我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.draw()。
def plot_events_with_event_scores(gt_event_scores, detected_event_scores, ground_truth_events, detected_events, show=True): fig = plt.figure(figsize=(10, 3)) for i in range(len(detected_events)): d = detected_events[i] plt.axvspan(d[0], d[1], 0, 0.5) plt.text((d[1] + d[0]) / 2, 0.2, detected_event_scores[i], horizontalalignment='center', verticalalignment='center') for i in range(len(ground_truth_events)): gt = ground_truth_events[i] plt.axvspan(gt[0], gt[1], 0.5, 1) plt.text((gt[1] + gt[0]) / 2, 0.8, gt_event_scores[i], horizontalalignment='center', verticalalignment='center') plt.tight_layout() if show: plt.show() else: plt.draw()
def plotIndiv(indiv, i): ax = eval("ax" + str(i)) ax.cla() ax.set_xticks(xTicks) ax.set_yticks(yTicks) ax.grid() codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] for rectVertices, color in indiv.getAllObjectRect(): path = Path(rectVertices, codes) patch = patches.PathPatch(path, facecolor=color, lw=2) ax.add_patch(patch) plt.draw()
def updatePlot(self, data): """ Update the plot """ plt.figure(self.fig.number) #assert (data.shape[1] == self.nbCh), 'new data does not have the same number of channels' #assert (data.shape[0] == self.nbPoints), 'new data does not have the same number of points' data = data - np.mean(data,axis=0) std_data = np.std(data,axis=0) std_data[np.where(std_data == 0)] = 1 data = data/std_data*self.chRange/5.0 for i, chName in enumerate(self.chNames): self.chLinesDict[chName].set_ydata(data[:,i]+self.offsets[i]) plt.draw()
def render(self, show=True, new_figure=True): """Render the quantized image :param bool show: if the quantized image is also to be shown and not only drawn. :param bool new_figure: if a new figure is to be used. """ if new_figure: plt.figure() plt.clf() plt.title('{method} ({n_colors})'.format( method=self._method, n_colors=self._n_colors)) plt.imshow(self._quantized_raster / 255.0) plt.draw() if show: plt.show()
def plot_graph(cls, date_time, price, graph=None): """ Plot the graph :param graph: MatPlotLibGraph :param date_time: Date time :param price: Price """ date_time = (date_time - datetime.datetime(1970, 1, 1)).total_seconds() if graph is None: graph = plt.scatter([date_time], [price]) plt.xlim([date_time, date_time + 60 * 60 * 24]) # plt.ylim([float(price) * 0.95, float(price) * 1.05]) plt.draw() plt.pause(0.1) else: array = graph.get_offsets() array = np.append(array, [date_time, price]) graph.set_offsets(array) # plt.xlim([array[::2].min() - 0.5, array[::2].max() + 0.5]) plt.ylim([float(array[1::2].min()) - 0.5, float(array[1::2].max()) + 0.5]) plt.draw() plt.pause(0.1) return graph
def cellplot(fs, csf): """ Plots PSF kernels -------------------------------------------------------------------------- Usage: Call: cellplot(fs, csf) Input: fs PSF kernels, i.e. 3d array with kernels indexed by 0th index csf size of kernels in x and y direction Output: Shows stack of PSF kernels arranged according to csf -------------------------------------------------------------------------- Copyright (C) 2011 Michael Hirsch """ mp.clf() for i in range(np.prod(csf)): mp.subplot(csf[0],csf[1],i+1) mp.imshow(fs[i]) mp.axis('off') mp.draw()
def init_plot(self): # Interactive mode plt.ion() # Chart size and margins plt.figure(figsize = (20, 10)) plt.subplots_adjust(hspace = 0.05, top = 0.95, bottom = 0.1, left = 0.05, right = 0.95) # Setup axis labels and ranges plt.title('Pico Technology TC-08') plt.xlabel('Time [s]') plt.ylabel('Temperature [' + self.unit_text + ']') plt.xlim(0, self.duration) self.plotrangemin = 19 self.plotrangemax = 21 plt.ylim(self.plotrangemin, self.plotrangemax) # Enable a chart line for each channel self.lines = [] for i in CHANNEL_CONFIG: if CHANNEL_CONFIG.get(i) != ' ': self.lines.append(line(plt, CHANNEL_NAME.get(i))) else: self.lines.append(line(plt, 'Channel {:d} OFF'.format(i))) # Plot the legend plt.legend(loc = 'best', fancybox = True, framealpha = 0.5) plt.draw()
def draw(vmean, vlogstd): from scipy import stats plt.cla() xlimits = [-2, 2] ylimits = [-4, 2] def log_prob(z): z1, z2 = z[:, 0], z[:, 1] return stats.norm.logpdf(z2, 0, 1.35) + \ stats.norm.logpdf(z1, 0, np.exp(z2)) plot_isocontours(ax, lambda z: np.exp(log_prob(z)), xlimits, ylimits) def variational_contour(z): return stats.multivariate_normal.pdf( z, vmean, np.diag(np.exp(vlogstd))) plot_isocontours(ax, variational_contour, xlimits, ylimits) plt.draw() plt.pause(1.0 / 30.0)
def update(self, conf_mat, classes, normalize=False): """This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(conf_mat, interpolation='nearest', cmap=self.cmap) plt.title(self.title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: conf_mat = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis] thresh = conf_mat.max() / 2. for i, j in itertools.product(range(conf_mat.shape[0]), range(conf_mat.shape[1])): plt.text(j, i, conf_mat[i, j], horizontalalignment="center", color="white" if conf_mat[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.draw()
def on_epoch_end(self, epoch, logs={}): monitor.on_epoch_end(self, epoch, logs=logs) #clear plot self.axFig3.cla() #plot MMD target embbeding MMDtargetEmbeddingHandle = self.axFig3.scatter(self.MMDtargetEmbedding[:,0], self.MMDtargetEmbedding[:,1], alpha=0.25, s=10, cmap='rainbow', label="MMD target embedding") #plot network output projected on target embedding plotPredictions = self.netMMDLayerPredict(self.inputData) projection = np.dot(plotPredictions,self.pca.components_[[0,1]].transpose()) NetOuputHandle = self.axFig3.scatter(projection[:,0],projection[:,1], color='red', alpha=0.25, s=10, label='Net output projected on target embedding') self.axFig3.legend(handles = (MMDtargetEmbeddingHandle, NetOuputHandle)) plt.draw() plt.pause(0.01)
def on_epoch_end(self, epoch, logs={}): Callback.on_epoch_end(self, epoch, logs=logs) #clear plot self.axFig.cla() #plot target embbeding targetEmbeddingHandle = self.axFig.scatter(self.targetEmbedding[:,0], self.targetEmbedding[:,1], alpha=0.25, s=10, c=self.yTarget, cmap="rainbow", label="MMD target embedding") #plot network output projected on target embedding plotPredictions = self.netAnchorLayerPredict(self.xInput) #print(plotPredictions) projection = np.dot(plotPredictions,self.pca.components_[[0,1]].transpose()) NetOuputHandle = self.axFig.scatter(projection[:,0],projection[:,1], c=self.yInput, cmap="rainbow", alpha=0.25, s=10, label='Net output projected on target embedding') self.axFig.legend(handles = (targetEmbeddingHandle, NetOuputHandle)) plt.draw() plt.pause(0.01)
def drawCenterMarker(self): """Draws a yellow marker in center of the image, making it easier to find image center when selecting center of boundary.""" centerImg=[self.img.shape[0]/2.,self.img.shape[1]/2.] if len(self.centerMarker)>0: self.clearCenterMarker() else: pt=ptc.Circle(centerImg,radius=3,fill=True,color='y') self.centerMarker.append(self.ax.add_patch(pt)) self.fig.canvas.draw() return self.centerMarker
def redraw(ax): """Redraws axes's figure's canvas. Makes sure that current axes content is visible. Args: ax (matplotlib.axes): Matplotlib axes. Returns: matplotlib.axes: Matplotlib axes """ ax.get_figure().canvas.draw() return ax
def showMeshIdx(self,ax=None): x,y,z=self.embryo.simulation.mesh.getCellCenters() if ax==None: fig,axes = pyfrp_plot_module.makeSubplot([1,1],titles=["MeshIdx"],sup=self.name+" MeshIdx",proj=['3d']) ax=axes[0] #Somehow need to convert to np array since slicing does not work for fipy variables x=np.asarray(x)[self.meshIdx] y=np.asarray(y)[self.meshIdx] z=np.asarray(z)[self.meshIdx] ax.scatter(x,y,z,c=self.color) plt.draw() return ax
def showMeshIdx2D(self,ax=None): x,y,z=self.embryo.simulation.mesh.getCellCenters() if ax==None: fig,axes = pyfrp_plot_module.makeSubplot([1,1],titles=["MeshIdx"],sup=self.name+" MeshIdx") ax=axes[0] #Somehow need to convert to np array since slicing does not work for fipy variables x=np.asarray(x)[self.meshIdx] y=np.asarray(y)[self.meshIdx] ax.scatter(x,y,c=self.color) plt.draw() return ax
def test_select_figure_formats_kwargs(): ip = get_ipython() kwargs = dict(quality=10, bbox_inches='tight') pt.select_figure_formats(ip, 'png', **kwargs) formatter = ip.display_formatter.formatters['image/png'] f = formatter.lookup_by_type(Figure) cell = f.__closure__[0].cell_contents nt.assert_equal(cell, kwargs) # check that the formatter doesn't raise fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot([1,2,3]) plt.draw() formatter.enabled = True png = formatter(fig) assert png.startswith(_PNG)
def set_val(self, val): discrete_val = int(val / self.inc) * self.inc # We can't just call Slider.set_val(self, discrete_val), because this # will prevent the slider from updating properly (it will get stuck at # the first step and not "slide"). Instead, we'll keep track of the # the continuous value as self.val and pass in the discrete value to # everything else. xy = self.poly.xy xy[2] = discrete_val, 1 xy[3] = discrete_val, 0 self.poly.xy = xy self.valtext.set_text(self.valfmt % discrete_val) if self.drawon: self.ax.figure.canvas.draw() self.val = val if not self.eventson: return for cid, func in self.observers.items(): func(discrete_val)
def displayResult(self): fig = plt.figure(101) plt.subplot(221) plt.imshow(np.abs(self.reconstruction),origin='lower') plt.draw() plt.title('Reconstruction Magnitude') plt.subplot(222) plt.imshow(np.angle(self.reconstruction),origin='lower') plt.draw() plt.title('Reconstruction Phase') plt.subplot(223) plt.imshow(np.abs(self.aperture),origin='lower') plt.title("Aperture Magnitude") plt.draw() plt.subplot(224) plt.imshow(np.angle(self.aperture),origin='lower') plt.title("Aperture Phase") plt.draw() fig.canvas.draw() #fig.tight_layout() # display.display(fig) # display.clear_output(wait=True) # time.sleep(.00001)
def fovPicker(self): fig = plt.figure() ax = plt.gca() plt.imshow(abs(self.fov)) for n in np.arange(self.positions.shape[0]): circle = plt.Circle(self.positions[n, :], self.probe_radius, color='r', fill=False) ax.add_artist(circle) plt.title("After closing figure, enter desired position for in situ CDI measurement") fig.canvas.draw() index = input("Enter desired position for in situ CDI measurement: ") #print(index) #index = index.astype(int); index = int(index) self.fov_roi = crop_roi(image = self.fov, crop_size = self.arr_size, cenx = self.positions[index,1], ceny = self.positions[index,0]) return self.fov_roi
def plot_segments_pie(seg, data, phases_colors): """ Plot a pie chart of the percentage of time spent on each segment :param seg: dict dict with list of start, end for each segment :param data: pd.DataFrame the data """ weights = get_weights(seg, data) plt.figure(1, figsize=(10, 10)) labels = list(weights.keys()) fracs = [weights[key] for key in labels] sum_weight = sum(weight for weight in fracs) if sum_weight < 1: fracs.append(1 - sum_weight) labels.append('missing') plot_colors = [phases_colors[name] for name in labels] plt.pie(fracs, labels=labels, colors=plot_colors, autopct='%1.1f%%') plt.title('Temps passé dans chaque phase, en pourcentage de la durée du vol', bbox={'facecolor':'0.8', 'pad':5}) plt.draw() plt.show()
def visualize_polar(state): plt.clf() sonar = state[0][-1:] readings = state[0][:-1] r = [] t = [] for i, s in enumerate(readings): r.append(math.radians(i * 6)) t.append(s) ax = plt.subplot(111, polar=True) ax.set_theta_zero_location('W') ax.set_theta_direction(-1) ax.set_ylim(bottom=0, top=105) plt.plot(r, t) plt.scatter(math.radians(90), sonar, s=50) plt.draw() plt.pause(0.1)
def readLine(self,pose,visualize = False): """Reads a line of the map based on the pose of the robot""" #Define the position of the first pixel # startx = (pose[0] + d_cam*math.cos(math.radians(pose[2]))) + \ # (self.L/2)*math.cos(math.radians((pose[2]+90))) # starty = (pose[1] + d_cam*math.sin((pose[2]))) + \ # (self.L/2)*math.sin(math.radians(pose[2]+90)) startx = (pose[0] + self.d_start*math.cos(math.radians(pose[2]+self.beta))) starty = (pose[1] + self.d_start*math.sin(math.radians(pose[2]+self.beta))) x = [] #list of x positions of the pixels y = [] #list of y positions of the pixels reads = [] #value of the pixels for i in xrange(self.L): #run over the line pixel by pixel x.append(int(startx+i*math.cos(math.radians(pose[2]-90)))) y.append(int(starty+i*math.sin(math.radians(pose[2]-90)))) reads.append(self.map.read(x[-1],y[-1])) if visualize: plt.plot(x,y) plt.draw() return reads
def main(): args = parse_argument() log.debug(args) numbers = list(range(0, args.max_num + 1)) notations = filter(lambda n: n.__name__ not in args.excludes, Notations) for notation in notations: notation().show(numbers) plt.title('Big-O Complexity') plt.xlabel('Growth of Input') plt.ylabel('Complexity') plt.legend(loc=2) plt.draw() plt.pause(1) handle_keyboard_interrupt()
def scatter3d(self,title='',size=40,model=[]): """Returns a scatterplot of the pdcoord. Useful for visualizing 3D surface data """ font = {'weight' : 'medium', 'size' : 22} #plt.rc('font', **font) fig = plt.figure() ax = fig.add_subplot(111, projection='3d'); ax.pbaspect = [1, 1, 1] #always need pbaspect ax.set_title(title) p = ax.scatter(list(self.data.x), list(self.data.y),list(self.data.z),c = list(self.data.v),edgecolors='none', s=size, marker = ",", cmap ='jet') ax.view_init(elev=90, azim=-89) ax.set_xlabel('X axis'); ax.set_ylabel('Y axis'); ax.set_zlabel('Z axis') fig.colorbar(p) plt.draw() try: vertices = [(vertex.X(), vertex.Y(),vertex.Z()) for vertex in pyliburo.py3dmodel.fetch.vertex_list_2_point_list(pyliburo.py3dmodel.fetch.topos_frm_compound(model)["vertex"])] V1,V2,V3 = zip(*vertices) p = ax.plot_wireframe(V1,V2,V3 ) except TypeError: pass return fig
def update_plot(self, episode_index): plot_right_edge = episode_index plot_left_edge = max(0, plot_right_edge - self.plot_episode_count) # Update point plot. x = range(plot_left_edge, plot_right_edge) y = self.lengths[plot_left_edge:plot_right_edge] self.point_plot.set_xdata(x) self.point_plot.set_ydata(y) self.ax.set_xlim(plot_left_edge, plot_left_edge + self.plot_episode_count) # Update rolling mean plot. mean_kernel_size = 101 rolling_mean_data = np.concatenate((np.zeros(mean_kernel_size), self.lengths[plot_left_edge:episode_index])) rolling_means = pd.rolling_mean( rolling_mean_data, window=mean_kernel_size, min_periods=0 )[mean_kernel_size:] self.mean_plot.set_xdata(range(plot_left_edge, plot_left_edge + len(rolling_means))) self.mean_plot.set_ydata(rolling_means) # Repaint the surface. plt.draw() plt.pause(0.0001)
def compare2(experiments,measurename=None,which=(0,1)): """ draw a scatter plot to compare trial-by-trial results of two experiments.""" if not measurename: measures = set([meas for exp in experiments for meas in exp.measures]) if len(measures) == 1: measurename = measures.pop() elif len(measures)>1: raise Exception("Experiments have multiple measures, need to supply a measure name.") else: raise Exception("No measures? What?") plt.figure(figsize=fig_size) dataA = experiments[which[0]].getresults(measurename) dataB = experiments[which[1]].getresults(measurename) plt.scatter(dataA,dataB) dataab = np.sort(dataA+dataB) absmin = dataab[0] absmax = dataab[-1] plt.plot([absmin,absmax], [absmin,absmax],'--') plt.xlabel(measurename+", "+experiments[which[0]].name) plt.ylabel(measurename+", "+experiments[which[1]].name) plt.title("trial-by-trial comparison (pairs with same initial conditions)")
def im(my_img,ax=None,**kwargs): "Displays image showing the values under the cursor." if ax is None: ax = plt.gca() def format_coord(x, y): x = np.int(x + 0.5) y = np.int(y + 0.5) val = my_img[y,x] try: return "%.4E @ [%4i, %4i]" % (val, x, y) except IndexError: return "" ax.imshow(my_img,interpolation='nearest',**kwargs) ax.format_coord = format_coord plt.colorbar() plt.draw() plt.show()
def dirClassificationSentiment(dirName, modelName, modelType): types = ('*.jpg', '*.png',) filesList = [] for files in types: filesList.extend(glob.glob(os.path.join(dirName, files))) filesList = sorted(filesList) print filesList Features = [] plt.close('all'); ax = plt.gca() plt.hold(True) for fi in filesList: P, classNames = fileClassification(fi, modelName, modelType) im = cv2.imread(fi, cv2.CV_LOAD_IMAGE_COLOR) Width = 0.1; Height = 0.1; startX = P[classNames.index("positive")]; startY = 0; myaximage = ax.imshow(cv2.cvtColor(im, cv2.cv.CV_RGB2BGR), extent=(startX-Width/2.0, startX+Width/2.0, startY-Height/2.0, startY+Height/2.0), alpha=1.0, zorder=-1) plt.axis((0,1,-0.1,0.1)) plt.show(block = False); plt.draw() plt.show(block = True);
def draw_loop(): """ Draw the graph in a loop """ global G plt.ion() # mng = plt.get_current_fig_manager() # mng.resize(*mng.window.maxsize()) plt.draw() for line in fileinput.input(): if output(line): plt.clf() nx.draw(G) plt.draw()
def __call__(self, **kwargs): """ Renders the plot for the given named slider values. Kwargs: The slider name and associated dimension index value. E.g. :: plot(time=5, model_level_number=23) The plot cube will be sliced on the associated 'time' and 'model_level_number' dimensions at the specified index values before being rendered on its axes. """ index = [slice(None)] * self.cube.ndim alias_by_dim = self._invert_mapping(self._dim_by_alias) for name, value in kwargs.items(): # The alias has priority, so check this first. dim = self._dim_by_alias.get(name) if dim is None: dim = self._slider_dim_by_name.get(name) if dim is None: emsg = '{!r} called with unknown name {!r}.' raise ValueError(emsg.format(type(self).__name__, name)) else: if dim in alias_by_dim: wmsg = ('{!r} expected to be called with alias {!r} ' 'for dimension {}, rather than with {!r}.') warnings.warn(wmsg.format(type(self).__name__, alias_by_dim[dim], dim, name)) index[dim] = value index = tuple(index) key = tuple(sorted(kwargs.items())) # A primative weak reference cache. self.subcube = self.cache.setdefault(key, self.cube[index]) return self.draw(self.subcube)
def draw(self, cube): """Abstract method.""" emsg = '{!r} requires a draw method for rendering.' raise NotImplementedError(emsg.format(type(self).__name__))
def resize_colourbar(self, event): # Ensure axes position is up to date. self.axes.apply_aspect() posn = self.axes.get_position() extent = self.axes.get_extent() aspect = (extent[1] - extent[0]) / (extent[3] - extent[2]) if aspect < 1.2: self.cbar_ax.set_position([posn.x1 + self.cb_sep, posn.y0, self.cb_depth, posn.height]) else: self.cbar_ax.set_position([posn.x0, posn.y0 - 6*self.cb_sep, posn.width, 2*self.cb_depth]) plt.draw()
def draw(self, cube): self.element = iplt.contourf(cube, axes=self.axes, coords=self.coords, extend='both', **self.kwargs) if 'levels' not in self.kwargs: self.kwargs['levels'] = self.element.levels return self.element # XXX: Not sure this should live here! # Need test coverage!
def draw(self, cube): self.element = iplt.contour(cube, axes=self.axes, coords=self.coords, extend='both', **self.kwargs) if 'levels' not in self.kwargs: self.kwargs['levels'] = self.element.levels return self.element
def visualize(iteration, error, X, Y, ax): plt.cla() ax.scatter(X[:,0], X[:,1], X[:,2], color='red') ax.scatter(Y[:,0], Y[:,1], Y[:,2], color='blue') plt.draw() print("iteration %d, error %.5f" % (iteration, error)) plt.pause(0.001)
def visualize(iteration, error, X, Y, ax): plt.cla() ax.scatter(X[:,0] , X[:,1], color='red') ax.scatter(Y[:,0] , Y[:,1], color='blue') plt.draw() print("iteration %d, error %.5f" % (iteration, error)) plt.pause(0.001)
def vis_detections(im, class_name, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return im = im[:, :, (2, 1, 0)] #fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw()
def imshow_plt(label, im, block=True): global figures if label not in figures: figures[label] = plt.imshow(im, interpolation=None, animated=True, label=label) plt.tight_layout() plt.axis('off') figures[label].set_data(im) # figures[label].canvas.draw() # plt.draw() plt.show(block=block)
def bar_plt(label, ys, block=False): global figures if label not in figures: figures[label] = plt.bar(np.arange(len(ys)), ys, align='center') plt.title(label) # plt.tight_layout() # plt.axis('off') inds, = np.where([key == label for key in figures.keys()]) for rect, y in zip(figures[label], ys): rect.set_height(y) plt.draw() plt.show(block=block)
def _finalize_plotting(self): from matplotlib import pyplot pyplot.tight_layout(rect=(0, 0, 0.96, 1)) pyplot.draw() # update "screen" pyplot.ion() # prevents that the execution stops after plotting pyplot.show() pyplot.rcParams['font.size'] = self.original_fontsize
def plot(self, plot_cmd=None, tf=lambda y: y): """plot the data we have, return ``self``""" from matplotlib import pyplot if not plot_cmd: plot_cmd = self.plot_cmd colors = 'bgrcmyk' pyplot.gcf().clear() res = self.res flatx, flatf = self.flattened() minf = np.inf for i in flatf: minf = min((minf, min(flatf[i]))) addf = 1e-9 - minf if minf <= 1e-9 else 0 for i in sorted(res.keys()): # we plot not all values here if isinstance(i, int): color = colors[i % len(colors)] arx = sorted(res[i].keys()) plot_cmd(arx, [tf(np.median(res[i][x]) + addf) for x in arx], color + '-') pyplot.text(arx[-1], tf(np.median(res[i][arx[-1]])), i) plot_cmd(flatx[i], tf(np.array(flatf[i]) + addf), color + 'o') pyplot.ylabel('f + ' + str(addf)) pyplot.draw() pyplot.ion() pyplot.show() return self
def plot_data(self,Data): self.fig = fig = plt.figure() self.ax1 = ax1 = fig.add_subplot(311) self.ax2 = ax2 = fig.add_subplot(312) self.ax3 = ax3 = fig.add_subplot(313) ax1.scatter(Data.X,Data.Y,color='b') ax1.axis([-1, 1, -1, 7]) plt.xlabel('S') plt.ylabel('S\'') plt.title('True data') new_dat, = ax2.plot([],[],'ko') self.new_dat = new_dat ax2.axis([-1, 1, -1, 7]) plt.xlabel('S') plt.ylabel('S\'') plt.subplot(313) new_dat_2, = ax3.plot([],[],'ro') self.new_dat_2 = new_dat_2 self.t = np.zeros(300) self.lr = np.zeros(300) ax3.axis([0, 100000, 0, 0.01]) plt.ylabel('learning rate') #plt.draw() #plt.show(block=False)