源码 | 文件源码
def show(w, w_title):
    """
    Show a weight matrix.
    :param w: the weight matrix.
    :param w_title: the title of the weight matrix
    :return: None.
    """
    # show w_z matrix of update gate.
    axes_w = plt.gca()
    plt.imshow(w)
    plt.colorbar()
    # plt.colorbar(orientation="horizontal")
    plt.xlabel("$w_{1}$")
    plt.ylabel("$w_{2}$")
    axes_w.set_xticks([])
    axes_w.set_yticks([])
    matrix_size = "$:\ %d \\times\ %d$" % (len(w[0]), len(w))
    w_title += matrix_size
    plt.title(w_title)

    # show the matrix.
    plt.show()
项目:ModelFlow    作者:yuezPrincetechs    | 项目源码 | 文件源码
def heatmap(data,ax,xlabel=None,ylabel=None,xticklabels=None,yticklabels=None,title=None,fontsize=12):
    '''
    ??matplotlib.pyplot.pcolor?????
    ?????(pc,ax)???pc????matplotlib.pyplot.colorbar??????mappable?
    '''
    pc=ax.pcolor(data,cmap=plt.cm.Blues)
    if xlabel is not None:
        ax.set_xlabel(xlabel,fontsize=fontsize)
    if ylabel is not None:
        ax.set_ylabel(ylabel,fontsize=fontsize)
    ax.set_xticks(np.arange(data.shape[1])+0.5,minor=False)
    if xticklabels is not None:
        ax.set_xticklabels(xticklabels,minor=False,fontsize=fontsize)
    ax.set_yticks(np.arange(data.shape[0])+0.5,minor=False)
    if yticklabels is not None:
        ax.set_yticklabels(yticklabels,minor=False,fontsize=fontsize)
    if title is not None:
        ax.set_title(title,fontsize=fontsize)
    return pc,ax


#????X?Y????
项目:xdesign    作者:tomography    | 项目源码 | 文件源码
def test_discrete_phantom_uniform():
    """The uniform discrete phantom is the same after rotating 90 degrees."""

    d0 = discrete_phantom(p, 100, ratio=10, prop='mass_atten')

    p.rotate(theta=np.pi/2, point=Point([0.5, 0.5]))
    d1 = np.rot90(discrete_phantom(p, 100, ratio=10, prop='mass_atten'))

    # plot rotated phantom
    plot_phantom(p)

    # plot the error
    plt.figure()
    plt.imshow(d1-d0, interpolation=None)
    plt.colorbar()

    # plt.show(block=True)
    # assert_allclose(d0, d1)
项目:grove    作者:rigetticomputing    | 项目源码 | 文件源码
def plot_pauli_transfer_matrix(ptransfermatrix, ax, labels, title):
    """
    Visualize the Pauli Transfer Matrix of a process.

    :param numpy.ndarray ptransfermatrix: The Pauli Transfer Matrix
    :param ax: The matplotlib axes.
    :param labels: The labels for the operator basis states.
    :param title: The title for the plot
    :return: The modified axis object.
    :rtype: AxesSubplot

    """
    im = ax.imshow(ptransfermatrix, interpolation="nearest", cmap=rigetti_3_color_cm, vmin=-1,
                   vmax=1)
    dim = len(labels)
    plt.colorbar(im, ax=ax)
    ax.set_xticks(range(dim))
    ax.set_xlabel("Input Pauli Operator", fontsize=20)
    ax.set_yticks(range(dim))
    ax.set_ylabel("Output Pauli Operator", fontsize=20)
    ax.set_title(title, fontsize=25)
    ax.set_xticklabels(labels, rotation=45)
    ax.set_yticklabels(labels)
    ax.grid(False)
    return ax
项目:WPEAR    作者:stephenlienharrell    | 项目源码 | 文件源码
def SurfacePlot(self, grib_object, file_name):
        """Generate a 3D surface colored plot
        grib_object: an object containing raw data to be visualized
        file_name:   a string representing the name of generated picture
        """
        data = grib_object.values
        lat,lon = grib_object.latlons()
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        x = lon
        y = lat
        z = data

        surf = ax.plot_surface(x, y, z, cmap=plt.cm.coolwarm,
                               rstride=15, cstride=15,
                               linewidth=0, antialiased=False)
        # Set Lables
        self.setPlotLabels(ax, grib_object)
        self.setTitle(ax, grib_object)
        fig.colorbar(surf, shrink=0.5, aspect=5)

        plt.savefig(file_name)
项目:convnet-nolearn    作者:jcouvy    | 项目源码 | 文件源码
def display_confusion_matrix(test_data, test_labels, save=False):
    """
    Plot a matrix representing the choices made by the network
    on a testing batch.
    X axis are the predicted values,
    Y axis are the expected values.

    If the flag save is set to True, the output will be saved
    in a .png image.
    """
    expected = test_labels
    predicted = mnist.predict(test_data)
    cm = confusion_matrix(expected, predicted)
    plt.matshow(cm)
    plt.title('Confusion matrix')
    plt.colorbar()
    plt.ylabel('Expected label')
    plt.xlabel('Predicted label')
    plt.show()
    if save is True:
        plt.savefig("../results/mnist/confusion_matrix.png")
项目:Vulcan    作者:rfratila    | 项目源码 | 文件源码
def display_saliency_overlay(image, saliency_map, shape=(28, 28)):
    """
    Plot overlay saliency map over image.

    Args:
        image: numpy array (1d vector) for single image
        saliency_map: numpy array (1d vector) for image
        shape: the dimensions of the image. defaults to mnist.
    """
    if len(image.shape) == 3 or len(saliency_map.shape) == 3:
        image = image[0]
        saliency_map = saliency_map[0]
    elif len(image.shape) == 1 or len(saliency_map.shape) == 1:
        image = np.reshape(image, shape)
        saliency_map = np.reshape(saliency_map, shape)

    fig = plt.figure()
    fig.add_subplot(1, 2, 1)
    plt.imshow(image, cmap='gray')
    fig.add_subplot(1, 2, 2)
    plt.imshow(image, cmap='binary')
    plt.imshow(abs(saliency_map), cmap='hot_r', alpha=0.7)
    plt.colorbar()
    plt.show(False)
项目:Fluid2d    作者:pvthinker    | 项目源码 | 文件源码
def create_fig(self):
        fig  = plt.figure(figsize=(16,6))
        ax1 = fig.add_subplot(1, 1, 1)
        ax1.cla()
        ax1.hold(True)

        self.time_str = 'time = %-6.2f'
        ax1.set_title( '' )
        ax1.set_xlabel('X')
        ax1.set_ylabel('Y')

        self.ax1 = ax1

        plt.ion()

        self.im=ax1.imshow( self.z2d, 
                       vmin=self.cax[0],vmax=self.cax[1],
                       cmap=plt.get_cmap('jet'),origin='lower',
                       interpolation='nearest')

        cb = plt.colorbar(self.im)

        fig.show()
        fig.canvas.draw()
        self.fig = fig
项目:selfMachineLearning    作者:xhappy    | 项目源码 | 文件源码
def visualizeCrossValidation(results):
    # Visualize the cross-validation results
    x_scatter = [math.log10(x[0]) for x in results]
    y_scatter = [math.log10(x[1]) for x in results]

    # plot training accuracy
    marker_size = 100
    colors = [results[x][0] for x in results]
    plt.subplot(2, 1, 1)
    plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
    plt.colorbar()
    plt.xlabel('log learning rate')
    plt.ylabel('log regularization strength')
    plt.title('CIFAR-10 training accuracy')

    # plot validation accuracy
    colors = [results[x][1] for x in results] # default size of markers is 20
    plt.subplot(2, 1, 2)
    plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
    plt.colorbar()
    plt.xlabel('log learning rate')
    plt.ylabel('log regularization strength')
    plt.title('CIFAR-10 validation accuracy')
    plt.show()
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotD(initD, latestD, workDir):
    def p(D, fname):
        plt.clf()
        lim = max(np.abs(np.min(D)), np.abs(np.max(D)))
        clim = (-lim, lim)
        plt.imshow(D, cmap='bwr', interpolation='nearest', clim=clim)
        plt.colorbar()
        plt.savefig(os.path.join(workDir, fname))

    p(initD, 'initD.png')
    p(latestD, 'latestD.png')

    latestDs = latestD**6
    latestDs = latestDs/np.sum(latestDs, axis=1)[:,None]
    I = np.argsort(latestDs.dot(np.arange(latestDs.shape[1])))
    latestDs = latestD[I]
    initDs = initD[I]

    p(initDs, 'initD_sorted.png')
    p(latestDs, 'latestD_sorted.png')

    # Dcombined = np.concatenate((initDs, np.zeros((initD.shape[0], 10)), latestDs), axis=1)
    # p(Dcombined, 'Dcombined.png')
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def plotD(initD, latestD, workDir):
    def p(D, fname):
        plt.clf()
        lim = max(np.abs(np.min(D)), np.abs(np.max(D)))
        clim = (-lim, lim)
        plt.imshow(D, cmap='bwr', interpolation='nearest', clim=clim)
        plt.colorbar()
        plt.savefig(os.path.join(workDir, fname))

    p(initD, 'initD.png')
    p(latestD, 'latestD.png')

    latestDs = latestD**6
    latestDs = latestDs/np.sum(latestDs, axis=1)[:,None]
    I = np.argsort(latestDs.dot(np.arange(latestDs.shape[1])))
    latestDs = latestD[I]
    initDs = initD[I]

    p(initDs, 'initD_sorted.png')
    p(latestDs, 'latestD_sorted.png')

    # Dcombined = np.concatenate((initDs, np.zeros((initD.shape[0], 10)), latestDs), axis=1)
    # p(Dcombined, 'Dcombined.png')
项目:pyballd    作者:Yurlungur    | 项目源码 | 文件源码
def plot_test_function(orderx,ordery):
    s = PseudoSpectralDiscretization2D(orderx,XMIN,XMAX,
                                ordery,YMIN,YMAX)
    X,Y = s.get_x2d()
    f_ana = f(X,Y)
    plt.pcolor(X,Y,f_ana)
    plt.xlabel('x',fontsize=16)
    plt.ylabel('y',fontsize=16)
    plt.xlim(XMIN,XMAX)
    plt.ylim(YMIN,YMAX)
    cb = plt.colorbar()
    cb.set_label(label=r'$\cos(x)\sin(2 y)$',fontsize=16)
    for postfix in ['.png','.pdf']:
        name = 'test_function'+postfix
        if USE_FIGS_DIR:
            name = 'figs/' + name
        plt.savefig(name,
                    bbox_inches='tight')
    plt.clf()
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def show_heatmap(x, y, attention):
    #print attention[:len(y),:len(x)]
    #print attention[:len(y),:len(x)].shape
    #data = np.transpose(attention[:len(y),:len(x)])
    data = attention[:len(y),:len(x)]
    x, y = y, x

    #ax = plt.axes(aspect=0.4)
    ax = plt.axes()
    heatmap = plt.pcolor(data, cmap=plt.cm.Blues)

    xticks = np.arange(len(y)) + 0.5
    xlabels = y
    yticks = np.arange(len(x)) + 0.5
    ylabels = x
    plt.xticks(xticks, xlabels, rotation='vertical')
    ax.set_yticks(yticks)
    ax.set_yticklabels(ylabels)

    # make it look less like a scatter plot and more like a colored table
    ax.tick_params(axis='both', length=0)
    ax.invert_yaxis()
    ax.xaxis.tick_top()

    plt.colorbar(heatmap)

    plt.show()
    #plt.savefig('./attention-out.pdf')
项目:pyfds    作者:emtpb    | 项目源码 | 文件源码
def start_simulation(self):
        """Starts the simulation with visualization."""

        self.show_setup(halt=False)
        main_plot = self.axes.imshow(self.field_as_matrix(),
                                     extent=(0, max(self.field.x.vector) / self._x_axis_factor,
                                             max(self.field.y.vector) / self._y_axis_factor, 0),
                                     cmap='viridis')
        main_plot.set_clim(-self.scale, self.scale)
        color_bar = pp.colorbar(main_plot)
        color_bar.set_label(self.observed_component, rotation=270)

        sim_process = mp.Process(target=self._sim_function, args=(self._plot_queue,))
        sim_process.start()

        # wait for simulation initialization
        while self._plot_queue.empty():
            pl.pause(0.1)

        finished = False
        while not finished:
            # wait for new simulation result
            while self._plot_queue.empty():
                pl.pause(0.01)

            message = self._plot_queue.get()
            # simulation function returns field object when simulation is complete to get output
            if isinstance(message, fld.Field):
                # update main process field components with simulation result
                self._update_components(message)
                finished = True
            else:
                time, data = message
                self.axes.title.set_text('{title} $t$ = {time:.{prec}f} {prefix}s'
                                         .format(title=self.plot_title, time=time/self._t_factor,
                                                 prec=self.time_precision, prefix=self._t_prefix))
                main_plot.set_data(self.field_as_matrix(data))
                pl.pause(self.frame_delay)

        sim_process.join()
        pp.show()
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def train(epoch):
    if epoch > 2:
        import pdb; pdb.set_trace()

    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        # 1. Add requires_grad so Torch doesn't erase the gradient with its optimization pass
        data, target = Variable(data, requires_grad=True), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))

            # 2. Get the `.grad` attribute of the variable.
            # This is a Torch tensor, so to get the data as numpy format, we have to use `.grad.data.numpy()`
            adversarial_example = data.grad.data.numpy()
            print(adversarial_example.max())

            if epoch > 2:
                # 3. Let's plot it, because we can!
                plt.clf()
                plt.subplot(121); plt.imshow(data.data.numpy()[0,0,...], cmap='gray_r')
                plt.subplot(122); plt.imshow(adversarial_example[0,0,...]); plt.colorbar()
                plt.show(block=False)
                plt.pause(0.01)
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def plot(obj, colorbar=True, subplot_loc=None, mytitle=None, show_axis='off', vmin=None, vmax=None, logscale=False):
    if subplot_loc is not None:
        plt.subplot(subplot_loc)
#    plt.gca().set_aspect('equal')
    if isinstance(obj, dl.Function):
        pp = mplot_function(obj, vmin, vmax, logscale)
    elif isinstance(obj, dl.CellFunctionSizet):
        pp = mplot_cellfunction(obj)
    elif isinstance(obj, dl.CellFunctionDouble):
        pp = mplot_cellfunction(obj)
    elif isinstance(obj, dl.CellFunctionInt):
        pp = mplot_cellfunction(obj)
    elif isinstance(obj, dl.Mesh):
        if (obj.geometry().dim() != 2):
            raise AttributeError('Mesh must be 2D')
        pp = plt.triplot(mesh2triang(obj), color='#808080')
        colorbar = False
    else:
        raise AttributeError('Failed to plot %s'%type(obj))

    plt.axis(show_axis)

    if colorbar:
        plt.colorbar(pp, fraction=.1, pad=0.2)
    else:
        plt.gca().set_aspect('equal')

    if mytitle is not None:
        plt.title(mytitle, fontsize=20)

    return pp
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def multi1_plot(objs, titles, same_colorbar=True, show_axis='off', logscale=False):

    vmin = None
    vmax = None 
    if same_colorbar:
        vmin = 1e30
        vmax = -1e30
        for f in objs:
            if isinstance(f, dl.Function):
                fmin = f.vector().min()
                fmax = f.vector().max()
                if fmin < vmin:
                    vmin = fmin
                if fmax > vmax:
                    vmax = fmax

    nobj = len(objs)
    if nobj == 1:
        plt.figure(figsize=(7.5,5))
        subplot_loc = 110
    elif nobj == 2:
        plt.figure(figsize=(15,5))
        subplot_loc = 120
    elif nobj == 3:
        plt.figure(figsize=(18,4))
        subplot_loc = 130
    else:
        raise AttributeError("Too many figures")

    for i in range(nobj):
        plot(objs[i], colorbar=True,
             subplot_loc=(subplot_loc+i+1), mytitle=titles[i],
             show_axis='off', vmin=vmin, vmax=vmax, logscale=logscale)
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def show_solution(Vh, ic, state, same_colorbar=True, colorbar=True, mytitle=None, show_axis='off', logscale=False, times=[0, .4, 1., 2., 3., 4.]):
    state.store(ic, 0)
    assert len(times) % 3 == 0
    nrows = len(times) / 3
    subplot_loc = nrows*100 + 30
    plt.figure(figsize=(18,4*nrows))

    if mytitle is None:
        title_stamp = "Time {0}s"
    else:
        title_stamp = mytitle + " at time {0}s" 

    vmin = None
    vmax = None

    if same_colorbar:
        vmin = 1e30
        vmax = -1e30
        for s in state.data:
            smax = s.max()
            smin = s.min()
            if smax > vmax:
                vmax = smax
            if smin < vmin:
                vmin = smin

    counter=1
    myu = dl.Function(Vh)
    for i in times:
        try:
            state.retrieve(myu.vector(),i)
        except:
            print("Invalid time: ", i)

        plot(myu, subplot_loc=(subplot_loc+counter), mytitle=title_stamp.format(i), colorbar=colorbar,
             logscale=logscale, show_axis=show_axis, vmin=vmin, vmax=vmax)
        counter = counter+1
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def animate(Vh, state, same_colorbar=True, colorbar=True,
            subplot_loc=None, mytitle=None, show_axis='off', logscale=False):

    fig = plt.figure()

    vmin = None
    vmax = None

    if same_colorbar:
        vmin = 1e30
        vmax = -1e30
        for s in state.data:
            smax = s.max()
            smin = s.min()
            if smax > vmax:
                vmax = smax
            if smin < vmin:
                vmin = smin

    def my_animate(i):
        time_stamp = "Time: {0:f} s"  
        obj = dl.Function(Vh, state.data[i])
        t = mytitle + time_stamp.format(state.times[i])
        plt.clf()
        return  plot(obj, colorbar=True, subplot_loc=None, mytitle=t, show_axis='off', vmin=vmin, vmax=vmax, logscale=False)

    return animation.FuncAnimation(fig, my_animate, np.arange(0, state.nsteps), blit=True)
项目:rank-ordered-autoencoder    作者:paulbertens    | 项目源码 | 文件源码
def saveFinalPlots(self, errors_train, errors_test, sparsity_train, sparsity_test, errors_train_vector, errors_test_vector, epoch=0):
        #plot errors
        plt.figure(2, figsize=(10, 7))
        plt.clf()
        plt.plot(np.arange(len(errors_train)), errors_train, label='train error')
        plt.plot(np.arange(len(errors_train)), errors_test, label='test error')
        plt.colors()
        plt.legend()
        plt.title('Reconstruction error convergence')
        plt.xlabel('t')
        plt.ylabel('Reconstruction error')
        plt.savefig('plots/Reconstruction_errors_'+str(epoch)+'.pdf')

        #plot sparsity, real and non-zero
        plt.figure(3, figsize=(10, 7))
        plt.clf()
        plt.plot(np.arange(len(sparsity_train)), sparsity_train, label='train error')
        plt.plot(np.arange(len(sparsity_test)), sparsity_test, label='test error')
        plt.colors()
        plt.legend()
        plt.title('Objective function error convergence')
        plt.xlabel('t')
        plt.ylabel('E')
        plt.savefig('plots/Sparsity_'+str(epoch)+'.pdf')

        # plot reconstruction error output progression over time
        plt.figure(12, figsize=(10, 7))
        plt.clf()
        image=plt.imshow(np.clip(np.asarray(errors_train_vector).T, 0, 1), interpolation='nearest', aspect='auto', origin='lower')
        plt.xlabel('t')
        plt.ylabel('Output units \n (Rank Ordered)')
        plt.colors()
        plt.colorbar(image, label='reconstruction error')
        plt.title('Progressive reconstruction input error convergence')
        plt.savefig('plots/Reconstruction_errors_vector_' + str(epoch) + '.pdf')
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser(description='')
    parser.add_argument('--transform')
    parser.add_argument('--out')
    args = parser.parse_args()

    infile1 = h5py.File(args.transform, 'r')
    resolutions = infile1['resolutions'][...]
    chroms = infile1['chromosomes'][...]
    data1 = load_data(infile1, chroms, resolutions)
    infile1.close()

    '''
    #for now, don't plot this
    for resolution in data1.keys():
        for chromo in chroms:
            N = data1[resolution][chromo][1].shape[0]
            full=numpy.empty((N,N))
            #full=full/0
            for i in range(100):
                temp1 = numpy.arange(N - i - 1)
                temp2 = numpy.arange(i+1, N)
                full[temp1, temp2] = data1[resolution][chromo][1][temp1, i]
                full[temp2, temp1] = full[temp1, temp2]
            x=0.8
            plt.matshow(full,cmap='seismic',vmin=-x,vmax=x)
            plt.colorbar()
            plt.show()
            plt.savefig(args.out+'.res'+str(resolution)+'.chr'+chromo+'.pdf')    
   '''