Python matplotlib.pyplot 模块,yticks() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.yticks()

项目:CNNGestureRecognizer    作者:asingh33    | 项目源码 | 文件源码
def visualizeLayer(model, img, input_image, layerIndex):

    layer = model.layers[layerIndex]

    get_activations = K.function([model.layers[0].input, K.learning_phase()], [layer.output,])
    activations = get_activations([input_image, 0])[0]
    output_image = activations


    ## If 4 dimensional then take the last dimension value as it would be no of filters
    if output_image.ndim == 4:
        # Rearrange dimension so we can plot the result
        o1 = np.rollaxis(output_image, 3, 1)
        output_image = np.rollaxis(o1, 3, 1)

        print "Dumping filter data of layer{} - {}".format(layerIndex,layer.__class__.__name__)
        filters = len(output_image[0,0,0,:])

        fig=plt.figure(figsize=(8,8))
        # This loop will plot the 32 filter data for the input image
        for i in range(filters):
            ax = fig.add_subplot(6, 6, i+1)
            #ax.imshow(output_image[img,:,:,i],interpolation='none' ) #to see the first filter
            ax.imshow(output_image[0,:,:,i],'gray')
            #ax.set_title("Feature map of layer#{} \ncalled '{}' \nof type {} ".format(layerIndex,
            #                layer.name,layer.__class__.__name__))
            plt.xticks(np.array([]))
            plt.yticks(np.array([]))
        plt.tight_layout()
        #plt.show()
        fig.savefig("img_" + str(img) + "_layer" + str(layerIndex)+"_"+layer.__class__.__name__+".png")
        #plt.close(fig)
    else:
        print "Can't dump data of this layer{}- {}".format(layerIndex, layer.__class__.__name__)
项目:seq2seq    作者:google    | 项目源码 | 文件源码
def _create_figure(predictions_dict):
  """Creates and returns a new figure that visualizes
  attention scores for for a single model predictions.
  """

  # Find out how long the predicted sequence is
  target_words = list(predictions_dict["predicted_tokens"])

  prediction_len = _get_prediction_length(predictions_dict)

  # Get source words
  source_len = predictions_dict["features.source_len"]
  source_words = predictions_dict["features.source_tokens"][:source_len]

  # Plot
  fig = plt.figure(figsize=(8, 8))
  plt.imshow(
      X=predictions_dict["attention_scores"][:prediction_len, :source_len],
      interpolation="nearest",
      cmap=plt.cm.Blues)
  plt.xticks(np.arange(source_len), source_words, rotation=45)
  plt.yticks(np.arange(prediction_len), target_words, rotation=-45)
  fig.tight_layout()

  return fig
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys, block=True):
    # Colormaps: jet, Greys
    cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap)

    # Show confidences
    for i, cas in enumerate(cm): 
        for j, c in enumerate(cas): 
            if c > 0: 
                plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000')

    f = plt.figure(1)
    f.clf()
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show(block=block)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, clf_target_names, title='Confusion matrix', cmap=plt.cm.jet):
    target_names = map(lambda key: key.replace('_','-'), clf_target_names)

    for idx in range(len(cm)): 
        cm[idx,:] = (cm[idx,:] * 100.0 / np.sum(cm[idx,:])).astype(np.int)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    # plt.matshow(cm)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(clf_target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    # plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys):
    # Colormaps: jet, Greys
    cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap)

    # Show confidences
    for i, cas in enumerate(cm): 
        for j, c in enumerate(cas): 
            if c > 0: 
                plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000')

    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show(block=True)
项目:chash    作者:luhsra    | 项目源码 | 文件源码
def plotTimeMultiHistogram(parseTimes, hashTimes, compileTimes, filename): # times in ms
    bins = np.linspace(0, 5000, 50)
    data = np.vstack([parseTimes, hashTimes, compileTimes]).T
    fig, ax = plt.subplots()
    plt.hist(data, bins, alpha=0.7, label=['parsing', 'hashing', 'compiling'], color=[parseColor, hashColor, compileColor])
    plt.legend(loc='upper right')
    plt.xlabel('time [ms]')
    plt.ylabel('#files')
    fig.savefig(filename)

    fig, ax = plt.subplots()
    boxplot_data = [[i/1000 for i in parseTimes], [i/1000 for i in hashTimes], [i/1000 for i in compileTimes]] # times to s
    plt.boxplot(boxplot_data, 0, 'rs', 0, [5, 95])
    plt.xlabel('time [s]')
    plt.yticks([1, 2, 3], ['parsing', 'hashing', 'compiling'])
    #lgd = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # legend on the right
    fig.savefig(filename[:-4] + '_boxplots' + GRAPH_EXTENSION)
项目:code-uai16    作者:thanhan    | 项目源码 | 文件源码
def plot_gold(g1, g2, lc, p = 0):
    """
    plot sen/spe of g1 against g2
    only consider workers in lc
    """

    mv = crowd_model.mv_model(lc)
    s1 = []; s2 = []

    for w in g1.keys():
        if w in g2 and g1[w][p] != None and g2[w][p] != None and w in mv.dic_ss:
            s1.append(g1[w][p])
            s2.append(g2[w][p])

    plt.xticks((0, 0.5, 1), ("0", "0.5", "1"))
    plt.tick_params(labelsize = 25)
    plt.yticks((0, 0.5, 1), ("0", "0.5", "1"))

    plt.xlim(0,1)
    plt.ylim(0,1)
    plt.scatter(s1, s2, marker = '.', s=50, c = 'black')

    plt.xlabel('task 1 sen.', fontsize = 25)
    plt.ylabel('task 2 sen.', fontsize = 25)
项目:Flavor-Network    作者:lingcheng99    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, col, title, cmap=plt.cm.viridis):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    for i in range(cm.shape[0]):
        plt.annotate("%.2f" %cm[i][i],xy=(i,i),
                    horizontalalignment='center',
                    verticalalignment='center')
    plt.title(title,fontsize=18)
    plt.colorbar(fraction=0.046, pad=0.04)
    tick_marks = np.arange(len(col.unique()))
    plt.xticks(tick_marks, sorted(col.unique()),rotation=90)
    plt.yticks(tick_marks, sorted(col.unique()))
    plt.tight_layout()
    plt.ylabel('True label',fontsize=18)
    plt.xlabel('Predicted label',fontsize=18)

#using flavor network to project recipes from ingredient matrix to flavor matrix
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
项目:kmeans-service    作者:MAYHEM-Lab    | 项目源码 | 文件源码
def plot_spatial_cluster_fig(data, covar_type_tied_labels_k):
    """ Creates a 3x2 plot spatial plot using labels as the color """
    sns.set(context='talk', style='white')
    data.columns = [c.lower() for c in data.columns]
    fig = plt.figure()
    placement = {'full': {True: 1, False: 4}, 'diag': {True: 2, False: 5}, 'spher': {True: 3, False: 6}}

    lim_left = data['longitude'].min()
    lim_right = data['longitude'].max()
    lim_bottom = data['latitude'].min()
    lim_top = data['latitude'].max()
    for covar_type, covar_tied, labels, k in covar_type_tied_labels_k:
        plt.subplot(2, 3, placement[covar_type][covar_tied])
        plt.scatter(data['longitude'], data['latitude'], c=labels, cmap=plt.cm.rainbow, s=10)
        plt.xlim(left=lim_left, right=lim_right)
        plt.ylim(bottom=lim_bottom, top=lim_top)
        plt.xticks([])
        plt.yticks([])
        plt.xlabel('Longitude')
        plt.ylabel('Latitude')
        plt.title('{}-{}, K={}'.format(covar_type.capitalize(), ['Untied', 'Tied'][covar_tied], k))
    plt.tight_layout()
    return fig
项目:OASIS    作者:j-friedrich    | 项目源码 | 文件源码
def plot_trace(n=0, lg=False):
    plt.plot(trueC[n], c=col[2], clip_on=False, zorder=5, label='Truth')
    plt.plot(solution, c=col[0], clip_on=False, zorder=7, label='Estimate')
    plt.plot(y, c=col[7], alpha=.7, lw=1, clip_on=False, zorder=-10, label='Data')
    if lg:
        plt.legend(frameon=False, ncol=3, loc=(.1, .62), columnspacing=.8)
    spks = np.append(0, solution[1:] - g * solution[:-1])
    plt.text(800, 2.2, 'Correlation: %.3f' % (np.corrcoef(trueSpikes[n], spks)[0, 1]), size=24)
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.ylim(0, 2.85)
    plt.xlim(0, 1500)
    plt.yticks([0, 2], [0, 2])
    plt.xticks([300, 600, 900, 1200], ['', ''])


# init params
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.argsort(- mis[j, :])[:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.yticks(rotation=0)
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        obj=self.Object
        img=None
        if not obj.imageFromNode:
            img = cv2.imread(obj.imageFile)
        else:
            print "copy image ..."
            img = obj.imageNode.ViewObject.Proxy.img.copy()
            print "cpied"

        print " loaded"

        # print (obj.blockSize,obj.ksize,obj.k)
#       edges = cv2.Canny(img,obj.minVal,obj.maxVal)
#       color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
#       edges=color
#

        kernel = np.ones((obj.xsize,obj.ysize),np.uint8)

        opening = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel, iterations = obj.iterations)


        if True:
            print "zeige"
            cv2.imshow(obj.Label,opening)
            print "gezeigt"
        else:
            from matplotlib import pyplot as plt
            plt.subplot(121),plt.imshow(img,cmap = 'gray')
            plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
            plt.subplot(122),plt.imshow(dst,cmap = 'gray')
            plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
            plt.show()
        print "fertig"
        self.img=opening
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        obj=self.Object
        img=None
        if not obj.imageFromNode:
            img = cv2.imread(obj.imageFile)
        else:
            print "copy image ..."
            img = obj.imageNode.ViewObject.Proxy.img.copy()
            print "cpied"

        print " loaded"

        # print (obj.blockSize,obj.ksize,obj.k)
        edges = cv2.Canny(img,obj.minVal,obj.maxVal)
        color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
        edges=color

        if True:
            print "zeige"
            cv2.imshow(obj.Label,edges)
            print "gezeigt"
        else:
            from matplotlib import pyplot as plt
            plt.subplot(121),plt.imshow(img,cmap = 'gray')
            plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
            plt.subplot(122),plt.imshow(dst,cmap = 'gray')
            plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
            plt.show()
        print "fertig"
        self.img=edges
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        obj=self.Object
        img=None
        if not obj.imageFromNode:
            img = cv2.imread(obj.imageFile)
        else:
            print "copy image ..."
            img = obj.imageNode.ViewObject.Proxy.img.copy()
            print "cpied"

        print " loaded"

        # print (obj.blockSize,obj.ksize,obj.k)
#       edges = cv2.Canny(img,obj.minVal,obj.maxVal)
#       color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
#       edges=color
#

        kernel = np.ones((obj.xsize,obj.ysize),np.uint8)

        closing = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel, iterations = obj.iterations)


        if True:
            print "zeige"
            cv2.imshow(obj.Label,closing)
            print "gezeigt"
        else:
            from matplotlib import pyplot as plt
            plt.subplot(121),plt.imshow(img,cmap = 'gray')
            plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
            plt.subplot(122),plt.imshow(dst,cmap = 'gray')
            plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
            plt.show()
        print "fertig"
        self.img=closing
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        print self
        print self.Object
        print self.Object.Name
        obj=self.Object
        img = cv2.imread(obj.imageFile)
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        gray = np.float32(gray)
        dst = cv2.cornerHarris(gray,3,3,0.00001)
        dst = cv2.dilate(dst,None)
        img[dst>0.01*dst.max()]=[0,0,255]

        from matplotlib import pyplot as plt
        plt.subplot(121),plt.imshow(img,cmap = 'gray')
        plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
        plt.subplot(122),plt.imshow(dst,cmap = 'gray')
        plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
        plt.show()
项目:quoll    作者:LanguageMachines    | 项目源码 | 文件源码
def visualize_document_topic_probs(self, outfile):
        plots = []
        height_cumulative = numpy.zeros(self.rows)
        #fig = pyplot.figure(figsize=(21, 10), dpi=550)
        for column in range(self.columns):
            color = pyplot.cm.coolwarm(column/self.columns, 1)
            if column == 0:
                p = pyplot.bar(self.ind, self.document_topics_raw[:, column], self.barwidth, color=color)
            else:
                p = pyplot.bar(self.ind, self.document_topics_raw[:, column], self.barwidth, bottom=height_cumulative, color=color)
            height_cumulative += self.document_topics_raw[:, column]
            plots.append(p)
        pyplot.ylim((0, 1))
        pyplot.ylabel('Topics')
        pyplot.title('Topic distribution of CLS papers')
        pyplot.xticks(self.ind+self.barwidth/2, self.document_names, rotation='vertical', size = 10)
        pyplot.yticks(numpy.arange(0, 1, 10))
        pyplot.legend([p[0] for p in plots], self.topic_labels, bbox_to_anchor=(1, 1))
        self.fig.tight_layout()
        pyplot.savefig(outfile)
项目:squeezenet-keras    作者:chasingbob    | 项目源码 | 文件源码
def update(self, conf_mat, classes, normalize=False):
        """This function prints and plots the confusion matrix.
        Normalization can be applied by setting `normalize=True`.
        """
        plt.imshow(conf_mat, interpolation='nearest', cmap=self.cmap)
        plt.title(self.title)
        plt.colorbar()
        tick_marks = np.arange(len(classes))
        plt.xticks(tick_marks, classes, rotation=45)
        plt.yticks(tick_marks, classes)

        if normalize:
            conf_mat = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]

        thresh = conf_mat.max() / 2.
        for i, j in itertools.product(range(conf_mat.shape[0]), range(conf_mat.shape[1])):
            plt.text(j, i, conf_mat[i, j],                                          
                         horizontalalignment="center",
                         color="white" if conf_mat[i, j] > thresh else "black")

        plt.tight_layout()                                                    
        plt.ylabel('True label')                                              
        plt.xlabel('Predicted label')                                         
        plt.draw()
项目:johnson-county-ddj-public    作者:dssg    | 项目源码 | 文件源码
def plot_normalized_confusion_matrix_at_depth(self):
        """ Returns a normalized confusion matrix.

        :returns: normalized confusion matrix
        :rtype: matplotlib figure
        """
        cm = metrics.confusion_matrix(self.predictions['label'], self.y_pred)
        np.set_printoptions(precision = 2)
        fig = plt.figure()
        cm_normalized = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]

        plt.imshow(cm_normalized, interpolation = 'nearest',
                   cmap = plt.cm.Blues)
        plt.title("Normalized Confusion Matrix")
        plt.colorbar()
        tick_marks = np.arange(len(self.labels))
        plt.xticks(tick_marks, self.labels, rotation = 45)
        plt.yticks(tick_marks, self.labels)
        plt.tight_layout()
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        return(fig)
项目:conv_seq2seq    作者:tobyyouup    | 项目源码 | 文件源码
def _create_figure(predictions_dict):
  """Creates and returns a new figure that visualizes
  attention scores for for a single model predictions.
  """

  # Find out how long the predicted sequence is
  target_words = list(predictions_dict["predicted_tokens"])

  prediction_len = _get_prediction_length(predictions_dict)

  # Get source words
  source_len = predictions_dict["features.source_len"]
  source_words = predictions_dict["features.source_tokens"][:source_len]

  # Plot
  fig = plt.figure(figsize=(8, 8))
  plt.imshow(
      X=predictions_dict["attention_scores"][:prediction_len, :source_len],
      interpolation="nearest",
      cmap=plt.cm.Blues)
  plt.xticks(np.arange(source_len), source_words, rotation=45)
  plt.yticks(np.arange(prediction_len), target_words, rotation=-45)
  fig.tight_layout()

  return fig
项目:RealtimeFacialEmotionRecognition    作者:sushant3095    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, names=None, title='Confusion Matrix', cmap=plt.cm.Blues):
    plt.figure(4)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()

    # Add labels to confusion matrix:
    if names is None:
        names = range(cm.shape[0])

    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)

    plt.tight_layout()
    plt.ylabel('Correct label')
    plt.xlabel('Predicted label')
    plt.show()

# Generate confusion matrix for Jaffe
# results = list of tuples of (correct label, predicted label)
#           e.g. [ ('HA', 3) ]
# categories = list of category names
# Returns confusion matrix; rows are correct labels and columns are predictions
项目:actions-for-actions    作者:gsig    | 项目源码 | 文件源码
def finalize_plot(allticks,handles):
    plt.locator_params(axis='x', nticks=Noracles,nbins=Noracles)
    plt.yticks([x[0] for x in allticks], [x[1] for x in allticks])
    plt.tick_params(
        axis='y',          # changes apply to the x-axis
        which='both',      # both major and minor ticks are affected
        left='off',      # ticks along the bottom edge are off
        right='off'         # ticks along the top edge are off
    )
    if LEGEND:
        plt.legend([h[0] for h in handles],seriesnames,
                   loc='upper right',borderaxespad=0.,
                   ncol=1,fontsize=10,numpoints=1)
    plt.gcf().tight_layout()


######################################################
# Data processing
项目:Machine-Learning-Algorithms    作者:PacktPublishing    | 项目源码 | 文件源码
def show_classification_areas(X, Y, lr):
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(30, 25))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
    plt.xlabel('X')
    plt.ylabel('Y')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show()
项目:python-machine-learning    作者:sho-87    | 项目源码 | 文件源码
def plot_filters(self, x, y, title, cmap=cm.gray):
        """Plot the filters after the (convolutional) layer.

        They are plotted in x by y format.  So, for example, if we
        have 20 filters in the layer, then we can call 
        plot_filters(4, 5, "title") to get a 4 by 5 plot of all layer filters.
        """
        filters = self.w.eval()  # Get filter values/weights

        fig = plt.figure()
        fig.suptitle(title)

        for j in range(len(filters)):
            ax = fig.add_subplot(x, y, j+1)
            ax.matshow(filters[j][0], cmap=cmap)
            plt.xticks(np.array([]))
            plt.yticks(np.array([]))

        plt.tight_layout()
        fig.subplots_adjust(top=0.90)
        plt.show()
项目:python-machine-learning    作者:sho-87    | 项目源码 | 文件源码
def plot_filters(self, x, y, title, cmap=cm.gray):
        """Plot the filters after the (convolutional) layer.

        They are plotted in x by y format.  So, for example, if we
        have 20 filters in the layer, then we can call 
        plot_filters(4, 5, "title") to get a 4 by 5 plot of all layer filters.
        """
        filters = self.w.eval()  # Get filter values/weights

        fig = plt.figure()
        fig.suptitle(title)

        for j in range(len(filters)):
            ax = fig.add_subplot(x, y, j+1)
            ax.matshow(filters[j][0], cmap=cmap)
            plt.xticks(np.array([]))
            plt.yticks(np.array([]))

        plt.tight_layout()
        fig.subplots_adjust(top=0.90)
        plt.show()
项目:temci    作者:parttimenerd    | 项目源码 | 文件源码
def _barplot(self, first: RunData, second: RunData, property: str, size: int,
                 filename: str = None, show_ticks: bool = True) -> str:
        import matplotlib.pyplot as plt
        import seaborn as sns
        filename = filename or self._get_new_figure_filename()
        self._set_fig_size(size)
        length = min(len(first[property]), len(second[property]))
        first_prop = first[property][0:length]
        second_prop = second[property][0:length]
        min_xval = min(first_prop + second_prop)
        max_xval = max(first_prop + second_prop)
        bins = np.linspace(min_xval, max_xval, math.floor(math.sqrt(length) * size))
        sns.distplot(first_prop, bins=bins,label=first.description(), kde=False)
        sns.distplot(second_prop, bins=bins,label=second.description(), kde=False)
        if not show_ticks:
            plt.xticks([])
            plt.yticks([])
        plt.xlim(min_xval, max_xval)
        plt.legend()
        plt.savefig(filename)
        plt.close()
        return filename
项目:Lyssandra    作者:ektormak    | 项目源码 | 文件源码
def dictionary_learn_ex():

    patch_shape = (18, 18)
    n_atoms = 225
    n_nonzero_coefs = 2
    n_plot_atoms = 100
    n_jobs = 8
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4,color=False)
    #faces = lfw_people.data
    n_imgs, h, w = lfw_people.images.shape

    imgs = []
    for i in range(n_imgs):
        img = lfw_people.images[i, :, :].reshape((h, w))
        img /= 255.
        imgs.append(img)

    print 'Extracting reference patches...'
    X = extract_patches(imgs, patch_size=patch_shape[0],scale=False,n_patches=int(1e5),verbose=True,n_jobs=n_jobs)
    print "number of patches:", X.shape[1]

    se = sparse_encoder(algorithm='bomp',params={'n_nonzero_coefs': n_nonzero_coefs}, n_jobs=n_jobs)

    odc = online_dictionary_coder(n_atoms=n_atoms, sparse_coder=se, n_epochs=1,
                                  batch_size=1000, non_neg=False, verbose=True, n_jobs=n_jobs)
    odc.fit(X)
    D = odc.D
    n_atoms_plot = 225
    plt.figure(figsize=(4.2, 4))
    for i in range(n_atoms_plot):
        plt.subplot(15, 15, i + 1)
        plt.imshow(D[:, i].reshape(patch_shape), cmap=plt.cm.gray)
        plt.xticks(())
        plt.yticks(())
    plt.show()
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
    try:
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

    plt.locator_params(axis='y', nbins=3)
    axes = plt.axes()
    axes.yaxis.grid()
    plt.plot(x_values, y_values, 'ro', color='red')
    plt.ylim(ymin=-1.2, ymax=1.2)
    plt.tight_layout(pad=5)
    if x_labels:
        plt.xticks(x_values, x_labels, rotation='vertical')
    if y_labels:
        plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
    # Pad margins so that markers are not clipped by the axes
    plt.margins(0.2)
    plt.show()

#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#////////////////////////////////////////////////////////////
项目:drmad    作者:bigaidream-projects    | 项目源码 | 文件源码
def plot_images(images, ax, ims_per_row=5, padding=5, digit_dimensions=(28, 28),
                cmap=matplotlib.cm.binary, vmin=None):
    """iamges should be a (N_images x pixels) matrix."""
    N_images = images.shape[0]
    N_rows = np.ceil(float(N_images) / ims_per_row)
    pad_value = np.min(images.ravel())
    concat_images = np.full(((digit_dimensions[0] + padding) * N_rows + padding,
                             (digit_dimensions[0] + padding) * ims_per_row + padding), pad_value)
    for i in range(N_images):
        cur_image = np.reshape(images[i, :], digit_dimensions)
        row_ix = i / ims_per_row  # Integer division.
        col_ix = i % ims_per_row
        row_start = padding + (padding + digit_dimensions[0]) * row_ix
        col_start = padding + (padding + digit_dimensions[0]) * col_ix
        concat_images[row_start: row_start + digit_dimensions[0],
        col_start: col_start + digit_dimensions[0]] \
            = cur_image
    cax = ax.matshow(concat_images, cmap=cmap, vmin=vmin)
    plt.xticks(np.array([]))
    plt.yticks(np.array([]))
    return cax
项目:simec    作者:cod3licious    | 项目源码 | 文件源码
def plot_20news(X, y, target_names, X_test=None, y_test=None, title=None, legend=False):
    colorlist = get_colors(len(target_names))

    def plot_scatter(X, y, alpha=1):
        y = np.array(y)
        for i, l in enumerate(target_names):
            plt.scatter(X[y == i, 0], X[y == i, 1], c=colorlist[i], alpha=alpha,
                        edgecolors='none', label=l if alpha >= 0.5 else None)  # , rasterized=True)
    # plot scatter plot
    plt.figure()
    if (X_test is not None) and (y_test is not None):
        plot_scatter(X_test, y_test, 0.4)
        plot_scatter(X, y, 1.)
    else:
        plot_scatter(X, y, 0.6)
    if legend:
        plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), scatterpoints=1)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title, fontsize=20)
项目:nmt-repr-analysis    作者:boknilev    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, tags, title, filename, cmap=plt.cm.Blues):

    # temp
    import matplotlib as mpl
    norm = mpl.colors.Normalize(vmin=0, vmax=1)
    # remove diagonal
    #for i in xrange(len(cm[0])):
    #    cm[i][i] = 0
    plt.imshow(cm, interpolation='nearest', cmap=cmap, norm=norm)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(tags))
    plt.xticks(tick_marks, tags, rotation=90, size='xx-small')
    plt.yticks(tick_marks, tags, size='xx-small')
    plt.ylabel('True')
    plt.xlabel('Predicted')
    plt.tight_layout()
    if filename:
        plt.savefig(filename, bbox_inches='tight')
项目:PhD    作者:wutaoadeny    | 项目源码 | 文件源码
def matploit(data):
    plt.figure(figsize=(8,5), dpi=80)
    plt.subplot(1,1,1)
    plt.grid()
    plt.subplots_adjust(top=0.9)

    X = [i for i in range(len(data))]

    plt.scatter(X,data,color="r")

    plt.xlim(0.0,len(data))
    #plt.xticks(np.linspace(1.0,4.0,7,endpoint=True))
    plt.ylim(0,max(data)+1)
    #plt.yticks(np.linspace(0.0,18,7,endpoint=True))

    plt.xlabel("Link number")
    plt.ylabel("Similarity")
    plt.show()
项目:galaxy_classification    作者:loribeerman    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, title='Confusion Matrix', target_names=['spiral', 'elliptical', 'uncertain'], cmap=plt.cm.Blues, normed=False):
    '''plot confusion matrix -- predicted label vs actual label classifications
    input:  confusion matrix, 3 x 3 array
    output:  confusion_matrix.png'''

    np.set_printoptions(precision=2)
    if normed:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.grid('off')
    plt.savefig('confusion_matrix.png')
项目:HappyNet    作者:danduncan    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, names=None, title='Confusion Matrix', cmap=plt.cm.Blues):
    plt.figure(4)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()

    # Add labels to confusion matrix:
    if names is None:
        names = range(cm.shape[0])

    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)

    plt.tight_layout()
    plt.ylabel('Correct label')
    plt.xlabel('Predicted label')
    plt.show()

# Generate confusion matrix for Jaffe
# results = list of tuples of (correct label, predicted label)
#           e.g. [ ('HA', 3) ]
# categories = list of category names
# Returns confusion matrix; rows are correct labels and columns are predictions
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
    try:
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

    plt.locator_params(axis='y', nbins=3)
    axes = plt.axes()
    axes.yaxis.grid()
    plt.plot(x_values, y_values, 'ro', color='red')
    plt.ylim(ymin=-1.2, ymax=1.2)
    plt.tight_layout(pad=5)
    if x_labels:
        plt.xticks(x_values, x_labels, rotation='vertical')
    if y_labels:
        plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
    # Pad margins so that markers are not clipped by the axes
    plt.margins(0.2)
    plt.show()

#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#////////////////////////////////////////////////////////////
项目:BiLSTM-CRF    作者:rguthrie3    | 项目源码 | 文件源码
def plot(self, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
        plt.imshow(self.cm, interpolation='nearest', cmap=cmap)
        plt.title(title)
        plt.colorbar()
        tick_marks = np.arange(len(self.classes))
        plt.xticks(tick_marks, self.classes, rotation=45)
        plt.yticks(tick_marks, self.classes)

        if normalize:
            self.cm = self.cm.astype('float') / self.cm.sum(axis=1)[:, np.newaxis]

        thresh = self.cm.max() / 2.
        for i, j in itertools.product(range(self.cm.shape[0]), range(self.cm.shape[1])):
            plt.text(j, i, self.cm[i, j],
                     horizontalalignment="center",
                     color="white" if self.cm[i, j] > thresh else "black")

        plt.tight_layout()
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        plt.show()
项目:textcatvis    作者:cod3licious    | 项目源码 | 文件源码
def test_distinctive_computations(distinctive_fun=distinctive_fun_diff, fun_name='Rate difference'):
    """
    given a function to compute the "distinctive score" of a word given its true and false positive rate,
    plot the distribution of scores (2D) corresponding to the different tpr and fpr
    """
    # make a grid of possible tpr and fpr combinations
    import matplotlib.pyplot as plt
    x, y = np.linspace(0, 1, 101), np.linspace(1, 0, 101)
    fpr, tpr = np.meshgrid(x, y)
    score = distinctive_fun(tpr, fpr)
    plt.figure()
    plt.imshow(score, cmap=plt.get_cmap('viridis'))
    plt.xlabel('FPR$_c(t_i)$')
    plt.ylabel('TPR$_c(t_i)$')
    plt.xticks(np.linspace(0, 101, 11), np.linspace(0, 1, 11))
    plt.yticks(np.linspace(0, 101, 11), np.linspace(1, 0, 11))
    plt.title('Score using %s' % fun_name)
    plt.colorbar()
项目:lang-reps    作者:chaitanyamalaviya    | 项目源码 | 文件源码
def heatmap(src_sent, tgt_sent, att_weights, idx):

    plt.figure(figsize=(8, 6), dpi=80)
    att_probs = np.stack(att_weights, axis=1)

    plt.imshow(att_weights, cmap='gray', interpolation='nearest')
    #src_sent = [ str(s) for s in src_sent]
    #tgt_sent = [ str(s) for s in tgt_sent]
    #plt.xticks(range(0, len(tgt_sent)), tgt_sent, rotation='vertical')
    #plt.yticks(range(0, len(src_sent)), src_sent)
    plt.xticks(range(0, len(tgt_sent)),"")
    plt.yticks(range(0, len(src_sent)),"")
    plt.axis('off')
    plt.savefig("att_matrix_"+str(idx), bbox_inches='tight')
    plt.close()
项目:Google-QuickDraw    作者:ankonzoid    | 项目源码 | 文件源码
def plot_img(img, title_str, fignum):
    plt.plot(fignum), plt.imshow(img, cmap='gray')
    plt.title(title_str), plt.xticks([]), plt.yticks([])
    fignum += 1  # move onto next figure number
    plt.show()
    return fignum

# read image
项目:SNLI-Keras    作者:adamzjk    | 项目源码 | 文件源码
def plotHeatMap(df, psize=(8,8), filename='Heatmap'):
    ax = sns.heatmap(df, vmax=.85, square=True, cbar=False, annot=True)
    plt.xticks(rotation=40), plt.yticks(rotation=360)
    fig = ax.get_figure()
    fig.set_size_inches(psize)
    fig.savefig(filename)
    plt.clf()
项目:code-uai16    作者:thanhan    | 项目源码 | 文件源码
def plot_sen_spe(dic_sen, dic_spe, vals = None):
    """
    """
    label  = {'single': 'Single', 'accum': 'Accum', 'multi': 'Multi'}
    marker = {'single': '.', 'accum': 'x', 'multi': 's'}
    algo = ['single', 'accum', 'multi']

    if vals == None:
        vals = [64, 323, 1295, 6476]

    plt.xlim(0,3)
    plt.ylim(0, 0.3)

    for a in algo:
        y = []
        for v in vals:
            x = np.mean(dic_sen[(v, a)])
            y.append(x)
        print a, y
        plt.plot([0, 1, 2, 3], y, label = label[a], marker = marker[a], markersize = 15, linewidth = 5)


    plt.xlabel('Percentage of target task labels', fontsize = 25)
    plt.ylabel('RMSE', fontsize = 30)
    plt.legend(loc = 'upper right', fontsize = 30)

    plt.tick_params(labelsize = 25)
    plt.xticks([0,1,2,3], [1, 5, 20, 100])
    plt.yticks((0, 0.15, 0.3), ("0", "0.15", "0.3"))
    #plt.set_xticklabels(['1','','5','','20','','100'])
项目:DeepTFAS-in-D.mel    作者:mu102449    | 项目源码 | 文件源码
def plot_confusion_matrix(
        cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
项目:DeepTFAS-in-D.mel    作者:mu102449    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, classes=np.asarray(['spiced', 'non-spliced']),
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
项目:bob.bio.base    作者:bioidiap    | 项目源码 | 文件源码
def _plot_det(dets, colors, labels, title, fontsize=10, position=None):
  if position is None: position = 'upper right'
  # open new page for current plot
  figure = pyplot.figure(figsize=(matplotlib.rcParams['figure.figsize'][0],
                                  matplotlib.rcParams['figure.figsize'][0] * 0.975))
  pyplot.grid(True)

  # plot the DET curves
  for i in range(len(dets)):
    pyplot.plot(dets[i][0], dets[i][1], color=colors[i], label=labels[i])

  # change axes accordingly
  det_list = [0.0002, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95]
  ticks = [bob.measure.ppndf(d) for d in det_list]
  labels = [("%.5f" % d).rstrip('0').rstrip('.') for d in det_list]
  pyplot.xticks(ticks, [l if i % 2 else "" for i,l in enumerate(labels)])
  pyplot.yticks(ticks, labels)
  pyplot.axis((ticks[0], ticks[-1], ticks[0], ticks[-1]))

  pyplot.xlabel('FMR')
  pyplot.ylabel('FNMR')
  pyplot.legend(loc=position, prop = {'size':fontsize})
  pyplot.title(title)

  return figure
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_debye(s, ax):
    x = np.log10(s["data"]["tau"])
    x = np.linspace(min(x), max(x),100)


    y = 100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0)
#    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='lightgray',linewidth=1, label="RTD estimations (%d)"%len(sol))
    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_debye(s, ax):
    x = np.log10(s["data"]["tau"])
    x = np.linspace(min(x), max(x),100)


    y = 100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0)
#    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='lightgray',linewidth=1, label="RTD estimations (%d)"%len(sol))
    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
项目:StockTalk3    作者:xenu256    | 项目源码 | 文件源码
def savePlot(self, name, width=6, height=4.5):
        timestamps = []
        sentiment = []
        tweets = []
        for data_point in self.timeSeries:
            timestamps.append(datetime.strptime(data_point["TIME"], '%Y-%m-%d %H:%M:%S'))
            sentiment.append(data_point["SENTIMENT"])
            tweets.append(data_point["TWEETS"])

        # Plot setup
        ax1 = plt.figure(figsize=(width, height)).add_subplot(111)
        ax1.spines["top"].set_visible(False)
        ax1.get_xaxis().tick_bottom()
        ax1.get_yaxis().tick_left()
        ax1.xaxis.set_major_formatter(DateFormatter('%m-%d %H:%M'))
        lns1 = ax1.plot(timestamps, sentiment, color="dimgrey", lw=0.75, label="Sentiment")
        plt.yticks(fontsize=8)
        plt.ylim(ymin=-1, ymax=1)
        plt.xticks(rotation=50, fontsize=8)
        ax2 = ax1.twinx()
        lns2 = ax2.plot(timestamps, tweets, color="dodgerblue", lw=0.5, label="Tweets")
        ax2.margins(0.05)
        plt.yticks(fontsize=8)

        # Labeling
        ax1.legend(lns1+lns2, ['Sentiment', 'Tweets'], loc=0, frameon=False, fontsize=6)
        ax1.set_ylabel("Sentiment", weight="light", rotation=90, fontsize=9, labelpad=1)
        ax2.set_ylabel("Tweets", weight="light", rotation=-90, fontsize=9, labelpad=15)
        plt.title("Tweet Sentiment", weight ="light", fontsize=12, y=1.08)
        plt.ylim(ymin=0)
        plt.tight_layout()
        file_name = join(BASE_PATH, "outputs", name+".png")
        plt.savefig(file_name)
        print("Saved plot {}".format(file_name))
项目:StockTalk3    作者:xenu256    | 项目源码 | 文件源码
def showPlot(self):
        timestamps = []
        sentiment = []
        tweets = []
        for data_point in self.timeSeries:
            timestamps.append(datetime.strptime(data_point["TIME"], '%Y-%m-%d %H:%M:%S'))
            sentiment.append(data_point["SENTIMENT"])
            tweets.append(data_point["TWEETS"])

        # Plot setup
        ax1 = plt.figure(figsize=(6, 4.5)).add_subplot(111)
        ax1.spines["top"].set_visible(False)
        ax1.get_xaxis().tick_bottom()
        ax1.get_yaxis().tick_left()
        ax1.xaxis.set_major_formatter(DateFormatter('%m-%d %H:%M'))
        lns1 = ax1.plot(timestamps, sentiment, color="dimgrey", lw=0.75, label="Sentiment")
        plt.yticks(fontsize=8)
        plt.ylim(ymin=-1, ymax=1)
        plt.xticks(rotation=50, fontsize=8)
        ax2 = ax1.twinx()
        lns2 = ax2.plot(timestamps, tweets, color="dodgerblue", lw=0.5, label="Tweets")
        ax2.margins(0.05)
        plt.yticks(fontsize=8)

        # Labeling
        ax1.legend(lns1+lns2, ['Sentiment', 'Tweets'], loc=0, frameon=False, fontsize=6)
        ax1.set_ylabel("Sentiment", weight="light", rotation=90, fontsize=9, labelpad=1)
        ax2.set_ylabel("Tweets", weight="light", rotation=-90, fontsize=9, labelpad=15)
        plt.title("Tweet Sentiment", weight ="light", fontsize=12, y=1.08)
        plt.ylim(ymin=0)
        plt.tight_layout()
        plt.show()
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def plot(x, y, x_label, y_label, save_file):
    ticks = x
    plt.xticks(range(len(ticks)), ticks, fontsize = 15)
    plt.yticks(fontsize = 15)
    new_x = interpolate.interp1d(ticks, range(len(ticks)))(ticks)

    plt.plot(new_x, y, linestyle='-', alpha=1.0, markersize=12, marker='p', color='b')
    plt.xlabel(x_label, fontsize=24)
    plt.ylabel(y_label, fontsize=20)
    plt.savefig(save_file)
    plt.show()