Python matplotlib.pyplot 模块,hist() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.hist()

项目:planetplanet    作者:rodluger    | 项目源码 | 文件源码
def sample():
    '''
    Draw a sample from the distribution of polar angle of the angular 
    momentum vector, :math:`\\theta`, computed using the Monte Carlo 
    technique discussed in the paper. 

    .. plot::
         :align: center

         from planetplanet.photo import theta
         import matplotlib.pyplot as pl
         x = [theta.sample() for i in range(10000)]
         pl.hist(x, bins = 50)
         pl.xlabel(r'$\\theta$ [deg]', fontweight = 'bold')
         pl.ylabel('Probability', fontweight = 'bold')
         pl.show()

    '''

    y = np.random.random()
    f = lambda x: CDF(x) - y
    while np.sign(f(0)) == np.sign(f(1)):
        y = np.random.random()
        f = lambda x: CDF(x) - y
    return brentq(f, 0, 1)
项目:cpnest    作者:johnveitch    | 项目源码 | 文件源码
def test_evidence(self):
        # 2 sigma tolerance
        tolerance = 2.0*np.sqrt(self.work.NS.state.info/self.work.NS.Nlive)
        print('2-sigma statistic error in logZ: {0:0.3f}'.format(tolerance))
        print('Analytic logZ {0}'.format(self.model.analytic_log_Z))
        print('Estimated logZ {0}'.format(self.work.NS.logZ))
        pos=self.work.posterior_samples['x']
        #t,pval=stats.kstest(pos,self.model.distr.cdf)
        stat,pval = stats.normaltest(pos.T)
        print('Normal test p-value {0}'.format(str(pval)))
        plt.figure()
        plt.hist(pos.ravel(),normed=True)
        x=np.linspace(self.model.bounds[0][0],self.model.bounds[0][1],100)
        plt.plot(x,self.model.distr.pdf(x))
        plt.title('NormalTest pval = {0}'.format(pval))
        plt.savefig('posterior.png')
        plt.figure()
        plt.plot(pos.ravel(),',')
        plt.title('chain')
        plt.savefig('chain.png')
        self.assertTrue(np.abs(self.work.NS.logZ - GaussianModel.analytic_log_Z)<tolerance, 'Incorrect evidence for normalised distribution: {0:.3f} instead of {1:.3f}'.format(self.work.NS.logZ,GaussianModel.analytic_log_Z ))
        self.assertTrue(pval>0.01,'Normaltest test failed: KS stat = {0}'.format(pval))
项目:facebook-message-analysis    作者:szheng17    | 项目源码 | 文件源码
def plot_histogram(x, n_bins, title, x_label, y_label):
    """
    Plots a histogram from a list of data.

    Args:
        x: A list of floats representing the data.
        n_bins: An int representing the number of bins to plot.
        title: A string representing the title of the graph.
        x_label: A string representing the label for the x-axis.
        y_label: A string representing the label for the y-axis.
    """
    plt.title(title)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.hist(x, bins=n_bins)
    plt.show()

    # probability
项目:chash    作者:luhsra    | 项目源码 | 文件源码
def plotTimeMultiHistogram(parseTimes, hashTimes, compileTimes, filename): # times in ms
    bins = np.linspace(0, 5000, 50)
    data = np.vstack([parseTimes, hashTimes, compileTimes]).T
    fig, ax = plt.subplots()
    plt.hist(data, bins, alpha=0.7, label=['parsing', 'hashing', 'compiling'], color=[parseColor, hashColor, compileColor])
    plt.legend(loc='upper right')
    plt.xlabel('time [ms]')
    plt.ylabel('#files')
    fig.savefig(filename)

    fig, ax = plt.subplots()
    boxplot_data = [[i/1000 for i in parseTimes], [i/1000 for i in hashTimes], [i/1000 for i in compileTimes]] # times to s
    plt.boxplot(boxplot_data, 0, 'rs', 0, [5, 95])
    plt.xlabel('time [s]')
    plt.yticks([1, 2, 3], ['parsing', 'hashing', 'compiling'])
    #lgd = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # legend on the right
    fig.savefig(filename[:-4] + '_boxplots' + GRAPH_EXTENSION)
项目:Supply-demand-forecasting    作者:LevinJ    | 项目源码 | 文件源码
def disp_gap_bydate(self):
        gaps_mean = self.gapdf.groupby('time_date')['gap'].mean()
        gaps_mean.plot(kind='bar')
        plt.ylabel('Mean of gap')
        plt.title('Date/Gap Correlation')
#         for i in gaps_mean.index:
#             plt.plot([i,i], [0, gaps_mean[i]], 'k-')
        plt.show()
        return

#     def drawGapDistribution(self):
#         self.gapdf[self.gapdf['gapdf'] < 10]['gapdf'].hist(bins=50)
# #         sns.distplot(self.gapdf['gapdf']);
# #         sns.distplot(self.gapdf['gapdf'], hist=True, kde=False, rug=False)
# #         plt.hist(self.gapdf['gapdf'])
#         plt.show()
#         return
#     def drawGapCorrelation(self):
#         _, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
#         res = self.gapdf.groupby('start_district_id')['gapdf'].sum()
#         ax1.bar(res.index, res.values)
#         res = self.gapdf.groupby('time_slotid')['gapdf'].sum()
#         ax2.bar(res.index.map(lambda x: x[11:]), res.values)
#         plt.show()
#         return
项目:xenoGI    作者:ecbush    | 项目源码 | 文件源码
def scoreHists(scoresFN,outFN,numBins,geneNames,scoreType):
    '''Read through a scores file, and separate into all pairwise comparisons. Then plot hist of each.'''

    # currently, this seems to require a display for interactive
    # plots. would be nice to make it run without that...

    pairD = readScorePairs(scoresFN,geneNames,scoreType)

    pyplot.ioff() # turn off interactive mode
    with PdfPages(outFN) as pdf:
        for key in pairD:
            fig = pyplot.figure()
            pyplot.hist(pairD[key],bins=numBins)
            pyplot.title('-'.join(key))
            pdf.savefig()
            pyplot.close()
项目:piwall-cvtools    作者:infinnovation    | 项目源码 | 文件源码
def gimpMarkup(self, hints = gimpContours, image = "2x2-red-1.jpg", feature = "top-left-monitor"):
        r = Rectangle(*hints[image][feature])
        contour = r.asContour()
        cv2.drawContours(self.img, [contour], -1, (0, 255, 0), 5 )
        title = self.tgen.next(feature)
        if self.show: ImageViewer(self.img).show(window=title, destroy = self.destroy, info = self.info, thumbnailfn = title)
        roi = r.getRoi(self.img)
        self.rois[feature] = roi
        # Histogram the ROI to get the spread of intensities, in each channel and grayscale
        title = '%s-roi.jpg' % feature
        if self.show: ImageViewer(roi).show(window=title, destroy = self.destroy, info = self.info, thumbnailfn = title)
        colors = ('b','g','r')
        for i,col in enumerate(colors):
            hist = cv2.calcHist([roi], [i], None, [256], [0,256])
            plt.plot(hist, color = col)
            plt.xlim([0,256])
            #plt.hist(roi.ravel(), 256, [0,256])
        plt.show()
        cmap = ColorMapper(roi)
        cmap.mapit(1)
        title = self.tgen.next('colourMapping')
        if self.show: ImageViewer(self.img).show(window=title, destroy = self.destroy, info = self.info, thumbnailfn = title)
        cv2.waitKey()
项目:bmcmc    作者:sanjibs    | 项目源码 | 文件源码
def info(self,burn=1000,plot=False):
        """
        Print the summary statistics and optionally plot the results
        """
        rows=len(self.varnames)
        cols=2
        chain=np.array(self.chain[burn:])
        nsize=chain.shape[0]
#        print rows,cols
        print '%4s %16s %12s %12s [%12s, %12s, %12s]'%('no','name','mean','stddev','16%','50%','84%')
        for i,name in enumerate(self.varnames):
            temp=np.percentile(chain[:,i],[16.0,84.0,50.0])
            print '%4i %16s %12g %12g [%12g, %12g, %12g]'%(i,name,np.mean(chain[:,i]),(temp[1]-temp[0])/2.0,temp[0],temp[2],temp[1])
            if plot:
                ax=plt.subplot(rows,cols,2*i+1) 
#                plt.text(0.05,0.9,r'$\tau$='+'%5.1f'%(acor.acor(chain[:,i])[0]),transform=ax.transAxes)
                plt.plot(chain[:,i])
                plt.ylabel(self.model.descr[name][3])
                plt.xlabel('Iteration')
                ax=plt.subplot(rows,cols,2*i+2) 
                plt.hist(chain[:,i],bins=100,histtype='step')
                plt.text(0.05,0.9,sround(np.mean(chain[:,i]),temp[0],temp[1]),transform=ax.transAxes)
                plt.xlabel(self.model.descr[name][3])
                # plt.text(0.05,0.9,'%6g %3g (%4g-%4g)'%(np.mean(chain[:,i]),(temp[1]-temp[0])/2.0,temp[0],temp[1]),transform=ax.transAxes)
项目:bark    作者:kylerbrown    | 项目源码 | 文件源码
def make_artifact_plots(data, outname, pos_arts, neg_arts, stds):
    colors = [cm.Dark2(x) for x in np.linspace(0, 1, len(stds))]
    f, (ax1, ax2, ax3) = plt.subplots(3, 1)
    if len(pos_arts) == 0 and len(neg_arts) == 0:
        # nothing to do
        plt.savefig(outname + ".png")
        return
    for c, (poss, negs) in enumerate(zip(pos_arts, neg_arts)):
        extrema = np.array(poss + negs, dtype=int)
        for i in extrema:
            ax1.plot(data[i - 10:i + 10, c] / stds[c],
                     linewidth=0.5,
                     color=colors[c])
            plt.sca(ax2)
            plt.hist(data[extrema, c] / stds[c],
                     bins=20,
                     fill=None,
                     edgecolor=colors[c])
            ax3.vlines(extrema, 0, 1, color=colors[c])
        ax1.set_ylabel("standard deviation")
        ax1.set_title("artifacts")
        ax2.set_title("amplitude distribution")
        ax3.set_title("artifact locations")
    plt.savefig(outname + ".png")
项目:base_function    作者:Rockyzsu    | 项目源码 | 文件源码
def hist_test():
    mu, sigma = 100, 15
    x = mu + sigma * np.random.randn(10000)

    # ??????
    n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)


    plt.xlabel('Smarts')
    plt.ylabel('Probability')
    #????
    plt.title('Histogram of IQ')
    #????
    plt.text(60, .025, r'$mu=100, sigma=15$')
    plt.axis([40, 160, 0, 0.03])
    plt.grid(True)
    plt.show()
项目:ExperimentPackage_PyTorch    作者:ICEORY    | 项目源码 | 文件源码
def draw(self):
        if not os.path.isdir(self.txt_folder):
            print "Folder not exist!"
            return False

        txt_file_list = os.listdir(self.txt_folder)
        for i in range(len(txt_file_list)):
            log_data_list = self.logparse(self.txt_folder + txt_file_list[i])
            for j in range(len(log_data_list)):
                plt.figure()
                input_data = log_data_list[j]["data"]
                plt.hist(input_data)
                plt.grid()
                title_str = "epoch:%d, block:%d, layer:%d" % (log_data_list[j]["epoch"],
                                                              log_data_list[j]["block"],
                                                              log_data_list[j]["layer"])
                plt.title(title_str)
                save_path = self.fig_folder + "epoch_%d_block_%d_layer_%d.png" % (log_data_list[j]["epoch"],
                                                                                  log_data_list[j]["block"],
                                                                                  log_data_list[j]["layer"])
                plt.savefig(save_path, format="png")
                plt.close()
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def fit_koff(nmax=523, NN=4e8, **params):
    tbind = params.pop("tbind")
    params["kd"] = 1e9/tbind
    dx = params.pop("dx")
    rw = randomwalk.get_rw(NAME, params, setup=setup_rw, calc=True)
    rw.domains[1].dx = dx
    times = draw_empirically(rw, N=NN, nmax=nmax, success=False)
    bins = np.logspace(np.log10(min(times)), np.log10(max(times)), 35)
    #bins = np.logspace(-3., 2., 35)
    hist, _ = np.histogram(times, bins=bins)
    cfd = np.cumsum(hist)/float(np.sum(hist))
    t = 0.5*(bins[:-1] + bins[1:])
    tmean = times.mean()
    toff = NLS(t, cfd, t0=tmean)
    koff = 1./toff
    return dict(t=t, cfd=cfd, toff=toff, tmean=tmean, koff=koff)

##### run rw in collect mode and draw bindings from empirical distributions
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def exponential_hist(times, a, b, **params):
    cutoff = 0.03 # cutoff frequency in ms
    if len(times) == 0:
        return
    bins = np.logspace(a, b, 100)
    hist = plt.hist(times, bins=bins, alpha=0.5, **params)
    plt.xscale("log")
    params.pop("label")
    color = params.pop("color")
    total = integrate_hist(hist, cutoff)
    if sum(times > cutoff) == 0:
        return
    tmean = times[times > cutoff].mean()
    T = np.logspace(a-3, b, 1000)
    fT = np.exp(-T/tmean)*T/tmean
    fT *= total/integrate_values(T, fT, cutoff)
    plt.plot(T, fT, label="exp. fit, mean = %.2f ms" % (tmean,),
             color="dark" + color, **params)
    plt.xlim(10**a, 10**b)
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def plot_weight_histogram(model, outfile, lower=-0.25, upper=0.25):
    n = len(model.params)
    plt.clf()
    for (i, theano_shared_params) in enumerate(model.params):
        weights = theano_shared_params.get_value()
        values = weights.flatten()
        plt.subplot(n,1,i+1)
        frame = plt.gca()
        frame.axes.get_yaxis().set_ticks([])
        if i != n-1:  ## only keep bottom one
            frame.axes.get_xaxis().set_ticks([])
        plt.hist(values, 100)
        plt.xlim(lower, upper)
        print('   param no. %s'%(i))
        print(get_stats(theano_shared_params))
    plt.savefig(outfile)
    print('Made plot %s'%(outfile))
项目:amplicon_sequencing_pipeline    作者:thomasgurry    | 项目源码 | 文件源码
def read_length_histogram(raw_sequences_file, path, raw_sequences_filetype='FASTQ'):
    # Creates a histogram of read lengths
    if raw_sequences_filetype == "FASTQ":
        iter_seq = util.iter_fsq
    else:
        iter_seq = util.iter_fst
    x = []
    counter = 0
    for record in iter_seq(raw_sequences_file):
        [sid, seq] = record[:2]
        counter = counter + 1
        if(counter > 100000):
            break
        x.append(len(seq))
    x = np.array(x)
    plt.figure()
    plt.hist(x, 50)
    plt.title('Distribution of amplicon read lengths')
    plt.xlabel('Read length')
    plt.ylabel('Freq')
    plt.savefig(os.path.join(path, 'read_lengths_distribution.png'))
项目:march-madness    作者:sidgonuts    | 项目源码 | 文件源码
def plot(irl, sim):
    plt.figure(1)
    plt.hist(irl, bins='auto')
    plt.axis([0,16, 0, 100])
    plt.title('Final Four Seeding Distribution (Real Life)')

    plt.figure(2)
    plt.hist(sim, bins='auto')
    plt.axis([0,16, 0, 100])
    plt.title('Final Four Seeding Distribution (Simulation)')

    plt.show()
    return


# Returns statistics on the similarity of the distibutions of the historical Final
# 4 seeding and the seeds of the simulated Final 4 teams.
项目:luna16    作者:gzuidhof    | 项目源码 | 文件源码
def equalize(df):
    df = df.fillna(0)

    #df[df['probability']<0.4] = 0

    relevant = df[df['probability']>=0.4]
    #print relevant
    #print relevant['probability'].values
    #relevant = histeq(relevant['probability'].values,len(relevant['probability'].values))
    #print relevant['probability'].values.mean()
    plt.hist(df[df['probability']>0.9]['probability'], 60)
    plt.show()
    return df


# !!!!!!!!!!!!!!!!!!!!!!  IMPORTANT  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# this code is made for submission files, which have a index column.
# These columns are removed in this code.
# If your submission file hasn't a index column
# comment out both line 20 and line 26

# This function merges submission files. If files contain the same seriesuid, coordX, coordY, coordZ combination the probability are ensembled
# by taking the everage. The order of the nodules in the submission files doesn't  matter either if the files contain the same nodules.
# All the submission files have to be added to a folder called submission, all the files in this folder are ensembled.
项目:temci    作者:parttimenerd    | 项目源码 | 文件源码
def _freedman_diaconis_bins(self, *arrays: t.Tuple[t.List[Number]]) -> int:
        """
        Calculate number of hist bins using Freedman-Diaconis rule.
        If more than one array is passed, the maximum number of bins calculated for each
        array is used.

        Adapted from seaborns source code (adapted originally from http://stats.stackexchange.com/questions/798/).
        """
        import seaborn as sns
        def freedman_diaconis(array: np.array):
            array = [a for a in array if not math.isnan(a)]
            h = 2 * sns.utils.iqr(array) / (len(array) ** (1 / 3))
            # fall back to sqrt(a) bins if iqr is 0
            if h == 0:
                return int(np.sqrt(len(array)))
            else:
                return int(np.ceil((max(array) - min(array)) / h))
        return max(map(freedman_diaconis, arrays))
项目:weibo_scrawler_app    作者:coolspiderghy    | 项目源码 | 文件源码
def plot_hist(runornot):
    while runornot:
        plt.figure(1)
        timelist = ['year','month','day','hour','dayofweek']
        layoutlist = [231,232,234,235,236]
        for timeiterm in timelist:
            plt.subplot(layoutlist[timelist.index(timeiterm)])
            plt.hist(blog[timeiterm].values, bins = len(set(blog[timeiterm].values)), facecolor='blue', alpha=0.5)
            #plt.xlabel()
            plt.ylabel('freq')
            plt.title(timeiterm)
            #plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
            #plt.axis([40, 160, 0, 0.03])
            #plt.grid(True)
        plt.show()
        #.title('Histogram')
        plt.show()
项目:dalila    作者:slipguru    | 项目源码 | 文件源码
def plot_atoms_as_histograms(dictionary):
    """
    It plots the atoms composing the dictionary as histograms.

    Parameters
    ----------
    dictionary: array_like, shape=(n_atoms, n_features)
    """
    for i in range(0, dictionary.shape[0]):
        fig = plt.figure()
        fig.canvas.set_window_title(str(i+1) + " atom")
        length = len(dictionary[i, :])
        x = np.asarray(range(0, length))
        w = dictionary[i, :]
        plt.hist(x, bins=length, weights=w)
        plt.xlim((0, dictionary.shape[1]))
    plt.show()
项目:python_demo    作者:Wasim37    | 项目源码 | 文件源码
def histograms_plot():
    """
    histograms plot
    """
    # ??????
    mu, sigma = 100, 15
    x = mu + sigma * np.random.randn(10000)

    # ??????
    num_bins = 50

    # ????,???????
    n, bins, patches = plt.hist(x, bins=num_bins, normed=1, color="green", alpha=0.6, label="hist")

    # ??????????,????
    y = mlab.normpdf(bins, mu, sigma)
    plt.plot(bins, y, "r--", label="line")

    # ??????
    plt.legend(loc="upper left", shadow=True)

    # ????
    plt.show()
    return
# histograms_plot()
项目:behave    作者:ssnd    | 项目源码 | 文件源码
def compare_keypress_delays(self, *args):

        all_delays = []

        for count, file_index in enumerate(args):

            instance = self.read_data_file(file_index)

            delay = instance.keypress_delay_average()

            plt.hist(int(delay),[0,1])

            all_delays.append(delay)



        # plt.axis([0, count, 0, int(max(all_delays))])             

        plt.show()

        return all_delays
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def plot_scattermatrix(df, **kwargs):
    """plot a scattermatrix from dataframe
    """
    if df is None:
        logger.log(loglevel_debug, "plot_scattermatrix: no data passed")
        return

    # df = pd.DataFrame(X, columns=['x1_t', 'x2_t', 'x1_tptau', 'x2_tptau', 'u_t'])
    # scatter_data_raw = np.hstack((np.array(Xs), np.array(Ys)))
    # scatter_data_raw = np.hstack((Xs, Ys))
    # logger.log(loglevel_debug, "scatter_data_raw", scatter_data_raw.shape)

    plt.ioff()
    # df = pd.DataFrame(scatter_data_raw, columns=["x_%d" % i for i in range(scatter_data_raw.shape[1])])
    sm = scatter_matrix(df, ax = kwargs['ax'], alpha=0.2, figsize=(10, 10), diagonal='hist')
    print type(sm), sm.shape, sm[0,0]
    # fig = sm[0,0].get_figure()
    # if SAVEPLOTS:
    # fig.savefig("fig_%03d_scattermatrix.pdf" % (fig.number), dpi=300)
    # fig.show()
    # plt.show()
项目:python-weibullfit    作者:mlosch    | 项目源码 | 文件源码
def compare_fits(x):
    shape, scale = fit(x)
    app_shape, app_scale = x.mean() / x.std(), x.mean()
    # _, np_shape, _, np_scale = exponweib.fit(x, floc=0)

    # # Plot
    # def weib(x, n, a): # a == shape
    #   return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
    #
    # count, _, _ = plt.hist(x, 100)
    # xx = np.linspace(x.min(), x.max(), 10000)
    # yy = weib(xx, scale, shape)
    # yy_app = weib(xx, app_scale, app_shape)
    # yy_np = weib(xx, np_scale, np_shape)
    # plt.plot(xx, yy*(count.max() / yy.max()), label='MLE')
    # plt.plot(xx, yy_app*(count.max() / yy_app.max()), label='App')
    # plt.plot(xx, yy_np*(count.max() / yy_np.max()), label='Scipy')
    # plt.legend()
    # plt.show()

    return (shape, scale), (app_shape, app_scale)
项目:algoritmos-2016-1    作者:fhca    | 项目源码 | 文件源码
def limite_central2():
    N=5000
    k = 1.99999999
    r=evalua(k, N)
    np.random.shuffle(r)

    epsilon = .1
    x1 = zeros(N)
    mu = 0
    for i in range(N):
        np.random.shuffle(r)
        x1[i] = sum(r[:i]) / (i+1)

    plt.hist(x1, bins=1000, range=(mu - epsilon, mu + epsilon), normed=True)
    formatter = FuncFormatter(to_percent)
    plt.gca().yaxis.set_major_formatter(formatter)
项目:world_merlin    作者:pbaljeka    | 项目源码 | 文件源码
def plot_weight_histogram(model, outfile, lower=-0.25, upper=0.25):
    n = len(model.params)
    plt.clf()
    for (i, theano_shared_params) in enumerate(model.params):
        weights = theano_shared_params.get_value()
        values = weights.flatten()
        plt.subplot(n,1,i+1)
        frame = plt.gca()
        frame.axes.get_yaxis().set_ticks([])
        if i != n-1:  ## only keep bottom one
            frame.axes.get_xaxis().set_ticks([])
        plt.hist(values, 100)
        plt.xlim(lower, upper)
        print '   param no. %s'%(i)
        print get_stats(theano_shared_params)
    plt.savefig(outfile)
    print 'Made plot %s'%(outfile)
项目:synchrony    作者:cknd    | 项目源码 | 文件源码
def plot_all_times_to_correct_decision(self,thr=0.5,stay_above=True,unit="spikes",spikemeasure="growing_spikecount", do_title=True):
        times = np.array([self.time_to_correct_decision(e,thr,stay_above,unit,spikemeasure) for e in self.experiments]).flatten()
        # times[30:50] = np.Inf
        maximum = int(np.ceil(max(times[times!=np.Inf])))
        plt_inf = maximum+2 # for unsuccessful trials (time=Inf), set time to some value distinct from any actual decision time.
        times[times==np.Inf] = plt_inf

        fig = plt.figure(figsize=(hcPlotting.fig_width,hcPlotting.fig_height/3))

        bins = np.hstack([np.arange(0.25,maximum+1,0.5),[plt_inf,plt_inf+1]])
        n,_,_ = plt.hist(times,bins,color='k',edgecolor='w')

        ax = plt.gca()
        ax.set_xlim((0,plt_inf+1))
        ax.set_ylim(ax.get_ylim()[0],ax.get_ylim()[1]+1)
        plt.plot((plt_inf,plt_inf),(0,ax.get_ylim()[1]),'r')

        ax.set_xticks(range(maximum+1)+[plt_inf+0.5])
        ax.set_xticklabels([str(i) for i in range(maximum+1)]+[r'$\infty$'])

        ax.set_ylabel("nr. of trials")
        ax.set_xlabel("spikes observed before classification")
        if do_title:
            plt.title("thr = "+str(thr)+", stay_above = "+str(stay_above)+", classes: " +" vs. ".join(self.classes))
项目:joinmarket-clientserver    作者:JoinMarket-Org    | 项目源码 | 文件源码
def create_size_histogram(db, args):
    rows = db.execute('SELECT maxsize, ordertype FROM orderbook;').fetchall()
    rows = [o for o in rows if o["ordertype"] in filtered_offername_list]
    ordersizes = sorted([r['maxsize'] / 1e8 for r in rows])

    fig = plt.figure()
    scale = args.get("scale")
    if (scale is not None) and (scale[0] == "log"):
        ratio = ordersizes[-1] / ordersizes[0]
        step = ratio ** 0.0333  # 1/30
        bins = [ordersizes[0] * (step ** i) for i in range(30)]
    else:
        bins = 30
    plt.hist(ordersizes, bins, histtype='bar', rwidth=0.8)
    if bins is not 30:
        fig.axes[0].set_xscale('log')
    plt.grid()
    plt.xlabel('Order sizes / btc')
    plt.ylabel('Frequency')
    return get_graph_html(fig) + ("<br/><a href='?scale=log'>log scale</a>" if
                                  bins == 30 else "<br/><a href='?'>linear</a>")
项目:tschdata    作者:tum-lkn    | 项目源码 | 文件源码
def plot_retx(self):
        """
        Plot the distribution of the retransmission counter for all packets
        :return:
        """

        retx = []
        for pkt in self.packets:
            for hop in pkt.hop_info:
                if hop['retx'] != 0:
                    retx.append(hop['retx'])
                else:
                    raise RuntimeError

        plt.figure()
        plt.hist(retx)
项目:picasso    作者:jungmannlab    | 项目源码 | 文件源码
def calculate_histogram(self):
        slice = self.pick_slice.value()
        ax = self.figure.add_subplot(111)
        ax.hold(False)
        plt.cla()
        n_channels = len(self.zcoord)

        hues = np.arange(0, 1, 1 / n_channels)
        self.colors = [colorsys.hsv_to_rgb(_, 1, 1) for _ in hues]

        self.bins = np.arange(np.amin(np.hstack(self.zcoord)),np.amax(np.hstack(self.zcoord)),slice)
        self.patches = []
        ax.hold(True)
        for i in range(len(self.zcoord)):
            n, bins, patches = plt.hist(self.zcoord[i], self.bins, normed=1, facecolor=self.colors[i], alpha=0.5)
            self.patches.append(patches)

        plt.xlabel('Z-Coordinate [nm]')
        plt.ylabel('Counts')
        plt.title(r'$\mathrm{Histogram\ of\ Z:}$')
        # refresh canvas
        self.canvas.draw()
        self.sl.setMaximum(len(self.bins)-2)
        #self.sl.setValue(np.ceil((len(self.bins)-2)/2))
项目:mimicry.ai    作者:fizerkhan    | 项目源码 | 文件源码
def plot_weight_histogram(model, outfile, lower=-0.25, upper=0.25):
    n = len(model.params)
    plt.clf()
    for (i, theano_shared_params) in enumerate(model.params):
        weights = theano_shared_params.get_value()
        values = weights.flatten()
        plt.subplot(n,1,i+1)
        frame = plt.gca()
        frame.axes.get_yaxis().set_ticks([])
        if i != n-1:  ## only keep bottom one
            frame.axes.get_xaxis().set_ticks([])
        plt.hist(values, 100)
        plt.xlim(lower, upper)
        print '   param no. %s'%(i)
        print get_stats(theano_shared_params)
    plt.savefig(outfile)
    print 'Made plot %s'%(outfile)
项目:KDEm    作者:MengtingWan    | 项目源码 | 文件源码
def plot_hist(item, figure_id=1):
    pt.figure(figure_id)
    kurtosis = -np.ones(8)
    for i in range(item.shape[1]):
        pt.subplot(240+i)
        tmp = item[item[:,i]!=-1,i]
        tmp = tmp + np.random.rand(len(tmp)) - 0.5
        pt.hist(tmp, bins=6, normed=True, range=(0.9,6.1), alpha=0.8, color=colorc[i])
        pt.title(name[i])
        density = kde.gaussian_kde(tmp)
        xgrid = np.linspace(0, 6, 100)
        pt.plot(xgrid, density(xgrid), 'r-')
        avg = np.mean(tmp)
        sd = np.std(tmp)
        pt.plot(xgrid, normpdf(xgrid,avg,sd))
        pt.show()
        kurtosis[i] = sps.kurtosis(item[item[:,i]!=-1,i])
    return(kurtosis)
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def runobsplot(self):
        """
        A quick histogram to see that intrinsic variance compared to the initial estimate
        """

        tdmin = self.iniest.td - 3.0*self.iniest.tderr
        tdmax = self.iniest.td + 3.0*self.iniest.tderr

        fig = plt.figure(figsize=(6, 3))
        fig.subplots_adjust(top=0.95, bottom=0.2)
        if len(self.obsmesdelays) != 0:
            plt.hist(self.obsmesdelays, range=(tdmin, tdmax), bins=200, color="green", lw=0)
        plt.xlim(tdmin, tdmax)
        plt.xlabel("Delay [day]")
        plt.ylabel("Counts")
        #ax = plt.gca()
        plt.figtext(0.15, 0.8, "Intrinsic/initial error ratio: %.2f" % self.intrinsicratio)
        plt.axvline(self.iniest.td - self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axvline(self.iniest.td + self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axvline(self.outest.td, color="red", linestyle="-", zorder=20)
        plt.savefig(os.path.join(self.plotdir, "intrinsic_variance.png"))
        plt.close()
项目:document-qa    作者:allenai    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("answer_files", nargs="+")
    args = parser.parse_args()

    dfs = {}
    for x in args.answer_files:
        name = basename(x)
        name = name[:name.rfind(".")]
        dfs[name] = pd.read_csv(x)

    for k, df in dfs.items():
        df = df[df["n_answers"] > 0]
        plt.hist(df["predicted_score"] - df["predicted_score"].mean(), 50, label=k, alpha=0.5)

    plt.legend()
    plt.show()
项目:momoCrawler    作者:njames741    | 项目源码 | 文件源码
def std_error(y, predicted_y):
    std_error_list = []
    for index in range(0, len(y)):
        std_error_list.append((np.absolute(y[index] - predicted_y[index]) / y[index])[0])
    std_error_list = np.asarray(std_error_list)

    # print std_error_list.max()
    count = 0
    threshold = 0.20
    for item in std_error_list:
        if item <= threshold:
            count += 1
    print '?????', len(std_error_list), '?'
    print '???', threshold, '???', count, '?'
    print '???', threshold ,'?????', count / float(len(std_error_list))
    print '?????', std_error_list.mean()
    print '??????', std_error_list.std()

    plt.hist(std_error_list, rwidth=0.7)
    plt.show()
项目:kaggle_dsb    作者:syagev    | 项目源码 | 文件源码
def equalize(df):
    df = df.fillna(0)

    #df[df['probability']<0.4] = 0

    relevant = df[df['probability']>=0.4]
    #print relevant
    #print relevant['probability'].values
    #relevant = histeq(relevant['probability'].values,len(relevant['probability'].values))
    #print relevant['probability'].values.mean()
    plt.hist(df[df['probability']>0.9]['probability'], 60)
    plt.show()
    return df


# !!!!!!!!!!!!!!!!!!!!!!  IMPORTANT  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# this code is made for submission files, which have a index column.
# These columns are removed in this code.
# If your submission file hasn't a index column
# comment out both line 20 and line 26

# This function merges submission files. If files contain the same seriesuid, coordX, coordY, coordZ combination the probability are ensembled
# by taking the everage. The order of the nodules in the submission files doesn't  matter either if the files contain the same nodules.
# All the submission files have to be added to a folder called submission, all the files in this folder are ensembled.
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawHist(pl, shs):  
    """??????, shs: ??? array"""
    shs = np.array(shs, dtype=float)
    #print "mean: %.2f"%shs.mean()
    shs = shs[np.isnan(shs) == False]
    if len(shs)>0:
        pl.figure
        pl.hist(shs)
        def ShowHitCount(shs):
            #????
            go_count = len(shs) - len(shs[np.isnan(shs)])
            #???
            if len(shs) != 0:
                v = float(go_count)/ float(len(shs))
                #print("trade rato:%.2f%%"%(v*100))
            #?????
            if go_count>0:
                v = float(len(shs[shs>0]))/float(go_count)
                #print("win rato: %.2f%%"%(v*100))
        pl.show()
        #ShowHitCount(shs)
项目:Polymers    作者:FracturedRocketSpace    | 项目源码 | 文件源码
def plotEnergyHistogram(sortedEnergy):

    # Energy distribution histogram
    lowerRange=sortedEnergy[0]
    upperRange=sortedEnergy[int(c.histFraction*len(sortedEnergy) )] # Disregard highest energy polymers, because they have much higher energy than the rest and ruin the histogram
    # Freedman-Diaconis method for determining optimal bin size
    q1=sortedEnergy[int(0.25*c.histFraction*len(sortedEnergy))]
    q3=sortedEnergy[int(0.75*c.histFraction*len(sortedEnergy))]
    IQR=q3-q1
    h=2*IQR*(c.histFraction*len(sortedEnergy))**(-1/3)
    b=(upperRange-lowerRange)/h

    plt.figure(4)
    n, bins, patches=plt.hist(sortedEnergy, int(b), range=(lowerRange,upperRange), facecolor='green')
    plt.ylim([0,1.5*np.max(n)])
    plt.xlabel('Potential')
    plt.ylabel('Number of polymers')
    plt.title('Total energy distribution')
项目:pymake    作者:dtrckd    | 项目源码 | 文件源码
def newsgroups_class_distrib():
    from sklearn.datasets import fetch_20newsgroups
    ngroup_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'), categories=None)
    ngroup_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'), categories=None)
    test_data = ngroup_test.data
    train_data = ngroup_train.data
    test_groups = ngroup_test.target
    train_groups = ngroup_train.target

    n = 2000
    train_groups = train_groups[:n]
    test_groups = test_groups[:n]

    plt.figure()
    plt.hist(train_groups, 20, normed=True, range=(0, 19))
    plt.title("train groups")

    plt.figure()
    plt.hist(test_groups, 20, normed=True, range=(0, 19))
    plt.title("test groups")

    plt.show()
项目:anime_recs    作者:Cpierse    | 项目源码 | 文件源码
def factorization_error(U,Vt,val,batch_size=1024):
    # Get validation data and identify unique users
    val_nz = scipy.sparse.find(val)
    unique_users = np.unique(val_nz[0])
    # Go through and calculate the errors in batches
    all_errors = np.empty(0)
    increments = len(unique_users)//batch_size+1
    print('Starting error calculation')
    for i in range(increments):
        rows = unique_users[i*batch_size:min((i+1)*batch_size,len(unique_users))]
        val_data = val[rows,:].toarray()
        user_data = np.dot(U[rows,:],Vt)
        user_data[user_data>10]=10
        user_data[user_data<0]=0
        error = np.abs(np.multiply(user_data-val_data,val_data!=0))
        error = error[np.nonzero(error)]
        all_errors= np.append(all_errors,error)
        mean_error,per_comp = np.mean(all_errors),i*1.0/increments
        print('Mean Error: ' + str(mean_error) + ', Percent complete: ' + str(per_comp))
    error = [np.mean(all_errors),np.std(all_errors),np.sqrt(np.mean(np.power(all_errors,2)))]
    plt.hist(all_errors)
    plt.title('Ratings errors')
    plt.show()
    return error
项目:ultra_ping    作者:mrahtz    | 项目源码 | 文件源码
def draw_histogram(latencies_ms,
                   bins,
                   cutoff_time_ms,
                   draw_xlabel=True,
                   draw_ylabel=True):
    """
    Draw one individual histogram.
    """
    n, bins, patches = plt.hist(latencies_ms, bins, color='white', hatch='/')
    if draw_xlabel:
        plt.xlabel("Packet latency (ms)")
    if draw_ylabel:
        plt.ylabel("Frequency")
    plt.gca().set_xscale("log")
    plt.gca().xaxis.set_major_formatter(ScalarFormatter())
    plt.xlim([min(bins), max(bins)])
    plt.xticks([1, cutoff_time_ms, 100])
项目:3D-convolutional-speaker-recognition    作者:astorfi    | 项目源码 | 文件源码
def Plot_HIST_Fn(label,distance, save_path, num_bins = 50):

    dissimilarity = distance[:]
    gen_dissimilarity_original = []
    imp_dissimilarity_original = []
    for i in range(len(label)):
        if label[i] == 1:
            gen_dissimilarity_original.append(dissimilarity[i])
        else:
            imp_dissimilarity_original.append(dissimilarity[i])

    bins = np.linspace(np.amin(distance), np.amax(distance), num_bins)
    fig = plt.figure()
    plt.hist(gen_dissimilarity_original, bins, alpha=0.5, facecolor='blue', normed=False, label='gen_dist_original')
    plt.hist(imp_dissimilarity_original, bins, alpha=0.5, facecolor='red', normed=False, label='imp_dist_original')
    plt.legend(loc='upper right')
    plt.title('OriginalFeatures_Histogram.jpg')
    plt.show()
    fig.savefig(save_path)
项目:Python-Data-Analysis-Learning-Notes    作者:Asurada2015    | 项目源码 | 文件源码
def plot_his(inputs, inputs_norm):
    # plot histogram for the inputs of every layer
    for j, all_inputs in enumerate([inputs, inputs_norm]):
        for i, input in enumerate(all_inputs):
            plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1))
            plt.cla()
            if i == 0:
                the_range = (-7, 10)
            else:
                the_range = (-1, 1)
            plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733')
            plt.yticks(())
            if j == 1:
                plt.xticks(the_range)
            else:
                plt.xticks(())
            ax = plt.gca()
            ax.spines['right'].set_color('none')
            ax.spines['top'].set_color('none')
        plt.title("%s normalizing" % ("Without" if j == 0 else "With"))
    plt.draw()
    plt.pause(0.01)
项目:Python-Data-Analysis-Learning-Notes    作者:Asurada2015    | 项目源码 | 文件源码
def plot_his(inputs, inputs_norm):
    # plot histogram for the inputs of every layer
    for j, all_inputs in enumerate([inputs, inputs_norm]):
        for i, input in enumerate(all_inputs):
            plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1))
            plt.cla()
            if i == 0:
                the_range = (-7, 10)
            else:
                the_range = (-1, 1)
            plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733')
            plt.yticks(())
            if j == 1:
                plt.xticks(the_range)
            else:
                plt.xticks(())
            ax = plt.gca()
            ax.spines['right'].set_color('none')
            ax.spines['top'].set_color('none')
        plt.title("%s normalizing" % ("Without" if j == 0 else "With"))
    plt.draw()
    plt.pause(0.01)
项目:Python-Data-Analysis-Learning-Notes    作者:Asurada2015    | 项目源码 | 文件源码
def plot_his(inputs, inputs_norm):
    # plot histogram for the inputs of every layer
    for j, all_inputs in enumerate([inputs, inputs_norm]):
        for i, input in enumerate(all_inputs):
            plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1))
            plt.cla()
            if i == 0:
                the_range = (-7, 10)
            else:
                the_range = (-1, 1)
            plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733')
            plt.yticks(())
            if j == 1:
                plt.xticks(the_range)
            else:
                plt.xticks(())
            ax = plt.gca()
            ax.spines['right'].set_color('none')
            ax.spines['top'].set_color('none')
        plt.title("%s normalizing" % ("Without" if j == 0 else "With"))
    plt.draw()
    plt.pause(0.01)
项目:nanoQC    作者:wdecoster    | 项目源码 | 文件源码
def length_histogram(fqin, name):
    '''
    Create a histogram, and return the bin edges of the bin containing the most reads
    '''
    logging.info("Creating length histogram to find bin with most reads.")
    lengths = get_lengths(fqin)
    plt.hist(lengths, bins='auto')
    plt.savefig(name, format='png', dpi=100)
    plt.close("all")
    hist, bin_edges = np.histogram(lengths, bins='auto')
    maxindex = np.argmax(hist)
    return (bin_edges[maxindex], bin_edges[maxindex + 1])
项目:chash    作者:luhsra    | 项目源码 | 文件源码
def plotTimeHistogram(times, filename): # times in ms
    #TODO: understand params and vars
    hist, bins = np.histogram([i/1000 for i in times], bins=50) # times to s
    width = 0.7 * (bins[1] - bins[0])
    center = (bins[:-1] + bins[1:]) / 2
    fig, ax = plt.subplots()
    plt.xlabel('time [s]')
    plt.ylabel('#files')
    ax.bar(center, hist, align='center', width=width)
    fig.savefig(filename)
项目:saapy    作者:ashapochka    | 项目源码 | 文件源码
def histogram_commit_periods(self):
        plt.hist(self.tickets.CommitPeriod, bins=20,
                 color=self.color_map[1])
项目:saapy    作者:ashapochka    | 项目源码 | 文件源码
def histogram_changed_lines(self):
        plt.hist(self.changed_lines, bins=30, color=self.color_map[3])
项目:MachineLearningBasics    作者:zoebchhatriwala    | 项目源码 | 文件源码
def main():
    greyhounds = 500
    labs = 500

    grey_height = 28 + 4 * np.random.randn(greyhounds)
    lab_height = 24 + 4 * np.random.randn(labs)

    plt.hist([grey_height, lab_height], stacked=True, color=['r', 'b'])
    plt.show()

# Run main