Python matplotlib.pyplot 模块,subplots_adjust() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.subplots_adjust()

项目:chainer-visualization    作者:hvy    | 项目源码 | 文件源码
def save_ims(filename, ims, dpi=100, scale=0.5):
    n, c, h, w = ims.shape

    rows = int(math.ceil(math.sqrt(n)))
    cols = int(round(math.sqrt(n)))

    fig, axes = plt.subplots(rows, cols, figsize=(w*cols/dpi*scale, h*rows/dpi*scale), dpi=dpi)

    for i, ax in enumerate(axes.flat):
        if i < n:
            ax.imshow(ims[i].transpose((1, 2, 0)))
        ax.set_xticks([])
        ax.set_yticks([])
        ax.axis('off')

    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0.1, hspace=0.1)
    plt.savefig(filename, dpi=dpi, bbox_inces='tight', transparent=True)
    plt.clf()
    plt.close()
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def word_cloud(word_embedding_matrix, vocab, s, save_file='scatter.png'):
    words = [(i, vocab[i]) for i in s]
    model = TSNE(n_components=2, random_state=0)
    #Note that the following line might use a good chunk of RAM
    tsne_embedding = model.fit_transform(word_embedding_matrix)
    words_vectors = tsne_embedding[np.array([item[1] for item in words])]

    plt.subplots_adjust(bottom = 0.1)
    plt.scatter(
        words_vectors[:, 0], words_vectors[:, 1], marker='o', cmap=plt.get_cmap('Spectral'))

    for label, x, y in zip(s, words_vectors[:, 0], words_vectors[:, 1]):
        plt.annotate(
            label,
            xy=(x, y), xytext=(-20, 20),
            textcoords='offset points', ha='right', va='bottom',
            fontsize=20,
            # bbox=dict(boxstyle='round,pad=1.', fc='yellow', alpha=0.5),
            arrowprops=dict(arrowstyle = '<-', connectionstyle='arc3,rad=0')
            )
    plt.show()
    # plt.savefig(save_file)
项目:SelfDrivingCar    作者:aguijarro    | 项目源码 | 文件源码
def draw_images(img, undistorted, title, cmap):
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(img)
    ax1.set_title('Original Image', fontsize=50)
    if cmap is not None:
        ax2.imshow(undistorted, cmap=cmap)
    else:
        ax2.imshow(undistorted)
    ax2.set_title(title, fontsize=50)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
    plt.show()


# TODO: Write a function that takes an image, object points, and image points
# performs the camera calibration, image distortion correction and
# returns the undistorted image
项目:usbtc08    作者:bankrasrg    | 项目源码 | 文件源码
def init_plot(self):
        # Interactive mode
        plt.ion()
        # Chart size and margins
        plt.figure(figsize = (20, 10))
        plt.subplots_adjust(hspace = 0.05, top = 0.95, bottom = 0.1, left = 0.05, right = 0.95)
        # Setup axis labels and ranges
        plt.title('Pico Technology TC-08')
        plt.xlabel('Time [s]')
        plt.ylabel('Temperature [' + self.unit_text + ']')
        plt.xlim(0, self.duration)
        self.plotrangemin = 19
        self.plotrangemax = 21
        plt.ylim(self.plotrangemin, self.plotrangemax)
        # Enable a chart line for each channel
        self.lines = []
        for i in CHANNEL_CONFIG:
            if CHANNEL_CONFIG.get(i) != ' ':
                self.lines.append(line(plt, CHANNEL_NAME.get(i)))
            else:
                self.lines.append(line(plt, 'Channel {:d} OFF'.format(i)))
        # Plot the legend
        plt.legend(loc = 'best', fancybox = True, framealpha = 0.5)
        plt.draw()
项目:spot-price-reporter    作者:EntilZha    | 项目源码 | 文件源码
def create_plot(json_data, output):
    all_data = pd.DataFrame(json_data)
    df = all_data[all_data['ProductDescription'] == 'Linux/UNIX']
    df = df.drop_duplicates(subset=['DateTime', 'AvailabilityZone', 'InstanceType'])
    x_min = df['DateTime'].min()
    x_max = df['DateTime'].max()
    border_pad = (x_max - x_min) * 5 / 100

    g = sns.FacetGrid(
        df,
        col='InstanceType',
        hue='AvailabilityZone',
        xlim=(x_min - border_pad, x_max + border_pad),
        legend_out=True,
        size=10,
        palette="Set1"
    )
    g.map(plt.scatter, 'DateTime', 'SpotPrice', s=4).add_legend()
    plt.subplots_adjust(top=.9)
    g.fig.suptitle('AWS Spot Prices between {start} and {end}'.format(start=x_min, end=x_max))
    g.savefig(output, format='png')
项目:deep-learning-theano    作者:aidiary    | 项目源码 | 文件源码
def visualize_weights(W, outfile):
    # ?????????
    W = (W - np.min(W)) / (np.max(W) - np.min(W))
    W *= 255.0
    W = W.astype(np.int)

    pos = 1
    for i in range(100):
        plt.subplot(10, 10, pos)
        plt.subplots_adjust(wspace=0, hspace=0)
        plt.imshow(W[i].reshape(28, 28))
        plt.gray()
        plt.axis('off')
        pos += 1
    plt.show()
    plt.savefig(outfile)
项目:aikaterna-cogs    作者:aikaterna    | 项目源码 | 文件源码
def create_chart(self, top, others):
        plt.clf()
        sizes = [x[1] for x in top]
        labels = ["{} {:g}%".format(x[0], x[1]) for x in top]
        if len(top) >= 10:
            sizes = sizes + [others]
            labels = labels + ["Others {:g}%".format(others)]

        title = plt.title('User activity in the last 5000 messages')
        title.set_va("top")
        title.set_ha("left")
        plt.gca().axis("equal")
        colors = ['r', 'darkorange', 'gold', 'y', 'olivedrab', 'green', 'darkcyan', 'mediumblue', 'darkblue', 'blueviolet', 'indigo']
        pie = plt.pie(sizes, colors=colors, startangle=0)
        plt.legend(pie[0], labels, bbox_to_anchor=(0.7, 0.5), loc="center", fontsize=10,
                   bbox_transform=plt.gcf().transFigure)
        plt.subplots_adjust(left=0.0, bottom=0.1, right=0.45)
        image_object = BytesIO()
        plt.savefig(image_object, format='PNG')
        image_object.seek(0)
        return image_object
项目:FFS-ANN    作者:GVLABHernandez    | 项目源码 | 文件源码
def scatter_regresion_Plot(X, Y, testName):

    plt.scatter(X, Y, c = 'b', label = '_nolegend_', s = 1)

    X = X.reshape(-1, 1)
    Y = Y.reshape(-1, 1)
    R2 = r2_score(X, Y)

    regr = linear_model.LinearRegression()
    regr.fit(X, Y)
    plt.plot(X, regr.predict(X), "--", label = 'Regression', color = 'r')
    plt.title(testName + ' ($R^2$: ' + "{0:.3f}".format(R2) + ")", fontsize = 14)
    plt.xlabel('True Values', fontsize = 12, weight = 'bold')
    plt.ylabel('Predicted Values', fontsize = 12, weight = 'bold')
    plt.legend(loc = 'upper left', bbox_to_anchor = (0, 1.0), fancybox = True, shadow = True, fontsize = 10)
    plt.subplots_adjust(left = 0.2, right = 0.9, bottom = 0.05, top = 0.97, wspace = 0.15, hspace = 0.3)
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def visualize(generated_images, epoch):
    col, row = 8, 8
    fig, axes = plt.subplots(row, col, sharex=True, sharey=True)
    #images = np.squeeze(generated_images, axis=(-1,))*127.5
    images = generated_images*127.5 + 127.5
    #images = generated_images*255.0
    for i, array in enumerate(images):

        image = Image.fromarray(array.astype(np.uint8))

        ax = axes[int(i/col), int(i%col)]
        ax.axis("off")
        ax.imshow(image)

    plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0.2)
    #plt.pause(.01)    
    #plt.show()
    plt.savefig("image_{}.png".format(epoch))

# ====================
# Data Loader 
# ====================
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def visualize(generated_images, epoch):
    col, row = 8, 8
    fig, axes = plt.subplots(row, col, sharex=True, sharey=True)
    #images = np.squeeze(generated_images, axis=(-1,))*127.5
    images = generated_images*127.5 + 127.5
    #images = generated_images*255.0
    for i, array in enumerate(images):

        image = Image.fromarray(array.astype(np.uint8))

        ax = axes[int(i/col), int(i%col)]
        ax.axis("off")
        ax.imshow(image)

    plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0.2)
    #plt.pause(.01)    
    #plt.show()
    plt.savefig("image_{}.png".format(epoch))

# ====================
# Data Loader 
# ====================
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def visualize(generated_images, epoch):
    col, row = 8, 8
    fig, axes = plt.subplots(row, col, sharex=True, sharey=True)
    #images = np.squeeze(generated_images, axis=(-1,))*127.5
    images = generated_images*127.5 + 127.5
    #images = generated_images*255.0
    for i, array in enumerate(images):

        image = Image.fromarray(array.astype(np.uint8))

        ax = axes[int(i/col), int(i%col)]
        ax.axis("off")
        ax.imshow(image)

    plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0.2)
    #plt.pause(.01)    
    #plt.show()
    plt.savefig("image_{}.png".format(epoch))

# ====================
# Data Loader 
# ====================
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def visualize(generated_images, epoch):
    col, row = 8, 8
    fig, axes = plt.subplots(row, col, sharex=True, sharey=True)
    #images = np.squeeze(generated_images, axis=(-1,))*127.5
    images = generated_images*127.5 + 127.5
    #images = generated_images*255.0
    for i, array in enumerate(images):

        image = Image.fromarray(array.astype(np.uint8))

        ax = axes[int(i/col), int(i%col)]
        ax.axis("off")
        ax.imshow(image)

    plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0.2)
    #plt.pause(.01)    
    #plt.show()
    plt.savefig("image_{}.png".format(epoch))

# ====================
# Data Loader 
# ====================
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def visualize(generated_images, epoch):
    col, row = 8, 8
    fig, axes = plt.subplots(row, col, sharex=True, sharey=True)
    images = np.squeeze(generated_images, axis=(-1,))*255.5

    for i, array in enumerate(images):
        image = Image.fromarray(array)

        ax = axes[int(i/col), int(i%col)]
        ax.axis("off")
        ax.imshow(image)

    plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0.2)
    #plt.pause(.01)    
    #plt.show()
    plt.savefig("image_{}.png".format(epoch))

# Generator
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def plot_MNIST_results():
    matplotlib.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(6,4), dpi=100)    
    ll_1hl = [-92.17,-90.69,-89.86,-89.16,-88.61,-88.25,-87.95,-87.71]
    ll_2hl = [-89.17, -87.96, -87.10, -86.41, -85.96, -85.60, -85.28, -85.10] 
    x = np.arange(len(ll_1hl))    
    plt.axhline(y=-84.55, color="black", linestyle="--", label="2hl-DBN")
    plt.axhline(y=-86.34, color="black", linestyle="-.", label="RBM")
    plt.axhline(y=-88.33, color="black", linestyle=":", label="NADE (fixed order)")
    plt.plot(ll_1hl, "r^-", label="1hl-NADE")
    plt.plot(ll_2hl, "go-", label="2hl-NADE")
    plt.xticks(x, 2**x)    
    plt.xlabel("Models averaged")
    plt.ylabel("Test loglikelihood (nats)")
    plt.legend(loc=4, prop = {"size":10})
    plt.subplots_adjust(left=0.12, right=0.95, top=0.97, bottom=0.10)
    plt.savefig(os.path.join(DESTINATION_PATH, "likelihoodvsorderings.pdf"))
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def plot_examples(nade, dataset, shape, name, rows=5, cols=10):    
    #Show some samples
    images = list()
    for row in xrange(rows):                     
        for i in xrange(cols):
            nade.setup_n_orderings(n=1)
            sample = dataset.sample_data(1)[0].T
            dens = nade.logdensity(sample)
            images.append((sample, dens))
    images.sort(key=lambda x: -x[1])

    plt.figure(figsize=(0.5*cols,0.5*rows), dpi=100)
    plt.gray()            
    for row in xrange(rows):                     
        for col in xrange(cols):
            i = row*cols+col
            sample, dens = images[i]
            plt.subplot(rows, cols, i+1)
            plot_sample(np.resize(sample, np.prod(shape)).reshape(shape), shape, origin="upper")
    plt.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0.04, wspace=0.04)
    type_1_font()
    plt.savefig(os.path.join(DESTINATION_PATH, name))
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def plot_samples(nade, shape, name, rows=5, cols=10):    
    #Show some samples
    images = list()
    for row in xrange(rows):                     
        for i in xrange(cols):
            nade.setup_n_orderings(n=1)
            sample = nade.sample(1)[:,0]
            dens = nade.logdensity(sample[:, np.newaxis])
            images.append((sample, dens))
    images.sort(key=lambda x: -x[1])

    plt.figure(figsize=(0.5*cols,0.5*rows), dpi=100)
    plt.gray()            
    for row in xrange(rows):                     
        for col in xrange(cols):
            i = row*cols+col
            sample, dens = images[i]
            plt.subplot(rows, cols, i+1)
            plot_sample(np.resize(sample, np.prod(shape)).reshape(shape), shape, origin="upper")
    plt.subplots_adjust(left=0.01, right=0.99, top=0.99, bottom=0.01, hspace=0.04, wspace=0.04)
    type_1_font()
    plt.savefig(os.path.join(DESTINATION_PATH, name))                
    #plt.show()
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def inpaint_digits_(dataset, shape, model, n_examples = 5, delete_shape = (10,10), n_samples = 5, name = "inpaint_digits"):    
    #Load a few digits from the test dataset (as rows)
    data = dataset.sample_data(1000)[0]

    #data = data[[1,12,17,81,88,102],:]
    data = data[range(20,40),:]
    n_examples = data.shape[0]

    #Plot it all
    matplotlib.rcParams.update({'font.size': 8})
    plt.figure(figsize=(5,5), dpi=100)
    plt.gray()
    cols = 2 + n_samples
    for row in xrange(n_examples):
        # Original
        plt.subplot(n_examples, cols, row*cols+1)
        plot_sample(data[row,:], shape, origin="upper")        
    plt.subplots_adjust(left=0.01, right=0.99, top=0.95, bottom=0.01, hspace=0.40, wspace=0.04)
    plt.savefig(os.path.join(DESTINATION_PATH, "kk.pdf"))
项目:twitter_LDA_topic_modeling    作者:kenneth-orton    | 项目源码 | 文件源码
def draw_dual_line_graph(title, x_label, y_label, y_axis_1, y_axis_2, line_1_label, line_2_label, output_path):
    x_axis = np.arange(0, len(y_axis_1))
    fig = plt.figure()
    fig.suptitle(title, fontsize=14, fontweight='bold')
    ax = fig.add_subplot(111)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)
    ax.plot(x_axis, y_axis_1, 'b')
    ax.plot(x_axis, y_axis_2, 'g', alpha=0.7)
    ax.legend([line_1_label, line_2_label], loc='center', bbox_to_anchor=(0.5, -0.18), ncol=2)
    ax.axis([0, np.amax(x_axis), 0, np.log(2) + .001])
    plt.margins(0.2)
    plt.tick_params(labelsize=10)
    fig.subplots_adjust(bottom=0.2)
    plt.savefig(output_path + '.eps', format='eps')
    plt.savefig(output_path)
    plt.close(fig)
项目:twitter_LDA_topic_modeling    作者:kenneth-orton    | 项目源码 | 文件源码
def draw_dist_graph(clique_name, **kwargs):
    if not os.path.exists(kwargs['output_dir'] + clique_name + '.png'):
        try:
            doc_vector = kwargs['doc_vecs'][clique_name]
        except KeyError:
            return

        print('Drawing probability distribution graph for ' + clique_name)
        x_axis = [topic_id + 1 for topic_id, dist in enumerate(doc_vector)]
        y_axis = [dist for topic_id, dist in enumerate(doc_vector)]
        plt.bar(x_axis, y_axis, width=1, align='center', color='r')
        plt.xlabel('Topics')
        plt.ylabel('Probability')
        plt.title('Topic Distribution for clique')
        plt.xticks(np.arange(2, len(x_axis), 2), rotation='vertical', fontsize=7)
        plt.subplots_adjust(bottom=0.2)
        plt.ylim([0, np.max(y_axis) + .01])
        plt.xlim([0, len(x_axis) + 1])
        plt.savefig(kwargs['output_dir'] + clique_name)
        plt.close()
项目:twitter_LDA_topic_modeling    作者:kenneth-orton    | 项目源码 | 文件源码
def draw_user_to_clique_graphs(distance_dir, dist_file):
    if not os.path.exists(distance_dir + dist_file + '.png'):
        print('Drawing community members distance from clique for: ' + dist_file)
        df = pd.read_csv(distance_dir + dist_file, sep='\t', header=None, names=['user', 'clique', 'distance'])
        x_axis = [str(row['user']) for idx, row in df.iterrows()]
        y_axis = [float(row['distance']) for idx, row in df.iterrows()]
        plt.figure(figsize=(20, 10))
        plt.bar(np.arange(1, len(x_axis) + 1, 1), y_axis, width=1, align='center', color='r')
        plt.xlabel('Community Users')
        plt.ylabel('Divergence from Clique')
        plt.title('Distances from ' + dist_file + ' to the clique where grown from', fontsize=14, fontweight='bold')
        plt.xticks(np.arange(0, len(x_axis) + 1, 2), np.arange(0, len(x_axis) + 1, 2), rotation='vertical', fontsize=8)
        plt.subplots_adjust(bottom=0.2)
        plt.ylim([0, np.log(2) + .01])
        plt.xlim([0, len(x_axis) + 1])
        plt.savefig(distance_dir + dist_file)
        plt.close()
项目:PhD    作者:wutaoadeny    | 项目源码 | 文件源码
def matploit(data):
    plt.figure(figsize=(8,5), dpi=80)
    plt.subplot(1,1,1)
    plt.grid()
    plt.subplots_adjust(top=0.9)

    X = [i for i in range(len(data))]

    plt.scatter(X,data,color="r")

    plt.xlim(0.0,len(data))
    #plt.xticks(np.linspace(1.0,4.0,7,endpoint=True))
    plt.ylim(0,max(data)+1)
    #plt.yticks(np.linspace(0.0,18,7,endpoint=True))

    plt.xlabel("Link number")
    plt.ylabel("Similarity")
    plt.show()
项目:chainer-wasserstein-gan    作者:hvy    | 项目源码 | 文件源码
def save_ims(filename, ims, dpi=100):
    n, c, w, h = ims.shape
    x_plots = math.ceil(math.sqrt(n))
    y_plots = x_plots if n % x_plots == 0 else x_plots - 1
    plt.figure(figsize=(w*x_plots/dpi, h*y_plots/dpi), dpi=dpi)

    for i, im in enumerate(ims):
        plt.subplot(y_plots, x_plots, i+1)

        if c == 1:
            plt.imshow(im[0])
        else:
            plt.imshow(im.transpose((1, 2, 0)))

        plt.axis('off')
        plt.gca().set_xticks([])
        plt.gca().set_yticks([])
        plt.gray()
        plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0,
                            hspace=0)

    plt.savefig(filename, dpi=dpi*2, facecolor='black')
    plt.clf()
    plt.close()
项目:neural-networks-and-deep-learning    作者:skylook    | 项目源码 | 文件源码
def plot_bad_images(images):
    """This takes a list of images misclassified by a pretty good
    neural network --- one achieving over 93 percent accuracy --- and
    turns them into a figure."""
    bad_image_indices = [8, 18, 33, 92, 119, 124, 149, 151, 193, 233, 241, 247, 259, 300, 313, 321, 324, 341, 349, 352, 359, 362, 381, 412, 435, 445, 449, 478, 479, 495, 502, 511, 528, 531, 547, 571, 578, 582, 597, 610, 619, 628, 629, 659, 667, 691, 707, 717, 726, 740, 791, 810, 844, 846, 898, 938, 939, 947, 956, 959, 965, 982, 1014, 1033, 1039, 1044, 1050, 1055, 1107, 1112, 1124, 1147, 1181, 1191, 1192, 1198, 1202, 1204, 1206, 1224, 1226, 1232, 1242, 1243, 1247, 1256, 1260, 1263, 1283, 1289, 1299, 1310, 1319, 1326, 1328, 1357, 1378, 1393, 1413, 1422, 1435, 1467, 1469, 1494, 1500, 1522, 1523, 1525, 1527, 1530, 1549, 1553, 1609, 1611, 1634, 1641, 1676, 1678, 1681, 1709, 1717, 1722, 1730, 1732, 1737, 1741, 1754, 1759, 1772, 1773, 1790, 1808, 1813, 1823, 1843, 1850, 1857, 1868, 1878, 1880, 1883, 1901, 1913, 1930, 1938, 1940, 1952, 1969, 1970, 1984, 2001, 2009, 2016, 2018, 2035, 2040, 2043, 2044, 2053, 2063, 2098, 2105, 2109, 2118, 2129, 2130, 2135, 2148, 2161, 2168, 2174, 2182, 2185, 2186, 2189, 2224, 2229, 2237, 2266, 2272, 2293, 2299, 2319, 2325, 2326, 2334, 2369, 2371, 2380, 2381, 2387, 2393, 2395, 2406, 2408, 2414, 2422, 2433, 2450, 2488, 2514, 2526, 2548, 2574, 2589, 2598, 2607, 2610, 2631, 2648, 2654, 2695, 2713, 2720, 2721, 2730, 2770, 2771, 2780, 2863, 2866, 2896, 2907, 2925, 2927, 2939, 2995, 3005, 3023, 3030, 3060, 3073, 3102, 3108, 3110, 3114, 3115, 3117, 3130, 3132, 3157, 3160, 3167, 3183, 3189, 3206, 3240, 3254, 3260, 3280, 3329, 3330, 3333, 3383, 3384, 3475, 3490, 3503, 3520, 3525, 3559, 3567, 3573, 3597, 3598, 3604, 3629, 3664, 3702, 3716, 3718, 3725, 3726, 3727, 3751, 3752, 3757, 3763, 3766, 3767, 3769, 3776, 3780, 3798, 3806, 3808, 3811, 3817, 3821, 3838, 3848, 3853, 3855, 3869, 3876, 3902, 3906, 3926, 3941, 3943, 3951, 3954, 3962, 3976, 3985, 3995, 4000, 4002, 4007, 4017, 4018, 4065, 4075, 4078, 4093, 4102, 4139, 4140, 4152, 4154, 4163, 4165, 4176, 4199, 4201, 4205, 4207, 4212, 4224, 4238, 4248, 4256, 4284, 4289, 4297, 4300, 4306, 4344, 4355, 4356, 4359, 4360, 4369, 4405, 4425, 4433, 4435, 4449, 4487, 4497, 4498, 4500, 4521, 4536, 4548, 4563, 4571, 4575, 4601, 4615, 4620, 4633, 4639, 4662, 4690, 4722, 4731, 4735, 4737, 4739, 4740, 4761, 4798, 4807, 4814, 4823, 4833, 4837, 4874, 4876, 4879, 4880, 4886, 4890, 4910, 4950, 4951, 4952, 4956, 4963, 4966, 4968, 4978, 4990, 5001, 5020, 5054, 5067, 5068, 5078, 5135, 5140, 5143, 5176, 5183, 5201, 5210, 5331, 5409, 5457, 5495, 5600, 5601, 5617, 5623, 5634, 5642, 5677, 5678, 5718, 5734, 5735, 5749, 5752, 5771, 5787, 5835, 5842, 5845, 5858, 5887, 5888, 5891, 5906, 5913, 5936, 5937, 5945, 5955, 5957, 5972, 5973, 5985, 5987, 5997, 6035, 6042, 6043, 6045, 6053, 6059, 6065, 6071, 6081, 6091, 6112, 6124, 6157, 6166, 6168, 6172, 6173, 6347, 6370, 6386, 6390, 6391, 6392, 6421, 6426, 6428, 6505, 6542, 6555, 6556, 6560, 6564, 6568, 6571, 6572, 6597, 6598, 6603, 6608, 6625, 6651, 6694, 6706, 6721, 6725, 6740, 6746, 6768, 6783, 6785, 6796, 6817, 6827, 6847, 6870, 6872, 6926, 6945, 7002, 7035, 7043, 7089, 7121, 7130, 7198, 7216, 7233, 7248, 7265, 7426, 7432, 7434, 7494, 7498, 7691, 7777, 7779, 7797, 7800, 7809, 7812, 7821, 7849, 7876, 7886, 7897, 7902, 7905, 7917, 7921, 7945, 7999, 8020, 8059, 8081, 8094, 8095, 8115, 8246, 8256, 8262, 8272, 8273, 8278, 8279, 8293, 8322, 8339, 8353, 8408, 8453, 8456, 8502, 8520, 8522, 8607, 9009, 9010, 9013, 9015, 9019, 9022, 9024, 9026, 9036, 9045, 9046, 9128, 9214, 9280, 9316, 9342, 9382, 9433, 9446, 9506, 9540, 9544, 9587, 9614, 9634, 9642, 9645, 9700, 9716, 9719, 9729, 9732, 9738, 9740, 9741, 9742, 9744, 9745, 9749, 9752, 9768, 9770, 9777, 9779, 9792, 9808, 9831, 9839, 9856, 9858, 9867, 9879, 9883, 9888, 9890, 9893, 9905, 9944, 9970, 9982]
    n = len(bad_image_indices)
    bad_images = [images[j] for j in bad_image_indices]
    fig = plt.figure(figsize=(10, 15))
    for j in xrange(1, n+1):
        ax = fig.add_subplot(25, 125, j)
        ax.matshow(bad_images[j-1], cmap = matplotlib.cm.binary)
        ax.set_title(str(bad_image_indices[j-1]))
        plt.xticks(np.array([]))
        plt.yticks(np.array([]))
    plt.subplots_adjust(hspace = 1.2)
    plt.show()
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def setMargins(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None):
        """
        Tune the subplot layout via the meanings (and suggested defaults) are::

            left  = 0.125  # the left side of the subplots of the figure
            right = 0.9    # the right side of the subplots of the figure
            bottom = 0.1   # the bottom of the subplots of the figure
            top = 0.9      # the top of the subplots of the figure
            wspace = 0.2   # the amount of width reserved for blank space between subplots
            hspace = 0.2   # the amount of height reserved for white space between subplots

        The actual defaults are controlled by the rc file

        """
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        plt.draw_if_interactive()
项目:gtfspy    作者:CxAalto    | 项目源码 | 文件源码
def plot_route_network_thumbnail(g, map_style=None):
    width = 512  # pixels
    height = 300  # pixels
    scale = 24
    dpi = mpl.rcParams["figure.dpi"]

    width_m = width * scale
    height_m = height * scale
    median_lat, median_lon = get_median_lat_lon_of_stops(g)
    dlat = util.wgs84_height(height_m)
    dlon = util.wgs84_width(width_m, median_lat)
    spatial_bounds = {
        "lon_min": median_lon - dlon,
        "lon_max": median_lon + dlon,
        "lat_min": median_lat - dlat,
        "lat_max": median_lat + dlat
    }
    fig = plt.figure(figsize=(width/dpi, height/dpi))
    ax = fig.add_subplot(111)
    plt.subplots_adjust(bottom=0.0, left=0.0, right=1.0, top=1.0)
    return plot_route_network_from_gtfs(g, ax, spatial_bounds, map_alpha=1.0, scalebar=False, legend=False, map_style=map_style)
项目:curation-assistant    作者:oncokb    | 项目源码 | 文件源码
def plot_coefficients(classifier, feature_names=hallmark_queries, top_features=11):
    coef = classifier.coef_.ravel()
    top_positive_coefficients = np.argsort(coef)[-top_features:]
    top_negative_coefficients = np.argsort(coef)[:top_features]
    top_coefficients = np.hstack([top_negative_coefficients, top_positive_coefficients])
    # create plot
    plt.figure(figsize=(15, 5))
    colors = ['red' if c < 0 else 'blue' for c in coef[top_coefficients]]
    plt.bar(np.arange(2 * top_features), coef[top_coefficients], color=colors, align='center')
    feature_names = np.array(feature_names)
    plt.xticks(np.arange(0, 2 * top_features), feature_names[top_coefficients], rotation=60, ha='right', fontsize=10, fontweight='bold')
    plt.ylabel('Relative Coefficient Importance Score', fontsize=10)
    plt.xlabel('Feature (Keyword) Name', fontsize=15)
    plt.title('Relative Feature Importance of HoC Dict #1 During SVM Relevance Classification', fontsize=15)
    plt.subplots_adjust(bottom=0.3)
    plt.show()
项目:finance-hacking    作者:wellsjo    | 项目源码 | 文件源码
def graphRawFX():
    date, bid, ask = np.loadtxt('data/GBPUSD1d.txt',
            unpack=True,
            delimiter=',',
            converters={0: mdates.strpdate2num('%Y%m%d%H%M%S')}
            )
    fig = plt.figure(figsize=(10,7))
    ax1 = plt.subplot2grid((40, 40), (0, 0), rowspan=40, colspan=40)
    ax1.plot(date, bid)
    ax1.plot(date, ask)
    plt.gca().get_yaxis().get_major_formatter().set_useOffset(False)
    ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S'))

    for label in ax1.xaxis.get_ticklabels():
        label.set_rotation(45)

    ax1_2 = ax1.twinx()
    ax1_2.fill_between(date, 0, (ask-bid), facecolor='g', alpha=.3)

    plt.subplots_adjust(bottom=.23)

    plt.grid(True)
    plt.show()
项目:artemis    作者:QUVA-Lab    | 项目源码 | 文件源码
def hstack_plots(spacing=0, sharex=False, sharey = True, grid=False, show_x=True, show_y='once', clip_x=False, clip_y=False, remove_ticks = True, xlabel=None, ylabel=None, xlim=None, ylim=None, **adjust_kwargs):

    with CaptureNewSubplots() as cap:
        with _define_plot_settings(layout='h', show_y = False if show_y=='once' else show_y, show_x = show_x, grid=grid, sharex=sharex, sharey=sharey, xlabel=xlabel, xlim=xlim, ylim=ylim):
            plt.subplots_adjust(wspace=spacing, **adjust_kwargs)
            yield
    new_subplots = cap.get_new_subplots().values()

    if clip_x:
        set_same_xlims(new_subplots)
    if clip_y:
        set_same_ylims(new_subplots)

    assert len(new_subplots)>0, "No new plots have been created in this block... Why did you create the block at all?"
    if show_y in (True, 'once'):
        new_subplots[0].tick_params(axis='y', labelleft='on')
    new_subplots[0].set_ylabel(ylabel)

    if remove_ticks:
        for ax in new_subplots[:-1]:
            ax.set_xticks(ax.get_xticks()[:-1])
项目:artemis    作者:QUVA-Lab    | 项目源码 | 文件源码
def vstack_plots(spacing=0, sharex=True, sharey = False, show_x = 'once', show_y=True, clip_x=False, clip_y=False, grid=False, remove_ticks = True, xlabel=None, ylabel=None, xlim=None, ylim=None, **adjust_kwargs):

    with CaptureNewSubplots() as cap:
        with _define_plot_settings(layout='v', show_x = False if show_x=='once' else show_x, show_y=show_y, grid=grid, sharex=sharex, sharey=sharey, ylabel=ylabel, xlim=xlim, ylim=ylim):
            plt.subplots_adjust(hspace=spacing, **adjust_kwargs)
            yield
    new_subplots = cap.get_new_subplots().values()

    if clip_x:
        set_same_xlims(new_subplots)
    if clip_y:
        set_same_ylims(new_subplots)

    assert len(new_subplots)>0, "No new plots have been created in this block... Why did you create the block at all?"
    if show_x in (True, 'once'):
        new_subplots[-1].tick_params(axis='x', labelbottom='on')
    new_subplots[-1].set_xlabel(xlabel)

    if remove_ticks:
        new_subplots[-1].get_xaxis().set_visible(True)
        for ax in new_subplots[:-1]:
            ax.set_yticks(ax.get_yticks()[:-1])
项目:spyking-circus-ort    作者:spyking-circus    | 项目源码 | 文件源码
def plot_waveforms(self):
        nb_cells = len(self.cells)
        nb_cols = int(np.sqrt(nb_cells - 1)) + 1
        nb_rows = (nb_cells - 1) / nb_cols + 1
        plt.figure()
        for cell in self.cells.itervalues():
            plt.subplot(nb_rows, nb_cols, cell.id + 1)
            t_min = 0.0
            t_max = float(81) / self.sampling_rate
            t = np.linspace(t_min, t_max, num=81)
            w = cell.sample(0.0, t)
            t = 1.0e3 * t
            plt.plot(t, w, color=cell.color)
            plt.xlim(t[0], t[-1])
        plt.suptitle(r"Waveforms")
        plt.tight_layout()
        plt.subplots_adjust(top=0.92)
        return
项目:chainer-gan-improvements    作者:hvy    | 项目源码 | 文件源码
def save_ims(filename, ims, dpi=100):
    n, c, w, h = ims.shape
    x_plots = math.ceil(math.sqrt(n))
    y_plots = x_plots if n % x_plots == 0 else x_plots - 1
    plt.figure(figsize=(w*x_plots/dpi, h*y_plots/dpi), dpi=dpi)

    for i, im in enumerate(ims):
        plt.subplot(y_plots, x_plots, i+1)

        if c == 1:
            plt.imshow(im[0])
        else:
            raise NotImplementedError

        plt.axis('off')
        plt.gca().set_xticks([])
        plt.gca().set_yticks([])
        plt.gray()
        plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0,
                            hspace=0)

    plt.savefig(filename, dpi=dpi*2, facecolor='black')
    plt.clf()
    plt.close()
项目:disciplina-arp    作者:otaviocx    | 项目源码 | 文件源码
def plot_single_var_normal(self):
        """
        Método responsável por plotar a função normal (gaussiana) de cada classe para cada variável.
        """

        x_values = np.arange(-1, 10, 0.1)

        inputs_by_class = self.get_inputs_by_class()
        num = 1
        for var_name in inputs_by_class:
            plot.subplot(2, 2, num)
            plot.subplots_adjust(hspace=0.5)
            legend = []
            variances, means = self.__get_variances_and_means(var_name)
            for class_name in inputs_by_class[var_name]:
                y_values = self.gaussian_vectorized(variances[class_name], means[class_name], x_values)
                legend.append(class_name)
                plot.plot(x_values, y_values)
            plot.legend(legend)
            plot.xlabel(var_name)
            num += 1

        plot.show()
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def three_spectrums():    
    """Makes a plot showing three spectrums for a sinusoid.
    """
    thinkplot.preplot(rows=1, cols=3)

    pyplot.subplots_adjust(wspace=0.3, hspace=0.4, 
                           right=0.95, left=0.1,
                           top=0.95, bottom=0.05)

    xticks = range(0, 900, 200)

    thinkplot.subplot(1)
    thinkplot.config(xticks=xticks)
    discontinuity(num_periods=30, hamming=False)

    thinkplot.subplot(2)
    thinkplot.config(xticks=xticks)
    discontinuity(num_periods=30.25, hamming=False)

    thinkplot.subplot(3)
    thinkplot.config(xticks=xticks)
    discontinuity(num_periods=30.25, hamming=True)

    thinkplot.save(root='windowing1')
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def plot_pdf(score_export, fname, swap=None, cutoff=1):
    cut_data = np.array([p for g, p in score_export.roc() if p < cutoff])

    plots = ['density', 'kde']
    n = len(plots)

    for i, f in enumerate(plots):
        plt.subplot(n, 1, i + 1)
        if f == 'density':
            plot_seaborn_density(cut_data)
        elif f == 'split':
            plot_seaborn_density_split(swap, cutoff)
        elif f == 'kde':
            plot_kde(cut_data)

    plt.suptitle('Probability Density Function')
    plt.tight_layout()
    plt.subplots_adjust(top=0.93)

    if fname:
        plt.savefig(fname, dpi=300)
    else:
        plt.show()
项目:Douban_Movies_Analysic    作者:Thinkgamer    | 项目源码 | 文件源码
def pylot_show():
    count=[]
    leixing = []
    leixing_number={}
    with open("000000_0.txt", "r", encoding="utf-8") as fp:
        for line in fp.readlines():
            leixing_number[line.strip().split("\t")[0]] = int(line.strip().split("\t")[1])
            leixing.append(line.strip().split("\t")[0])
            count.append(int(line.strip().split("\t")[1]))

    y_pos = np.arange(len(leixing))  # ??y????
    plt.barh(y_pos, count, align='center', alpha=0.4)  # alpha?????????(0~1)??
    plt.yticks(y_pos, leixing)  # ?y?????????

    for count, y_pos in zip(count, y_pos):
        # ??????????????????????????????
        plt.text(count, y_pos, count, horizontalalignment='center', verticalalignment='center', weight='bold')
    plt.ylim(+40.0, -1.0)  # ???????????y???
    plt.title(u'??????')  # ?????
    plt.ylabel(u'????')  # ??y????
    plt.subplots_adjust(bottom=0.15)
    plt.xlabel(u'????')  # ??x????
    plt.savefig('Y_leixing.png')  # ????
    plt.show()
项目:artorithmia    作者:alichtner    | 项目源码 | 文件源码
def plot_hsv(image, bins=12):
    """
    Plot HSV histograms of image
    INPUT: image with HSV channels
    OUPUT: plot of HSV histograms and color spectrum
    """
    sns.set_style("whitegrid", {'axes.grid': False})
    fig = plt.figure(figsize=(12, 5))
    plt.subplots_adjust(top=2, bottom=1, wspace=.5, hspace=0)
    plt.subplot(231)
    plt.hist(image[:, :, 0].flatten(), bins=bins, color='gray')
    plt.title('Hue')
    plt.subplot(232)
    plt.hist(image[:, :, 1].flatten(), bins=bins, color='gray')
    plt.title('Saturation')
    plt.subplot(233)
    plt.hist(image[:, :, 2].flatten(), bins=bins, color='gray')
    plt.title('Value')
    plt.subplot(234)
    plt.imshow(all_hues, extent=(0, 1, 0, 0.2))
    plt.show()
项目:deep-learning    作者:ljanyst    | 项目源码 | 文件源码
def gen_sample_summary(samples):
    fig, axes = plt.subplots(figsize=(5,3), nrows=3, ncols=5,
                             sharey=True, sharex=True)
    plt.subplots_adjust(wspace=0, hspace=0)

    for ax, img in zip(axes.flatten(), samples):
        ax.axis('off')
        img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
        ax.set_adjustable('box-forced')
        im = ax.imshow(img, aspect='equal')

    arr = figure_to_numpy(fig)
    del(fig)
    return arr
项目:XTREE    作者:ai-se    | 项目源码 | 文件源码
def plot(x, y, title, xlabel, ylabel, fname):
  import matplotlib.mlab as mlab
  import matplotlib.pyplot as plt
  plt.plot(x, y)
  plt.xlabel(xlabel)
  plt.ylabel(ylabel)
  plt.title(title)
  plt.subplots_adjust(left=0.15)
  plt.savefig(fname + '.jpg')
  plt.close()
# cross()
项目:tieba-zhuaqu    作者:ankanch    | 项目源码 | 文件源码
def linePlotGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='??'):
    with plt.style.context('fivethirtyeight'):
        plt.title(graphicTitle,fontproperties=font_set,fontsize=20)
        plt.xlabel(xLabel,fontproperties=font_set)
        plt.ylabel(yLabel,fontproperties=font_set)
        plt.xticks(numpy.arange(len(xValueList)),xValueList,rotation=45,fontproperties=font_set)    
        plt.plot(yValueList)
        yValueList.sort()
    #??y???????????x???
    print("len(yValueList)=",len(yValueList))
    plt.ylim(-1.0, yValueList[len(yValueList)-1]+1)
    plt.subplots_adjust(bottom=0.15,left=0.05,right=0.98,top=0.92)
    #????????????
    ax = plt.gca()
    ax.get_xaxis().tick_bottom() #??????x??ticks
    ax.get_yaxis().tick_left()
    ax.grid(b=False,axis='x')
    axis = ax.xaxis
    for line in axis.get_ticklines():
        line.set_color("gray")
        line.set_markersize(6)
        line.set_markeredgewidth(1)
    #?????
    plt.show()
    #plt.savefig('percent-bachelors-degrees-women-usa.png', bbox_inches='tight')
#???:???
项目:tieba-zhuaqu    作者:ankanch    | 项目源码 | 文件源码
def linePlotGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='??'):
    with plt.style.context('fivethirtyeight'):
        plt.title(graphicTitle,fontproperties=font_set,fontsize=20)
        plt.xlabel(xLabel,fontproperties=font_set)
        plt.ylabel(yLabel,fontproperties=font_set)
        plt.xticks(numpy.arange(len(xValueList)),xValueList,rotation=45,fontproperties=font_set)    
        plt.plot(yValueList)
        yValueList.sort()
    #??y???????????x???
    print("len(yValueList)=",len(yValueList))
    plt.ylim(-1.0, yValueList[len(yValueList)-1]+1)
    plt.subplots_adjust(bottom=0.15,left=0.05,right=0.98,top=0.92)
    #????????????
    ax = plt.gca()
    ax.get_xaxis().tick_bottom() #??????x??ticks
    ax.get_yaxis().tick_left()
    ax.grid(b=False,axis='x')
    axis = ax.xaxis
    for line in axis.get_ticklines():
        line.set_color("gray")
        line.set_markersize(6)
        line.set_markeredgewidth(1)
    #?????
    plt.show()
    #plt.savefig('percent-bachelors-degrees-women-usa.png', bbox_inches='tight')
#???:???
项目:tieba-zhuaqu    作者:ankanch    | 项目源码 | 文件源码
def linePlotGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='??'):
    with plt.style.context('fivethirtyeight'):
        plt.title(graphicTitle,fontproperties=font_set,fontsize=20)
        plt.xlabel(xLabel,fontproperties=font_set)
        plt.ylabel(yLabel,fontproperties=font_set)
        plt.xticks(numpy.arange(len(xValueList)),xValueList,rotation=45,fontproperties=font_set)    
        plt.plot(yValueList)
        yValueList.sort()
    #??y???????????x???
    print("len(yValueList)=",len(yValueList))
    plt.ylim(-1.0, yValueList[len(yValueList)-1]+1)
    plt.subplots_adjust(bottom=0.15,left=0.05,right=0.98,top=0.92)
    #????????????
    ax = plt.gca()
    ax.get_xaxis().tick_bottom() #??????x??ticks
    ax.get_yaxis().tick_left()
    ax.grid(b=False,axis='x')
    axis = ax.xaxis
    for line in axis.get_ticklines():
        line.set_color("gray")
        line.set_markersize(6)
        line.set_markeredgewidth(1)
    #?????
    plt.show()
    #plt.savefig('percent-bachelors-degrees-women-usa.png', bbox_inches='tight')
#???:???
项目:tieba-zhuaqu    作者:ankanch    | 项目源码 | 文件源码
def linePlotGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='??'):
    with plt.style.context('fivethirtyeight'):
        plt.title(graphicTitle,fontproperties=font_set,fontsize=20)
        plt.xlabel(xLabel,fontproperties=font_set)
        plt.ylabel(yLabel,fontproperties=font_set)
        plt.xticks(numpy.arange(len(xValueList)),xValueList,rotation=45,fontproperties=font_set)    
        plt.plot(yValueList)
        yValueList.sort()
    #??y???????????x???
    print("len(yValueList)=",len(yValueList))
    plt.ylim(-1.0, yValueList[len(yValueList)-1]+1)
    plt.subplots_adjust(bottom=0.15,left=0.05,right=0.98,top=0.92)
    #????????????
    ax = plt.gca()
    ax.get_xaxis().tick_bottom() #??????x??ticks
    ax.get_yaxis().tick_left()
    ax.grid(b=False,axis='x')
    axis = ax.xaxis
    for line in axis.get_ticklines():
        line.set_color("gray")
        line.set_markersize(6)
        line.set_markeredgewidth(1)
    #?????
    plt.show()
    #plt.savefig('percent-bachelors-degrees-women-usa.png', bbox_inches='tight')
#???:???
项目:tieba-zhuaqu    作者:ankanch    | 项目源码 | 文件源码
def linePlotGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='??'):
    with plt.style.context('fivethirtyeight'):
        plt.title(graphicTitle,fontproperties=font_set,fontsize=20)
        plt.xlabel(xLabel,fontproperties=font_set)
        plt.ylabel(yLabel,fontproperties=font_set)
        plt.xticks(numpy.arange(len(xValueList)),xValueList,rotation=45,fontproperties=font_set)    
        plt.plot(yValueList)
        yValueList.sort()
    #??y???????????x???
    print("len(yValueList)=",len(yValueList))
    plt.ylim(-1.0, yValueList[len(yValueList)-1]+1)
    plt.subplots_adjust(bottom=0.15,left=0.05,right=0.98,top=0.92)
    #????????????
    ax = plt.gca()
    ax.get_xaxis().tick_bottom() #??????x??ticks
    ax.get_yaxis().tick_left()
    ax.grid(b=False,axis='x')
    axis = ax.xaxis
    for line in axis.get_ticklines():
        line.set_color("gray")
        line.set_markersize(6)
        line.set_markeredgewidth(1)
    #?????
    plt.show()
    #plt.savefig('percent-bachelors-degrees-women-usa.png', bbox_inches='tight')
#???:???