我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.get_cmap()。
def word_cloud(word_embedding_matrix, vocab, s, save_file='scatter.png'): words = [(i, vocab[i]) for i in s] model = TSNE(n_components=2, random_state=0) #Note that the following line might use a good chunk of RAM tsne_embedding = model.fit_transform(word_embedding_matrix) words_vectors = tsne_embedding[np.array([item[1] for item in words])] plt.subplots_adjust(bottom = 0.1) plt.scatter( words_vectors[:, 0], words_vectors[:, 1], marker='o', cmap=plt.get_cmap('Spectral')) for label, x, y in zip(s, words_vectors[:, 0], words_vectors[:, 1]): plt.annotate( label, xy=(x, y), xytext=(-20, 20), textcoords='offset points', ha='right', va='bottom', fontsize=20, # bbox=dict(boxstyle='round,pad=1.', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle = '<-', connectionstyle='arc3,rad=0') ) plt.show() # plt.savefig(save_file)
def get_map_params(image='StamenTerrain', color_palette=None): # set color palette if color_palette: cmap = plt.get_cmap(color_palette) else: cmap = None # set background image if image == 'StamenTerrain': tiler = StamenTerrain() elif image == 'GoogleTiles': tiler = GoogleTiles() elif image == 'OSM': tiler = OSM() return cmap, tiler
def initialize_minimap(self): times, values = labels_to_scatter_coords(self.opstack.events) self.map_ax.set_axis_bgcolor('k') self.map_ax.scatter(times, values, c=values, vmin=0, vmax=37, cmap=plt.get_cmap('hsv'), edgecolors='none') self.map_ax.vlines(self.opstack.events[self.i]['start'], -1, 38, zorder=0.5, color='w', linewidth=1) self.map_ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') self.map_ax.set_ylim(-1, 38)
def plot_by_training_samples(I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind, font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, samples_labels): """Print the final epoch of all the diffrenet training samples size """ max_index = size_ind if size_ind!=-1 else I_XT_array.shape[2]-1 cmap = plt.get_cmap('gnuplot') colors = [cmap(i) for i in np.linspace(0, 1, max_index+1)] #Print the final epoch nums_epoch= -1 #Go over all the samples size and plot them with the right color for index_in_range in range(0, max_index): XT, TY = [], [] for layer_index in range(0, I_XT_array.shape[4]): XT.append(np.mean(I_XT_array[:, -1, index_in_range, nums_epoch, layer_index], axis=0)) TY.append(np.mean(I_TY_array[:, -1, index_in_range,nums_epoch, layer_index], axis=0)) axes[index_i, index_j].plot(XT, TY, marker='o', linestyle='-', markersize=12, markeredgewidth=0.2, linewidth=0.5, color=colors[index_in_range]) utils.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks, y_ticks=y_ticks, x_lim=None, y_lim=None, set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$', y_label='$I(T;Y)$', set_xlim=True, set_ylim=True, set_ticks=True, label_size=font_size) #Create color bar and save it if index_i == axes.shape[0] - 1 and index_j == axes.shape[1] - 1: utils.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds, title='Training Data') f.savefig(save_name + '.jpg', dpi=150, format='jpg')
def create_fig(self): fig = plt.figure(figsize=(16,6)) ax1 = fig.add_subplot(1, 1, 1) ax1.cla() ax1.hold(True) self.time_str = 'time = %-6.2f' ax1.set_title( '' ) ax1.set_xlabel('X') ax1.set_ylabel('Y') self.ax1 = ax1 plt.ion() self.im=ax1.imshow( self.z2d, vmin=self.cax[0],vmax=self.cax[1], cmap=plt.get_cmap('jet'),origin='lower', interpolation='nearest') cb = plt.colorbar(self.im) fig.show() fig.canvas.draw() self.fig = fig
def weights_to_image(w): if not isinstance(w, np.ndarray): w = w.data.cpu().numpy() if w.ndim == 1: w = np.expand_dims(w, 1) if w.ndim > 2: c = w.shape[0] w = np.reshape(w, (c,-1)) w_min = w.min() w_max = w.max() w -= w_min w *= (1/(w_max - w_min + epsilon)) cmap = plt.get_cmap('jet') rgba_img = cmap(w) rgb_img = np.delete(rgba_img, 3,2) rgb_img = np.transpose(rgb_img,(2,0,1)) return rgb_img
def plot(self, ax, color = 'rainbow', linewidth = 3) : "Simple display using a per-id color scheme." segs = self.segments() if color == 'rainbow' : # rainbow color scheme to see pointwise displacements ncycles = 5 cNorm = colors.Normalize(vmin=0, vmax=(len(segs)-1)/ncycles) scalarMap = cm.ScalarMappable(norm=cNorm, cmap=plt.get_cmap('hsv') ) seg_colors = [ scalarMap.to_rgba( i % ((len(segs)-1)/ncycles) ) for i in range(len(segs)) ] else : # uniform color seg_colors = [ color for i in range(len(segs)) ] line_segments = LineCollection(segs, linewidths=(linewidth,), colors=seg_colors, linestyle='solid') ax.add_collection(line_segments)
def plot_sSFR_Fyoung(fig, sSFR, Fyoung): x, y, z = getDensityKernel(np.log10(sSFR),100*Fyoung) DL14_sSFR, DL14_Fyoung = np.loadtxt("/Users/saviaene/Documents/Research/M31/SKIRT/paperFigures/DeLooze2014sSFRHeating.dat", usecols=(0,1), unpack=True) fig.set_ylabel('$F_\mathrm{unev.} [\%]$',fontsize=18) fig.set_xlabel('$\log(\mathrm{sSFR}/\mathrm{yr}^{-1})$',fontsize=18) fig.scatter(x,y, c=z, s=10,cmap=plt.get_cmap('autumn') ,edgecolor='') # Plot De Looze 2014 relation between F'young and sSFR fig.plot(DL14_sSFR,100.*10**DL14_Fyoung,'g+') xrange = np.linspace(-14,-8,100) fig.plot(xrange,100.*10**(0.415*xrange+4.045), 'k-') fig.set_xlim(-13.5,-8.5) fig.set_ylim(-10,90) # Plot first order polynomial fit #solution = FitPolynomial(fig,x,y,1) #solution = FitPolynomialLog(fig,x,y,1) #print solution #fig3.errorbar(6.8,-5.5, [[mean_MdMs16],[mean_MdMs84]],[[mean_Mskpc216],[mean_Mskpc284]], 'k.')
def plot_sSFR_FWarmYoung(fig, sSFR, FWarmYoung): x, y, z = getDensityKernel(np.log10(sSFR),100*FWarmYoung) fig.set_ylabel('$F^\prime_\mathrm{young}^\mathrm{w} [\%]$',fontsize=18) fig.set_xlabel('$\log(\mathrm{sSFR}/\mathrm{yr}^{-1})$',fontsize=18) fig.scatter(x,y, c=z, s=10,cmap=plt.get_cmap('autumn') ,edgecolor='') # Plot De Looze 2014 relation between F'young and sSFR xrange = np.linspace(-14,-8,100) fig.plot(xrange,100.*10**(0.42*xrange+4.14), 'g--') fig.set_xlim(-13.5,-8.5) fig.set_ylim(-10,90) # Plot first order polynomial fit solution = FitPolynomial(fig,x,y,1) #solution = FitPolynomialLog(fig,x,y,1) print solution #fig3.errorbar(6.8,-5.5, [[mean_MdMs16],[mean_MdMs84]],[[mean_Mskpc216],[mean_Mskpc284]], 'k.')
def plot_sSFR_FColdYoung(fig, sSFR, FColdYoung): x, y, z = getDensityKernel(np.log10(sSFR),100*FColdYoung) fig.set_ylabel('$F^\prime_\mathrm{young}^\mathrm{c} [\%]$',fontsize=18) fig.set_xlabel('$\log(\mathrm{sSFR}/\mathrm{yr}^{-1})$',fontsize=18) fig.scatter(x,y, c=z, s=10,cmap=plt.get_cmap('autumn') ,edgecolor='') # Plot De Looze 2014 relation between F'young and sSFR xrange = np.linspace(-14,-8,100) fig.plot(xrange,100.*10**(0.42*xrange+4.14), 'g--') fig.set_xlim(-13.5,-8.5) fig.set_ylim(-10,90) # Plot first order polynomial fit solution = FitPolynomial(fig,x,y,1) #solution = FitPolynomialLog(fig,x,y,1) print solution #fig3.errorbar(6.8,-5.5, [[mean_MdMs16],[mean_MdMs84]],[[mean_Mskpc216],[mean_Mskpc284]], 'k.')
def plot_FNUV_r_Fyoung(fig, nuv, r, Fyoung, radiusCut): x_r = np.log10(nuv[~radiusCut]/r[~radiusCut]) y_r = 100*Fyoung[~radiusCut] x_r2 = np.log10(nuv[radiusCut]/r[radiusCut]) y_r2 = 100*Fyoung[radiusCut] x, y, z = getDensityKernel(np.log10(nuv[radiusCut]/r[radiusCut]),100*Fyoung[radiusCut]) fig.set_ylabel('$F_\mathrm{unev.} [\%]$',fontsize=18) fig.set_xlabel('$NUV-r$',fontsize=18) fig.scatter(x_r,y_r, c='black',s=1 , alpha=0.1) #fig.scatter(x_r2,y_r2, c='red',s=1 , alpha=0.1) fig.scatter(x,y, c=z, s=10,cmap=plt.get_cmap('autumn') ,edgecolor='') fig.set_xlim(-2.7,-0.51) fig.set_ylim(-10,110) #solution = FitPolynomial(fig,x,y,1) #print solution
def make_gradient(img_size, palette_name): background = Image.new('RGBA', img_size, (0, 0, 0, 0)) palette = makeMappingArray(img_size[0], get_cmap(palette_name)) rgb_sequence = [] for x in range(img_size[0]): color = palette[x] # matplotlib color maps are from range of (0,1). Convert to RGB. r = int(color[0] * 255) g = int(color[1] * 255) b = int(color[2] * 255) rgb_sequence.append((r, g, b)) background.putdata(rgb_sequence * img_size[1]) return background
def rp_timeseries_embedding(ax, data, **kwargs): """recurrence plot using pyunicorn """ emb_del = 1 emb_dim = 10 # logger.log(loglevel_debug, "rp_timeseries_embedding data", data) # make data "strictly" one-dimensional data = data.reshape((-1, )) rp = RecurrencePlot(time_series = data, tau = emb_del, dim = emb_dim, threshold_std = 1.5) plotdata = rp.recurrence_matrix() length = plotdata.shape[0] xs = np.linspace(0, length, length) ys = np.linspace(0, length, length) ax.pcolormesh(xs, ys, plotdata, cmap=plt.get_cmap("Oranges")) ax.set_xlabel("$n$") ax.set_ylabel("$n$")
def plotresult(org_vec,noisy_vec,out_vec): plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray')) plt.title("Original Image") plt.colorbar() plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray')) plt.title("Input Image") plt.colorbar() outimg = np.reshape(out_vec, (28, 28)) plt.matshow(outimg, cmap=plt.get_cmap('gray')) plt.title("Reconstructed Image") plt.colorbar() plt.show() # NETOWRK PARAMETERS
def plotresult(org_vec,noisy_vec,out_vec): plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray')) plt.title("Original Image") plt.colorbar() plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray')) plt.title("Input Image") plt.colorbar() outimg = np.reshape(out_vec, (28, 28)) plt.matshow(outimg, cmap=plt.get_cmap('gray')) plt.title("Reconstructed Image") plt.colorbar() plt.show() # NETOWORK PARAMETERS
def plotresult(org_vec,noisy_vec,out_vec): plt.matshow(np.reshape(org_vec, (28, 28)),\ cmap=plt.get_cmap('gray')) plt.title("Original Image") plt.colorbar() plt.matshow(np.reshape(noisy_vec, (28, 28)),\ cmap=plt.get_cmap('gray')) plt.title("Input Image") plt.colorbar() outimg = np.reshape(out_vec, (28, 28)) plt.matshow(outimg, cmap=plt.get_cmap('gray')) plt.title("Reconstructed Image") plt.colorbar() plt.show() # NETOWRK PARAMETERS
def plotresult(org_vec,noisy_vec,out_vec): plt.matshow(np.reshape(org_vec, (28, 28)),\ cmap=plt.get_cmap('gray')) plt.title("Original Image") plt.colorbar() plt.matshow(np.reshape(noisy_vec, (28, 28)),\ cmap=plt.get_cmap('gray')) plt.title("Input Image") plt.colorbar() outimg = np.reshape(out_vec, (28, 28)) plt.matshow(outimg, cmap=plt.get_cmap('gray')) plt.title("Reconstructed Image") plt.colorbar() plt.show() # NETOWORK PARAMETERS
def _cmap_discretize(cmap, N): """Return a discrete colormap from the continuous colormap cmap. cmap: colormap instance, eg. cm.jet. N: number of colors. Example x = resize(arange(100), (5,100)) djet = cmap_discretize(cm.jet, 5) imshow(x, cmap=djet) """ if type(cmap) == str: cmap = plt.get_cmap(cmap) colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.))) colors_rgba = cmap(colors_i) indices = np.linspace(0, 1., N+1) cdict = {} for ki, key in enumerate(('red','green','blue')): cdict[key] = [(indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in range(N+1)] # Return colormap object. return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
def get_blend_map(img, att_map, blur=True, overlap=True): # att_map -= att_map.min() # if att_map.max() > 0: # att_map /= att_map.max() att_map = 1.0 - att_map att_map = transform.resize(att_map, (img.shape[:2]), order = 3, mode='edge') # print att_map.shape if blur: att_map = filters.gaussian(att_map, 0.02*max(img.shape[:2])) att_map -= att_map.min() att_map /= att_map.max() cmap = plt.get_cmap('jet') att_map_v = cmap(att_map) att_map_v = np.delete(att_map_v, 3, 2) if overlap: att_map = 1*(1-att_map**0.7).reshape(att_map.shape + (1,))*img + (att_map**0.7).reshape(att_map.shape+(1,)) * att_map_v return att_map
def structure2image(structure, rigidity_refined,cmap='hot', structure_min=None, structure_max=None): if structure_min is None: structure_min = np.percentile(structure[rigidity_refined==1].ravel(), 2) if structure_max is None: structure_max = np.percentile(structure[rigidity_refined==1].ravel(), 98) Istructure = (structure - structure_min) / (structure_max-structure_min) Istructure = np.clip(Istructure,0,1) cm = plt.get_cmap(cmap) Istructure = cm(Istructure)[:,:,:3]*255.0 Istructure[:,:,0][rigidity_refined==0] = 128 Istructure[:,:,1][rigidity_refined==0] = 0 Istructure[:,:,2][rigidity_refined==0] = 128 return Istructure.astype('uint8') # Teaser
def draw_heatmap_overlay(img, heatmap, alpha=0.5): #assert img.shape[0:2] == heatmap.shape[0:2] assert len(heatmap.shape) == 2 or (heatmap.ndim == 3 and heatmap.shape[2] == 1) assert img.dtype in [np.uint8, np.int32, np.int64] assert heatmap.dtype in [np.float32, np.float64] if heatmap.ndim == 3 and heatmap.shape[2] == 1: heatmap = np.squeeze(heatmap) if img.shape[0:2] != heatmap.shape[0:2]: heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8) heatmap_rs = ia.imresize_single_image(heatmap_rs[..., np.newaxis], img.shape[0:2], interpolation="nearest") heatmap = np.squeeze(heatmap_rs) / 255.0 cmap = plt.get_cmap('jet') heatmap_cmapped = cmap(heatmap) #img_heatmaps_cmapped = img_heatmaps_cmapped[:, :, 0:3] heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2) #heatmap_cmapped = np.clip(heatmap_cmapped * 255, 0, 255).astype(np.uint8) heatmap_cmapped = heatmap_cmapped * 255 mix = (1-alpha) * img + alpha * heatmap_cmapped mix = np.clip(mix, 0, 255).astype(np.uint8) return mix
def histtoImage(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap('magma')(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype('uint8') Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled(self.viewxy.width(), np.round(self.viewxy.height()*Y/X), QtCore.Qt.KeepAspectRatioByExpanding) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap
def render_single_channel(self, kwargs, autoscale=False, use_cache=False, cache=True): locs = self.locs[0] if hasattr(locs, 'group'): locs = [locs[self.group_color == _] for _ in range(N_GROUP_COLORS)] return self.render_multi_channel(kwargs, autoscale=autoscale, locs=locs, use_cache=use_cache) if use_cache: n_locs = self.n_locs image = self.image else: n_locs, image = render.render(locs, **kwargs) if cache: self.n_locs = n_locs self.image = image image = self.scale_contrast(image, autoscale=autoscale) image = self.to_8bit(image) Y, X = image.shape #cmap = self.window.display_settings_dialog.colormap.currentText() TODO: selection of colormap? cmap = 'hot' cmap = np.uint8(np.round(255 * plt.get_cmap(cmap)(np.arange(256)))) self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] return self._bgra
def test_distinctive_computations(distinctive_fun=distinctive_fun_diff, fun_name='Rate difference'): """ given a function to compute the "distinctive score" of a word given its true and false positive rate, plot the distribution of scores (2D) corresponding to the different tpr and fpr """ # make a grid of possible tpr and fpr combinations import matplotlib.pyplot as plt x, y = np.linspace(0, 1, 101), np.linspace(1, 0, 101) fpr, tpr = np.meshgrid(x, y) score = distinctive_fun(tpr, fpr) plt.figure() plt.imshow(score, cmap=plt.get_cmap('viridis')) plt.xlabel('FPR$_c(t_i)$') plt.ylabel('TPR$_c(t_i)$') plt.xticks(np.linspace(0, 101, 11), np.linspace(0, 1, 11)) plt.yticks(np.linspace(0, 101, 11), np.linspace(1, 0, 11)) plt.title('Score using %s' % fun_name) plt.colorbar()
def show_hexbin(self, query): """shows hexbin plot over map Args: query: name of sql """ self.load() data = pd.read_sql_query(con=self.con, sql=query) points = self.gen_points(data, self.data_map) hx = self.base_map.hexbin( np.array([geom.x for geom in points]), np.array([geom.y for geom in points]), gridsize=275, bins='log', mincnt=1, edgecolor='none', alpha=1., lw=0.2, cmap=plt.get_cmap('afmhot')) plt.tight_layout() plt.show()
def split_colormap(self, colormap, n): """splits map by colour Args: colormap: chloropleth map n: colours Returns: portion of split map """ if type(colormap) == str: colormap = cm.get_cmap(colormap) colors = np.concatenate((np.linspace(0, 1., n), (0., 0., 0., 0.))) rgb_alpha = colormap(colors) indices = np.linspace(0, 1., n + 1) color_dict = {} for color, key in enumerate(('red', 'green', 'blue')): color_dict[key] = [(indices[i], rgb_alpha[i - 1, color], rgb_alpha[i, color]) for i in range(n + 1)] return LinearSegmentedColormap(colormap.name + "_%d" % n, color_dict, 1024)
def view_(_pred,_lable): fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)] img = [] for fn in fname: img.append(Image.open(open(fn))) #img.append(misc.imread(fn).astype(np.float)) for i in range(len(img)): pylab.subplot(4,5,i+1); pylab.axis('off') pylab.imshow(img[i]) #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray")) #pylab.text(40,60,_pred[i],color = 'b') if ( _pred[i] == _lable[i] ): pylab.text(40,65,_pred[i],color = 'b',size = 15) else: pylab.text(40,65,_pred[i],color = 'r',size = 15) pylab.text(40,92,_lable[i],color = 'g',size = 15) pylab.show()
def plot_heatmap(ax, xpoints, ypoints, nbins, title=None, maxcount=None): ''' Plot a heatmap of the given data on on the given axes. ''' # imshow expects y,x for the image, but x,y for the extents, # so we have to manage that here... bins = np.concatenate( (np.arange(0,1.0,1.0/nbins), [1.0]) ) heatmap, yedges, xedges = np.histogram2d(ypoints, xpoints, bins=bins) extent = [xedges[0],xedges[-1], yedges[0], yedges[-1]] # make sure we always show the full extent of the tank and the full extent of the data, # whichever is wider. ax.set_xlim(min(0, xedges[0]), max(1, xedges[-1])) ax.set_ylim(min(0, yedges[0]), max(1, yedges[-1])) if title: ax.set_title(title) if maxcount is not None: norm = Normalize(0, maxcount) else: norm = None return ax.imshow(heatmap, extent=extent, cmap=plt.get_cmap('hot'), origin='lower', interpolation='nearest', norm=norm)
def _pos_coloring(G, norm_pos): ''' Coloring function based on the position of the nodes :param G: Graph :param norm_pos: diict -> node_id: 2d node position :return: Color for each node ''' nodes_order = [] for node_id, value in zip(G.nodes(), norm_pos): nodes_order.append((node_id, value)) nodes_order = sorted(nodes_order, key=lambda x: x[1]) color_map = list(plt.get_cmap(CAMP)(np.linspace(0.0, 1, G.number_of_nodes()))) nodes_color = np.zeros((G.number_of_nodes(), 4)) for color_index, (node_id, norm_value) in enumerate(nodes_order): nodes_color[node_id - 1] = color_map[color_index] return nodes_color
def _binary_commonity(G, label): ''' Coloring function based on the label NB. label have to be binary :param G: Graph :param label: list of nodes length. for each node represent its label :return: list of the color for each node ''' color_map = list(plt.get_cmap(CAMP)(np.linspace(0.0, 1, 4))) nodes_color = np.zeros((G.number_of_nodes(), 4)) for index, node_id in enumerate(sorted(list(G.nodes()))): if label[index] == 1: nodes_color[index] = color_map[0] elif label[index] == 2: nodes_color[index] = color_map[-1] else: ValueError("Label is not binary") return nodes_color
def plot_prediction(image_id, pred_id, cls=0): image = np.load('cache/images/%s.npy' % image_id) pred = np.load('cache/preds/%s.npy' % image_id) xymax = (grid_sizes.loc[image_id, 'xmax'], grid_sizes.loc[image_id, 'ymin']) plt.figure() ax1 = plt.subplot(131) ax1.set_title('image_id:%s' % image_id) ax1.imshow(image[1, :, :], cmap=plt.get_cmap('gray')) ax2 = plt.subplot(132) ax2.set_title('predict bldg pixels') ax2.imshow(pred[cls], cmap=plt.get_cmap('hot')) ax3 = plt.subplot(133) ax3.set_title('predict bldg polygones') ax3.imshow(poly_to_mask(mask_to_poly(pred[cls], xymax), image.shape[1:], xymax), cmap=plt.get_cmap('hot')) plt.title("%s - class %d" % (pred_id, cls)) plt.show()
def render(self): plt.ion() plt.show() self.ax.cla() img = self.j.render(self.simparams, np.zeros( (500, 500)).astype('uint32')) #img=self.j.retrieve_frame_data(500, 500, self.simparams) self.ax.imshow(img, cmap=plt.get_cmap('bwr')) #self.ax.imshow(img, cmap=plt.get_cmap('seismic')) plt.draw() plt.pause(1e-6) return
def render(self): # plt.ion() # plt.show() # self.ax.cla() # img = self.j.render(self.simparams, np.zeros((500,500)).astype('uint32')) # #img=self.j.retrieve_frame_data(500, 500, self.simparams) # self.ax.imshow(img, cmap=plt.get_cmap('bwr')) # #self.ax.imshow(img, cmap=plt.get_cmap('seismic')) # plt.draw() # plt.pause(1e-6) return
def plot_conv(sess, t_vars, name): var_conv = [v for v in t_vars if name in v.name] W = var_conv[0] # [2, 2, 1, 8] W = sess.run(W) length = W.shape[-1] row_n = 2 if length == 8 else 4 col_n = length / row_n plt.subplots(row_n, col_n) for i in range(length): axes = plt.subplot(row_n, col_n, i + 1) map = W[:, :, 0, i] plt.imshow(map,cmap=plt.cm.magma) # plt.imshow(map, cmap=plt.get_cmap('gray')) # plt.xlabel(i) axes.set_xticks([]) axes.set_yticks([]) # plt.colorbar(fraction=0.046, pad=0.04) plt.savefig(dir_ + "map" + name + ".jpg")
def draw_graph(edges): G = nx.DiGraph() G.add_edges_from(edges) values = [1.0 for node in G.nodes()] # Specify the edges you want here edge_colours = ['black' for edge in G.edges()] black_edges = [edge for edge in G.edges()] # Need to create a layout when doing # separate calls to draw nodes and edges pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, cmap=plt.get_cmap('Reds'), node_color = values, node_size=4800) nx.draw_networkx_edges(G, pos, edgelist=black_edges, arrows=True) nx.draw_networkx_labels(G,pos,font_size=12,font_family='sans-serif') plt.axis('off') plt.show() # In[183]:
def plot_cost_function(self,Y,ranges,coef_display=1): x0,fval,grid,Jout=brute(self.cost_function,ranges, args=(Y,),full_output=True) Ndim,N1,N2=grid.shape if Ndim==1: print("plot") if Ndim==2: fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(coef_display*grid[0],coef_display*grid[1],Jout,cmap=plt.get_cmap("hot")) plt.xlabel("Parameter1") plt.ylabel("Parameter2") if Ndim >2: raise ValueError("Too much dimensions (this method can only plot <=2 dimensions)") return x0
def animateMatrices(matrices,outputFilename = None): fig = plot.figure() # make figure im = plot.imshow(matrices[0], cmap=plot.get_cmap('bone'), vmin=0.0, vmax=1.0) # function to update figure def updatefig(j): # set the data in the axesimage object im.set_array(matrices[j]) # return the artists set return im, # kick off the animation ani = animation.FuncAnimation(fig, updatefig, frames=range(len(matrices)), interval=50, blit=True) if outputFilename != None: ani.save(outputFilename, dpi = 80,writer = 'imagemagick') plot.show()
def cmap_discretize(cmap, N): """ Return a discrete colormap from the continuous colormap cmap. cmap: colormap instance, eg. cm.jet. N: number of colors. Example x = resize(arange(100), (5,100)) djet = cmap_discretize(cm.jet, 5) imshow(x, cmap=djet) """ if type(cmap) == str: cmap = get_cmap(cmap) colors_i = np.concatenate((np.linspace(0, 1., N), (0., 0., 0., 0.))) colors_rgba = cmap(colors_i) indices = np.linspace(0, 1., N + 1) cdict = {} for ki, key in enumerate(('red', 'green', 'blue')): cdict[key] = [(indices[i], colors_rgba[i - 1, ki], colors_rgba[i, ki]) for i in xrange(N + 1)] return LinearSegmentedColormap(cmap.name + "_%d" % N, cdict, 1024)
def recognise_letter(): letter_loc = get_image_src() for loc in letter_loc: letter_image = mpimg.imread(loc) gray_letter = np.dot(letter_image[...,:3], [0.299, 0.587, 0.114]) letter_display = gray_letter gray_letter = gray_letter.flatten() for i in range(len(gray_letter)): gray_letter[i] = gray_letter[i] gray_letter[i] = round(gray_letter[i], 8) f = open('classifier_knn165.pickle', 'rb') clf = pickle.load(f) f.close() plt.figure() plt.imshow(letter_display, cmap=plt.get_cmap('gray')) plt.title('letter is ' + clf.predict([gray_letter])[0]) plt.show()
def draw_attention(img, *masks): cmap = plt.get_cmap('jet') imgs = [] for mask in masks: # convert to heat map rgba_img = cmap(mask) rgb_img = np.delete(rgba_img, 3, 2) rgb_img = (rgb_img * 255) # mean mean_img = ((rgb_img + img) / 2).astype(np.uint8) # convert to PIL.Image mean_img = Image.fromarray(mean_img, "RGB") imgs.append(mean_img) return imgs
def draw(self, layout='circular', figsize=None): """Draw all graphs that describe the DGM in a common figure Parameters ---------- layout : str possible are 'circular', 'shell', 'spring' figsize : tuple(int) tuple of two integers denoting the mpl figsize Returns ------- fig : figure """ layouts = { 'circular': nx.circular_layout, 'shell': nx.shell_layout, 'spring': nx.spring_layout } figsize = (10, 10) if figsize is None else figsize fig = plt.figure(figsize=figsize) rocls = np.ceil(np.sqrt(len(self.graphs))) for i, graph in enumerate(self.graphs): ax = fig.add_subplot(rocls, rocls, i+1) ax.set_title('Graph ' + str(i+1)) ax.axis('off') ax.set_frame_on(False) g = graph.nxGraph weights = [abs(g.edge[i][j]['weight']) * 5 for i, j in g.edges()] nx.draw_networkx(g, pos=layouts[layout](g), ax=ax, edge_cmap=plt.get_cmap('Reds'), width=2, edge_color=weights) return fig
def draw(self, layout='circular', figsize=None): """Draw graph in a matplotlib environment Parameters ---------- layout : str possible are 'circular', 'shell', 'spring' figsize : tuple(int) tuple of two integers denoting the mpl figsize Returns ------- fig : figure """ layouts = { 'circular': nx.circular_layout, 'shell': nx.shell_layout, 'spring': nx.spring_layout } figsize = (10, 10) if figsize is None else figsize fig = plt.figure(figsize=figsize) ax = fig.add_subplot(1, 1, 1) ax.axis('off') ax.set_frame_on(False) g = self.nxGraph weights = [abs(g.edge[i][j]['weight']) * 5 for i, j in g.edges()] nx.draw_networkx(g, pos=layouts[layout](g), ax=ax, edge_cmap=plt.get_cmap('Reds'), width=2, edge_color=weights) return fig
def plot_ae_tracker(self, tracker, path): '''Plot the loss, lr of each auto-encoder. tracker: list of tuple (loss, lr) ''' nbr = len(tracker) f, (loss, lr) = plt.subplots(2, sharex=True, sharey = False) # plotting cmap = plt.get_cmap('gnuplot') colors = [cmap(i) for i in np.linspace(0,1, nbr)] floating = 3 prec = "%." + str(floating) + "f" for i, color in enumerate(colors, start=1): loss_ = np.asarray(tracker[i-1][0]) end_loss = prec % np.float(loss_[-1]) lr_ = np.asarray(tracker[i-1][1]) end_lr = prec % np.float(lr_[-1]) loss.plot(loss_, color = color, label='loss ae_' + str(i) + ':' + str(end_loss)) lr.plot(lr_, color = color, label='lr ae_'+ str(i) + ':' + str(end_lr)) loss.legend(fancybox=True, shadow=True, prop={'size':6}) lr.legend(fancybox=True, shadow=True, prop={'size':6}) loss.set_title('loss and learing rate during the auo-encoders pre-training.') lr.set_xlabel(u'n° epoch') lr.set_ylabel('lambda') loss.set_ylabel('loss') f.savefig(path, bbox_inches='tight')
def prepare_plot(graph): """ Prepares a Matplotlib plot for further handling :param graph: datamodel.base.Graph instance :return: None """ G = graph.nxgraph # Color map for nodes: color is proportional to depth level # http://matplotlib.org/examples/color/colormaps_reference.html depth_levels_from_root = nx.shortest_path_length(G, graph.root_node) vmax = 1. colormap = plt.get_cmap('BuGn') step = 1./len(graph) node_colors = [vmax - step * depth_levels_from_root[n] for n in G.nodes()] # Draw! # https://networkx.github.io/documentation/networkx-1.10/reference/drawing.html pos = nx.spectral_layout(G) nx.draw_networkx_labels(G, pos, labels=dict([(n, n.name) for n in G.nodes()]), font_weight='bold', font_color='orangered') nx.draw_networkx_nodes(G, pos, node_size=2000, cmap=colormap, vmin=0., vmax=vmax, node_color=node_colors) nx.draw_networkx_edge_labels(G, pos, edge_labels=dict([((u, v,), d['name']) for u, v, d in G.edges(data=True)])) nx.draw_networkx_edges(G, pos, edgelist=[edge for edge in G.edges()], arrows=True)
def colorline(x, y, z=None, cmap=plt.get_cmap('Spectral_r'), cmin=None, cmax=None, lw=3): ''' Plot a colored line with coordinates x and y Optionally specify colors in the array z Optionally specify a colormap, a norm function and a line width ''' cmap = copy(cmap) cmap.set_over('k') cmap.set_under('k') # Default colors equally spaced on [0,1]: if z is None: z = np.linspace(0.0, 1.0, len(x)) # Special case if a single number: if not hasattr(z, "__iter__"): # to check for numerical input -- this is a hack z = np.array([z]) z = np.asarray(z) segments = make_segments(x, y) return LineCollection(segments, array=z, cmap=cmap, norm=plt.Normalize(vmin=cmin, vmax=cmax), linewidth=lw)
def plotImage(self, I, ax=None, showIt=False, grid=False, clim=None): if self.dim == 3: raise Exception('Use plot slice?') import matplotlib.pyplot as plt import matplotlib from mpl_toolkits.mplot3d import Axes3D import matplotlib.colors as colors import matplotlib.cm as cmx if ax is None: ax = plt.subplot(111) jet = cm = plt.get_cmap('jet') cNorm = colors.Normalize( vmin=I.min() if clim is None else clim[0], vmax=I.max() if clim is None else clim[1]) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet) ax.set_xlim((self.x0[0], self.h[0].sum())) ax.set_ylim((self.x0[1], self.h[1].sum())) for ii, node in enumerate(self._sortedCells): x0, sz = self._cellN(node), self._cellH(node) ax.add_patch(plt.Rectangle((x0[0], x0[1]), sz[0], sz[1], facecolor=scalarMap.to_rgba(I[ii]), edgecolor='k' if grid else 'none')) # if text: ax.text(self.center[0],self.center[1],self.num) scalarMap._A = [] # http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots ax.set_xlabel('x') ax.set_ylabel('y') if showIt: plt.show() return [scalarMap]
def plotImage( self, I, ax=None, showIt=False, grid=False, clim=None ): if self.dim == 3: raise NotImplementedError('This is not yet done!') import matplotlib.pyplot as plt import matplotlib from mpl_toolkits.mplot3d import Axes3D import matplotlib.colors as colors import matplotlib.cm as cmx if ax is None: ax = plt.subplot(111) jet = cm = plt.get_cmap('jet') cNorm = colors.Normalize( vmin=I.min() if clim is None else clim[0], vmax=I.max() if clim is None else clim[1]) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet) # ax.set_xlim((self.x0[0], self.h[0].sum())) # ax.set_ylim((self.x0[1], self.h[1].sum())) Nx = self.r(self.gridN[:, 0], 'N', 'N', 'M') Ny = self.r(self.gridN[:, 1], 'N', 'N', 'M') cell = self.r(I, 'CC', 'CC', 'M') for ii in range(self.nCx): for jj in range(self.nCy): I = [ii, ii+1, ii+1, ii] J = [jj, jj, jj+1, jj+1] ax.add_patch(plt.Polygon(np.c_[Nx[I, J], Ny[I, J]], facecolor=scalarMap.to_rgba(cell[ii, jj]), edgecolor='k' if grid else 'none')) scalarMap._A = [] # http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots ax.set_xlabel('x') ax.set_ylabel('y') if showIt: plt.show() return [scalarMap]
def _discrete_matshow_adaptive(data, labels_names=[], title=""): """Displays segmentation results using colormap that is adapted to a number of classes. Uses labels_names to write class names aside the color label. Used as a helper function for visualize_segmentation_adaptive() function. Parameters ---------- data : 2d numpy array (width, height) Array with integers representing class predictions labels_names : list List with class_names """ fig_size = [7, 6] plt.rcParams["figure.figsize"] = fig_size #get discrete colormap cmap = plt.get_cmap('Paired', np.max(data)-np.min(data)+1) # set limits .5 outside true range mat = plt.matshow(data, cmap=cmap, vmin = np.min(data)-.5, vmax = np.max(data)+.5) #tell the colorbar to tick at integers cax = plt.colorbar(mat, ticks=np.arange(np.min(data),np.max(data)+1)) # The names to be printed aside the colorbar if labels_names: cax.ax.set_yticklabels(labels_names) if title: plt.suptitle(title, fontsize=15, fontweight='bold') plt.show()