Python matplotlib.pyplot 模块,setp() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.setp()

项目:nanoQC    作者:wdecoster    | 项目源码 | 文件源码
def per_base_sequence_content_and_quality(fqbin, qualbin, outdir, figformat):
    fig, axs = plt.subplots(2, 2, sharex='col', sharey='row')
    lines = plot_nucleotide_diversity(axs[0, 0], fqbin)
    plot_nucleotide_diversity(axs[0, 1], fqbin, invert=True)
    l_Q = plot_qual(axs[1, 0], qualbin)
    plot_qual(axs[1, 1], qualbin, invert=True)
    plt.setp([a.get_xticklabels() for a in axs[0, :]], visible=False)
    plt.setp([a.get_yticklabels() for a in axs[:, 1]], visible=False)
    for ax in axs[:, 1]:
        ax.set_ylabel('', visible=False)
    for ax in axs[0, :]:
        ax.set_xlabel('', visible=False)
    # Since axes are shared I should only invert once. Twice will restore the original axis order!
    axs[0, 1].invert_xaxis()
    plt.suptitle("Per base sequence content and quality")
    axl = fig.add_axes([0.4, 0.4, 0.2, 0.2])
    ax.plot()
    axl.axis('off')
    lines.append(l_Q)
    plt.legend(lines, ['A', 'T', 'G', 'C', 'Quality'], loc="center", ncol=5)
    plt.savefig(os.path.join(outdir, "PerBaseSequenceContentQuality." +
                             figformat), format=figformat, dpi=500)
项目:matplotlib-hep    作者:ibab    | 项目源码 | 文件源码
def make_split(ratio, gap=0.12):
    import matplotlib.pyplot as plt
    from matplotlib.gridspec import GridSpec
    from matplotlib.ticker import MaxNLocator
    cax = plt.gca()
    box = cax.get_position()
    xmin, ymin = box.xmin, box.ymin
    xmax, ymax = box.xmax, box.ymax
    gs = GridSpec(2, 1, height_ratios=[ratio, 1 - ratio], left=xmin, right=xmax, bottom=ymin, top=ymax)
    gs.update(hspace=gap)

    ax = plt.subplot(gs[0])
    plt.setp(ax.get_xticklabels(), visible=False)
    bx = plt.subplot(gs[1], sharex=ax)

    return ax, bx
项目:tomato    作者:sertansenturk    | 项目源码 | 文件源码
def _plot_melodic_progression(ax3, melodic_progression, pitch,
                                  pitch_distribution):
        try:
            # plot...
            AudioSeyirAnalyzer.plot(melodic_progression, ax3)

            # axis style
            ax3.set_xlabel('')  # remove the automatically given labels
            ax3.set_ylabel('')
            plt.setp(ax3.get_yticklabels(), visible=False)
            plt.setp(ax3.get_xticklabels(), visible=False)

            # set xlim to the last time in the pitch track
            ax3.set_xlim([pitch[0, 0], pitch[-1, 0]])
            ax3.set_ylim([np.min(pitch_distribution.bins),
                          np.max(pitch_distribution.bins)])

            # remove the spines from the third subplot
            ax3.spines['bottom'].set_visible(False)
            ax3.spines['left'].set_visible(False)
            ax3.spines['right'].set_visible(False)
            ax3.get_yaxis().set_ticks([])
        except TypeError:
            logging.debug('The melodic progression is not computed.')
项目:SFBIStats    作者:royludo    | 项目源码 | 文件源码
def minimal_hbar(ss, figsize=(6,3)):
    tot = ss.values.sum()
    labels = ss.index.get_values()
    labelAsX = num.arange(len(labels))+1
    fig, ax  = plt.subplots(figsize=figsize)
    ax.barh(labelAsX, ss.values, align='center', color='grey')
    ax.set_yticks(labelAsX)
    ax.set_yticklabels(labels)
    ax.set_ylim(0, labelAsX[-1]+1)
    ax.set_xlim(0, max(ss.values*1.15))
    ax.set_xlabel(u"Nombre d'offres")
    ax.grid(axis='x')
    plt.setp(ax.get_yticklines(), visible=False)
    for pos, n in zip(labelAsX, ss.values):
        perc = 100*float(n)/tot
        ax.annotate('{0:.1f}%'.format(perc),
                    xy=(n + (max(ss.values * 0.01)), pos),
                    color='k', fontsize=8, va='center')
    return fig, ax
项目:SecuML    作者:ANSSI-FR    | 项目源码 | 文件源码
def display(self, output_filename):
        fig, (ax) = plt.subplots(1, 1)
        data   = [d.values for d in self.datasets]
        labels = [d.label for d in self.datasets]
        bp = ax.boxplot(data, labels = labels, notch = 0, sym = '+', vert = '1', whis = 1.5)
        plt.setp(bp['boxes'], color='black')
        plt.setp(bp['whiskers'], color='black')
        plt.setp(bp['fliers'], color='black', marker='+')
        for i in range(len(self.datasets)):
            box = bp['boxes'][i]
            box_x = []
            box_y = []
            for j in range(5):
                box_x.append(box.get_xdata()[j])
                box_y.append(box.get_ydata()[j])
            box_coords = list(zip(box_x, box_y))
            box_polygon = Polygon(box_coords, facecolor = self.datasets[i].color)
            ax.add_patch(box_polygon)
        if self.title is not None:
            ax.set_title(self.title)
        x_min = np.amin([np.amin(d.values) for d in self.datasets])
        x_max = np.amax([np.amax(d.values) for d in self.datasets])
        ax.set_ylim(x_min - 0.05*(x_max - x_min), x_max + 0.05*(x_max - x_min))
        fig.savefig(output_filename)
        plt.close(fig)
项目:tfnn    作者:MorvanZhou    | 项目源码 | 文件源码
def __init__(self, grid_space, objects, evaluator, figsize, sleep=0.001):
        super(ScaleMonitor, self).__init__(evaluator, 'score_monitor')
        self._network = self.evaluator.network
        self._axes = {}
        self._tplot_axes = {}
        self._vplot_axes = {}
        self._fig = plt.figure(figsize=figsize)
        self._sleep = sleep
        for r_loc, name in enumerate(objects):
            r_span, c_span = 1, grid_space[1]
            self._axes[name] = plt.subplot2grid(grid_space, (r_loc, 0), colspan=c_span, rowspan=r_span)
            if name != objects[-1]:
                plt.setp(self._axes[name].get_xticklabels(), visible=False)
            self._axes[name].set_ylabel(r'$%s$' % name.replace(' ', r'\ ').capitalize())
        self._fig.subplots_adjust(hspace=0.1)
        plt.ion()
        plt.show()
项目:pyGrav    作者:basileh    | 项目源码 | 文件源码
def setPlot(self,axe,seriex,seriey,seriex_selec,seriey_selec,serie_type,serie_unit):
        """
        plot a single station
        """
        axe.clear()
        axe.grid(True)
        if serie_type=='gravity' and seriey_selec:
            mean_g=np.mean(seriey_selec)
            axe.plot([seriex[0],seriex[len(seriex)-1]],[mean_g,mean_g],'o-',color='b',label=serie_type)        

        axe.plot(seriex,seriey,'o-',color='k',label=serie_type)
        axe.plot(seriex_selec,seriey_selec,'o-',color='b',label=serie_type)            
        axe.set_ylabel(serie_unit, size='x-small')
        axe.set_title(serie_type, size='x-small')
        labels = axe.get_xticklabels() + axe.get_yticklabels()
        for label in labels:
            label.set_size('x-small') 
        xfmt = md.DateFormatter('%H:%M')
        axe.xaxis.set_major_formatter(xfmt)            
        plt.setp(axe.get_xticklabels(), rotation=30, horizontalalignment='right')              
        self.canvas.draw()
项目:fenapack    作者:blechta    | 项目源码 | 文件源码
def _create_figure():
        fig = pyplot.figure()
        gs = gridspec.GridSpec(3, 1, height_ratios=[2, 2, 1], hspace=0.05)
        ax2 = fig.add_subplot(gs[1])
        ax1 = fig.add_subplot(gs[0], sharex=ax2)
        ax1.xaxis.set_label_position('top')
        ax1.xaxis.set_tick_params(labeltop='on', labelbottom='off')
        pyplot.setp(ax2.get_xticklabels(), visible=False)
        ax1.set_xscale('log')
        ax2.set_xscale('log')
        ax2.set_yscale('log')
        ax1.set_xlabel('Number dofs')
        ax1.set_ylabel('Number GMRES iterations')
        ax2.set_ylabel('CPU time')
        ax1.set_ylim(0, None, auto=True)
        ax2.set_ylim(0, None, auto=True)
        return fig, (ax1, ax2)
项目:OpenPiMap    作者:evilbotnet    | 项目源码 | 文件源码
def _barChart(yValues, xValues, outfile):
    fig = plt.figure(figsize=(15,5), facecolor="black", edgecolor="white")
    ax = fig.add_subplot(111)
    ax.tick_params(axis="y", colors="black")
    N = len(yValues)
    menMeans = yValues[:N]
    # menStd = [2,3,4,1,2]
    ind = np.arange(N)
    width = 0.75
    rects1 = ax.bar(ind, menMeans, width=width, color='black', error_kw=dict(elinewidth=2, ecolor='red'))
    ax.set_xlim(-width, len(ind) + width)
    # ax.set_ylim(0,45)
    ax.set_ylabel('MegaBytes')
    ax.set_xlabel('Date')
    ax.set_title('Megabytes over time')
    xTickMarks = xValues
    ax.set_xticks(ind)
    xtickNames = ax.set_xticklabels(xTickMarks)
    plt.setp(xtickNames, rotation=45, fontsize=10)
    #plt.show()
    plt.savefig(outfile)
    #plt.savefig()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def maybe_color_bp(self, bp):
        if isinstance(self.color, dict):
            boxes = self.color.get('boxes', self._boxes_c)
            whiskers = self.color.get('whiskers', self._whiskers_c)
            medians = self.color.get('medians', self._medians_c)
            caps = self.color.get('caps', self._caps_c)
        else:
            # Other types are forwarded to matplotlib
            # If None, use default colors
            boxes = self.color or self._boxes_c
            whiskers = self.color or self._whiskers_c
            medians = self.color or self._medians_c
            caps = self.color or self._caps_c

        from matplotlib.artist import setp
        setp(bp['boxes'], color=boxes, alpha=1)
        setp(bp['whiskers'], color=whiskers, alpha=1)
        setp(bp['medians'], color=medians, alpha=1)
        setp(bp['caps'], color=caps, alpha=1)
项目:recognizeFitExercise    作者:tyiannak    | 项目源码 | 文件源码
def visualizeFeatures(Features, Files, Names):    
    y_eig, coeff = pcaDimRed(Features, 2)    
    plt.close("all")
    print y_eig
    plt.subplot(2,1,1);
    ax = plt.gca()
    for i in range(len(Files)):
        im = cv2.imread(Files[i], cv2.CV_LOAD_IMAGE_COLOR)    
        Width = 0.2;  Height = 0.2; startX = y_eig[i][0]; startY = y_eig[i][1];
        print startX, startY
        myaximage = ax.imshow(cv2.cvtColor(im, cv2.cv.CV_RGB2BGR), extent=(startX-Width/2.0, startX+Width/2.0, startY-Height/2.0, startY+Height/2.0), alpha=1.0, zorder=-1)
        plt.axis((-3,3,-3,3))
    # Plot feaures
    plt.subplot(2,1,2)    
    ax = plt.gca()
    for i in range(len(Files)):            
        plt.plot(numpy.array(Features[i,:].T));
    plt.xticks(range(len(Names)))
    plt.legend(Files)
    ax.set_xticklabels(Names)
    plt.setp(plt.xticks()[1], rotation=90)
    plt.tick_params(axis='both', which='major', labelsize=8)
    plt.tick_params(axis='both', which='minor', labelsize=8)

    plt.show()
项目:cohda    作者:ambimanus    | 项目源码 | 文件源码
def plot(ax, xl, yl, x, y, err, logx=False, xticknames=None, xlabelpad=0):
    if xl is not None:
        ax.set_xlabel(xl, labelpad=xlabelpad)
    if yl is not None:
        ax.set_ylabel(yl)
    ax.errorbar(x, y, fmt='o-', yerr=err)
    ax.set_xlim(x[0]-0.1, x[-1]+0.1)
    ax.grid(True, linestyle='-', which='major', color='lightgrey',
            alpha=0.5)
    ax.grid(True, linestyle='-', which='minor', color='lightgrey',
            alpha=0.5, axis='x')
    if logx:
        ax.set_xscale('log')
    if xticknames is not None:
        # xn = ax.set_xticklabels(xticknames)
        ax.xaxis.set_major_locator(IndexLocator(1, 0))
        # xn = plt.setp(ax, xticklabels=xticknames)
        # plt.setp(xn, rotation=90, fontsize=8)
    if len(err.shape) > 1:
        ax.set_ylim((y-err[0]).min()-(0.1*y.min()),
                    (y+err[1]).max()+(0.1*y.max()))
    else:
        ax.set_ylim((y-err).min()-(0.1*y.min()),
                    (y+err).max()+(0.1*y.max()))
项目:BlueLines    作者:JacksYou    | 项目源码 | 文件源码
def scatter_crimes_population():
    """creates a scatter plot using the values of Population and Crimes Per 100000.
    iterates through the database and reads all the data in the given headers and creates plots for each data point
    """
    x = df["Number of Crimes"].values
    y = df["Population"].values
    assert len(x) == len(y)
    df["Crimes Per 100000"] = np.array([(x[i] / y[i]) * 100000.0 for i in range(len(x))], dtype="float32")

    ax = df.plot.scatter(y="Population", x="Crimes Per 100000")

    for index, row in df.iterrows():
        ax.annotate(row["Community Name"], (row["Crimes Per 100000"], row["Population"]),
                    size=7,
                    color='darkslategrey')

    x = df["Crimes Per 100000"].values
    y = df["Population"].values

    m, b = np.polyfit(x, y, 1)
    line = plt.plot(x, m * x + b, 'b--')
    plt.setp(line, color='orange', alpha=0.5, linewidth=2.0)
    plt.show()
项目:plthacks    作者:chrisb13    | 项目源码 | 文件源码
def inset_title_box(ax,title,bwidth="20%",location=1):
    """
    Function that puts title of subplot in a box

    :ax:    Name of matplotlib axis to add inset title text box too
    :title: 'string to put inside text box'
    :returns: @todo
    """

    axins = inset_axes(ax,
                       width=bwidth, # width = 30% of parent_bbox
                       height=.30, # height : 1 inch
                       loc=location)

    plt.setp(axins.get_xticklabels(), visible=False)
    plt.setp(axins.get_yticklabels(), visible=False)
    axins.set_xticks([])
    axins.set_yticks([])

    axins.text(0.5,0.3,title,
            horizontalalignment='center',
            transform=axins.transAxes,size=10)
项目:yellowbrick    作者:DistrictDataLabs    | 项目源码 | 文件源码
def finalize(self, **kwargs):
        """
        Finalize executes any subclass-specific axes finalization steps.
        The user calls poof and poof calls finalize.

        Parameters
        ----------
        kwargs: generic keyword arguments.
        """

        plt.setp(self.x_ax.get_xticklabels(), visible=False)
        plt.setp(self.y_ax.get_yticklabels(), visible=False)

        plt.setp(self.x_ax.yaxis.get_majorticklines(), visible=False)
        plt.setp(self.x_ax.yaxis.get_minorticklines(), visible=False)
        plt.setp(self.y_ax.xaxis.get_majorticklines(), visible=False)
        plt.setp(self.y_ax.xaxis.get_minorticklines(), visible=False)
        plt.setp(self.x_ax.get_yticklabels(), visible=False)
        plt.setp(self.y_ax.get_xticklabels(), visible=False)
        self.x_ax.yaxis.grid(False)
        self.y_ax.xaxis.grid(False)
        self.fig.suptitle("Joint Plot of {} vs {}"
                        .format(self.feature, self.target), y=1.05)
项目:Waskom_PNAS_2017    作者:WagnerLabPapers    | 项目源码 | 文件源码
def plot_time_corrs(subjects, axes):

    x = np.arange(1, 5)
    palette = [".2", ".5"]

    for subj, ax in zip(subjects, axes):

        res_fname = "correlation_analysis/{}_rest_ifs.pkz".format(subj)
        res = moss.load_pkl(res_fname)

        for line, color in zip(res.corr_times.T, palette):
            ax.plot(x, line, "o-", color=color, ms=3, clip_on=False)

        sig = res.corr_times_pctiles > 95
        ax.plot(x[sig], np.ones(sig.sum()) * .0025,
                marker=(6, 2, 0), ls="", mew=.35, mec=".2", ms=3)

        ax.set(xticks=x, xlim=(.6, 4.4), ylim=(0, .07))
        sns.despine(ax=ax, trim=True)

    plt.setp(axes[1:], yticklabels=[])
    axes[0].set_ylabel("Correlation (r)")
项目:Waskom_PNAS_2017    作者:WagnerLabPapers    | 项目源码 | 文件源码
def plot_colorbars(f, axes):

    dots, sticks = get_colormap("dots"), get_colormap("sticks")

    xx = np.arange(200).reshape(1, 200)

    axes[0].imshow(xx, rasterized=True, aspect="auto", cmap=dots)
    axes[1].imshow(xx, rasterized=True, aspect="auto", cmap=sticks)

    kws = dict(size=7, ha="center")
    f.text(.08, .015, "Motion", **kws)
    f.text(.24, .015, "Color", **kws)
    f.text(.32, .015, "Orientation", **kws)
    f.text(.48, .015, "Color", **kws)

    plt.setp(axes, xticks=[], yticks=[])
项目:pyImageClassification    作者:tyiannak    | 项目源码 | 文件源码
def visualizeFeatures(Features, Files, Names):    
    y_eig, coeff = pcaDimRed(Features, 2)    
    plt.close("all")
    print y_eig
    plt.subplot(2,1,1);
    ax = plt.gca()
    for i in range(len(Files)):
        im = cv2.imread(Files[i], cv2.CV_LOAD_IMAGE_COLOR)    
        Width = 0.2;  Height = 0.2; startX = y_eig[i][0]; startY = y_eig[i][1];
        print startX, startY
        myaximage = ax.imshow(cv2.cvtColor(im, cv2.cv.CV_RGB2BGR), extent=(startX-Width/2.0, startX+Width/2.0, startY-Height/2.0, startY+Height/2.0), alpha=1.0, zorder=-1)
        plt.axis((-3,3,-3,3))
    # Plot feaures
    plt.subplot(2,1,2)    
    ax = plt.gca()
    for i in range(len(Files)):            
        plt.plot(numpy.array(Features[i,:].T));
    plt.xticks(range(len(Names)))
    plt.legend(Files)
    ax.set_xticklabels(Names)
    plt.setp(plt.xticks()[1], rotation=90)
    plt.tick_params(axis='both', which='major', labelsize=8)
    plt.tick_params(axis='both', which='minor', labelsize=8)

    plt.show()
项目:AE_ts    作者:RobRomijnders    | 项目源码 | 文件源码
def plot_data(X_train, y_train, plot_row=5):
    counts = dict(Counter(y_train))
    num_classes = len(np.unique(y_train))
    f, axarr = plt.subplots(plot_row, num_classes)
    for c in np.unique(y_train):  # Loops over classes, plot as columns
        c = int(c)
        ind = np.where(y_train == c)
        ind_plot = np.random.choice(ind[0], size=plot_row)
        for n in range(plot_row):  # Loops over rows
            axarr[n, c].plot(X_train[ind_plot[n], :])
            # Only shops axes for bottom row and left column
            if n == 0: axarr[n, c].set_title('Class %.0f (%.0f)' % (c, counts[float(c)]))
            if not n == plot_row - 1:
                plt.setp([axarr[n, c].get_xticklabels()], visible=False)
            if not c == 0:
                plt.setp([axarr[n, c].get_yticklabels()], visible=False)
    f.subplots_adjust(hspace=0)  # No horizontal space between subplots
    f.subplots_adjust(wspace=0)  # No vertical space between subplots
    plt.show()
    return
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_lwc(ax, data):
    """
    Plots liquid water content timeseries i.e. cloud status

    """
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.setp(ax.get_yticklabels(), visible=False)
    #ax.grid(False)
    #ax.text(0.5, 0.5, 'TODO: Will show cloud status IN/OUT', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
    if 'LWC_JW_U' in data.keys():
        lwc=data['LWC_JW_U'][:,0]
    elif 'NV_LWC_C' in data.keys():
        lwc=data['NV_LWC_C'][:,0]
    elif 'NV_LWC_U' in data.keys():
        lwc=data['NV_LWC_U'][:,0]
    else:
        return
    lwc = np.clip(lwc, 0, 1)
    ax.plot_date(data['mpl_timestamp'][:,0], lwc, '-')
    ax.set_ylabel('lwc')
    ax.set_ylim(0, 1.1)
    return ax
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_alt_ts(ax, data):
    """
    Plots the lamp temperature

    """


    ax.set_ylabel('GPS alt (km)')
    ax.plot_date(data['mpl_timestamp'][:, 0].ravel(),
                 data['ALT_GIN'][:, 0].ravel()/1000.,
                 '-', lw=2)
    ax.text(0.05, 0.98,
            'Altitude',
            axes_title_style,
            transform=ax.transAxes)
    plt.setp(ax.get_xticklabels(), visible=False)
    return ax
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_lwc(ax, data):
    """
    plots liquid water content timeseries i.e. cloud status

    """
    if not 'LWC_JW_U' in data:
        return
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.setp(ax.get_yticklabels(), visible=False)
    #ax.text(0.5, 0.5, 'TODO: Will show cloud status IN/OUT', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
    lwc=data['LWC_JW_U'][:,0]
    lwc=np.clip(lwc, 0, 1)
    ax.plot_date(data['mpl_timestamp'][:,0], lwc, '-')
    ax.set_ylabel('lwc')
    ax.set_ylim(0, 1.1)
    return ax
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_heater(ax, data):
    """
    plots deiced heater status i.e. ON/OFF

    """
    if not 'PRTAFT_deiced_temp_flag' in data:
        return
    ax.text(0.05, 0.98,'Heater', axes_title_style, transform=ax.transAxes)
    ax.grid(False)
    ax.set_ylim(0,1)
    ax.yaxis.set_major_locator(plt.NullLocator())
    plt.setp(ax.get_xticklabels(), visible=False)
    heater_status=np.array(data['PRTAFT_deiced_temp_flag'], dtype=np.int8)
    toggle=np.diff(heater_status.ravel())
    time_periods=zip(list(np.where(toggle == 1)[0]),
                     list(np.where(toggle == -1)[0]))
    for t in time_periods:
        #plt.barh(0, data['mpl_timestamp'][0,1], left=data['mpl_timestamp'][0,0])
        width=data['mpl_timestamp'][t[1],0]-data['mpl_timestamp'][t[0],0]
        ax.add_patch(patches.Rectangle((data['mpl_timestamp'][t[0],0], 0), width, 1, alpha=0.8, color='#ffaf4d'))
    return ax
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_sun_position(ax, data):
    """
    Creates time series plot for the sun position.
      0: sun on the nose
     90: sun starboard
    180: sun on the tail
    270: sun on port side

    :param ax: axes object
    :param data: data dictionary

    """
    # sun position in reference to the aircraft heading
    #   0: sun on the nose
    #  90: sun starboard
    # 180: sun from behind
    # 270: sun on port side
    ax.plot_date(data['mpl_timestamp'][:, 0].ravel(),
                 data['sun_position'],
                 '-', lw=2, label='Sun position')
    ax.set_ylim(0, 360)
    ax.yaxis.set_ticks(np.arange(0.0, 361.0, 90.0))
    ax.legend(loc='upper right')
    plt.setp(ax.get_xticklabels(), visible=False)
    return ax
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_pyrgeometers_ts(ax,data):
    """
    Creates timeseries plot for the pyrgeometers

    """
    # these are yet to be fitted; will update to include when ready.
    plt.setp(ax.get_xticklabels(), visible=False)
    ax.text(0.05, 0.98,
            'Pyrgeometers - corrected longwave irradiance',
            axes_title_style,
            transform=ax.transAxes)
    ax.set_ylabel('Irradiance (W m -2)')
    yl = ax.get_ylim()
    if yl[1] > 1500:
        ax.set_ylim(yl[0], 1500)
    ax.legend()
    return ax
项目:PyMaid    作者:schlegelp    | 项目源码 | 文件源码
def plot_matrix2(self, labels=None, **kwargs):
        """ Plot distance matrix and dendrogram using seaborn. This package
        needs to be installed manually.

        Parameters
        ----------
        kwargs      dict
                    Keyword arguments to be passed to seaborn.clustermap. See 
                    http://seaborn.pydata.org/generated/seaborn.clustermap.html


        Returns
        -------
        seaborn.clustermap
        """

        try:
            import seaborn as sns
        except:
            raise ImportError('Need seaborn package installed.')

        cg = sns.clustermap(
            self.mat, row_linkage=self.linkage, col_linkage=self.linkage, **kwargs)

        # Rotate labels
        plt.setp(cg.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
        plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)

        # Make labels smaller
        plt.setp(cg.ax_heatmap.xaxis.get_majorticklabels(), fontsize=4)
        plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), fontsize=4)

        # Increase padding
        cg.fig.subplots_adjust(right=.8, top=.95, bottom=.2)

        module_logger.info(
            'Use matplotlib.pyplot.show() to render figure.')

        return cg
项目:trading-stock-thailand    作者:adminho    | 项目源码 | 文件源码
def plotCandlestick(symbol, dates, title="Selected data"):  
    quotes = loadStockQuotes(symbol, dates)     

    mondays = WeekdayLocator(MONDAY)        # major ticks on the mondays
    alldays = DayLocator()                  # minor ticks on the days
    weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
    dayFormatter = DateFormatter('%d')      # e.g., 12

    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    ax.xaxis.set_major_locator(mondays)
    ax.xaxis.set_minor_locator(alldays)
    ax.xaxis.set_major_formatter(weekFormatter)
    #ax.xaxis.set_minor_formatter(dayFormatter)

    #plot_day_summary(ax, quotes, ticksize=3)
    candlestick_ohlc(ax, quotes, width=0.6)

    ax.xaxis_date()
    ax.autoscale_view()
    ax.set_title(title)
    plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

    plt.show()
项目:trading-stock-thailand    作者:adminho    | 项目源码 | 文件源码
def plotCandlestick(symbol, startdate, enddate, title="Selected data"): 
    quotes = loadStockQuotes(symbol, startdate, enddate)        
    print(quotes)
    mondays = WeekdayLocator(MONDAY)        # major ticks on the mondays
    alldays = DayLocator()              # minor ticks on the days
    weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
#   dayFormatter = DateFormatter('%d')    # e.g., 12

    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    ax.xaxis.set_major_locator(mondays)
    ax.xaxis.set_minor_locator(alldays)
    ax.xaxis.set_major_formatter(weekFormatter)
    #ax.xaxis.set_minor_formatter(dayFormatter)

    #plot_day_summary(ax, quotes, ticksize=3)
    candlestick_ohlc(ax, quotes, width=0.6)

    ax.xaxis_date()
    ax.autoscale_view()
    ax.set_title(title)
    plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

    plt.show()
项目:trading-stock-thailand    作者:adminho    | 项目源码 | 文件源码
def plotCandlestick(symbol, start_index, end_index, title="Selected data"):
    dates = pd.date_range(start_index, end_index)   
    quotes = utl.loadStockQuotes(symbol, dates)     

    mondays = WeekdayLocator(MONDAY)        # major ticks on the mondays
    alldays = DayLocator()                  # minor ticks on the days
    weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
    dayFormatter = DateFormatter('%d')      # e.g., 12

    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    ax.xaxis.set_major_locator(mondays)
    ax.xaxis.set_minor_locator(alldays)
    ax.xaxis.set_major_formatter(weekFormatter)
    #ax.xaxis.set_minor_formatter(dayFormatter)

    #plot_day_summary(ax, quotes, ticksize=3)
    candlestick_ohlc(ax, quotes, width=0.6)

    ax.xaxis_date()
    ax.autoscale_view()
    plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

    plt.show()
项目:python_utils    作者:Jayhello    | 项目源码 | 文件源码
def subplots_demo6():
    x = np.linspace(0, 2 * np.pi, 300)
    y = np.sin(x ** 2)
    f, ax_arr = plt.subplots(2, 2)

    ax_arr[0, 0].plot(x, y)
    ax_arr[0, 0].set_title('axis 0, 0')

    ax_arr[0, 1].scatter(x, y)
    ax_arr[0, 1].set_title('axis 0, 1')

    ax_arr[1, 0].plot(x, y ** 2)
    ax_arr[1, 0].set_title('axis 1, 0')

    ax_arr[1, 1].scatter(x, y ** 2)
    ax_arr[1, 1].set_title('axis 1, 1')
    # for row 0, every element x axis hidden
    plt.setp([ax.get_xticklabels() for ax in ax_arr[0, :]], visible=False)
    # for column 1, every element y axis hidden
    plt.setp([ax.get_yticklabels() for ax in ax_arr[:, 1]], visible=False)
    plt.show()
项目:rain-metrics-python    作者:apendergrass    | 项目源码 | 文件源码
def makedistplots(ppdf1,pamt1,bincrates):
    #### This is how we'll normalize to get changes per degree warming. 
    dry=ppdf1[0]*100 # Change in dry days
    # % rain rates in mm/d for x axis ticks and labeling 
    otn=np.linspace(1,9,9)
    xtickrates=np.append(0,otn*.1)
    xtickrates=np.append(xtickrates,otn)
    xtickrates=np.append(xtickrates,otn*10)
    xtickrates=np.append(xtickrates,otn*100)
    xticks=np.interp(xtickrates,bincrates,range(0,len(bincrates))); #% bin numbers associated with nice number rain rate
    xticks,indices=np.unique(xticks,return_index=True)
    xtickrates=xtickrates[indices]
    ### Bin width - needed to normalize the rain amount distribution
    db=(bincrates[2]-bincrates[1])/bincrates[1];
    ### Now we plot
    plt.figure(figsize=(4,6))
    plt.clf()
    ax=plt.subplot(211)
    plt.plot(range(0,len(pamt1)),pamt1/db, 'k')
    #plt.ylim((-.05,.15))
    plt.xlim((4,130))
    #plt.setp(ax,xticks=xticks,xticklabels=['0','0.1','','','','','','','','','','1','','','','','','','','','10','','','','','','','','','100','','','','','','','','','1000'])
    plt.setp(ax,xticks=xticks,xticklabels=[''])
    #plt.xlabel('Rain rate (mm/d)')
    plt.title('Rain amount (mm/d)')
    ax=plt.subplot(212)
    plt.plot(range(0,len(ppdf1)),ppdf1*100, 'k')
    plt.plot((0,len(ppdf1)),(0,0),'0.5')
    plt.xlim((4,130))
    ### Annotate with the dry day frequency
    ymin, ymax = ax.get_ylim()
    t=plt.text(4,ymax*0.95, "{:.1f}".format(dry)+'%')
    plt.setp(t,va='top',ha='left')
    plt.setp(ax,xticks=xticks,xticklabels=['0','0.1','','','','','','','','','','1','','','','','','','','','10','','','','','','','','','100','','','','','','','','','1000'])
    plt.xlabel('Rain rate (mm/d)')
    plt.title('Rain frequency (%)')
    plt.savefig("rainmetricdemo.pdf")
    return

### Call the function to make the rain distribution
项目:pyspark_dist_explore    作者:Bergvca    | 项目源码 | 文件源码
def plot_density(self, ax, num=300, **kwargs):
        """Returns a density plot on an Pyplot Axes object.

        Args:
            ax (:obj:`Axes`): An matplotlib Axes object on which the histogram will be plot
            num (:obj:`int`): The number of x values the line is plotted on. Default: 300
            **kwargs: Keyword arguments that are passed on to the pyplot.plot function.
        """
        colors = []

        self.build()
        bin_centers = np.asarray(self._get_bin_centers())
        x_new = np.linspace(bin_centers.min(), bin_centers.max(), num)

        if 'color' in kwargs:
            colors = kwargs['color']
            del kwargs['color']

        power_smooth = []

        for (colname, bin_values) in self.hist_dict.items():
            normed_values, ble = np.histogram(self._get_bin_centers(),
                                              bins=self.bin_list,
                                              weights=bin_values,
                                              normed=True
                                              )

            power_smooth.append(x_new)
            power_smooth.append(spline(bin_centers, normed_values, x_new))

        lines = ax.plot(*power_smooth, **kwargs)

        for i, line in enumerate(lines):
            if len(colors) > 0:
                plt.setp(line, color=colors[i], label=list(self.hist_dict.keys())[i])
            else:
                plt.setp(line, label=list(self.hist_dict.keys())[i])

        return lines
项目:n1mm_view    作者:n1kdo    | 项目源码 | 文件源码
def make_pie(size, values, labels, title):
    """
    make a pie chart using matplotlib.
    return the chart as a pygame surface
    make the pie chart a square that is as tall as the display.
    """
    logging.debug('make_pie(...,...,%s)', title)
    inches = size[1] / 100.0
    fig = plt.figure(figsize=(inches, inches), dpi=100, tight_layout={'pad': 0.10}, facecolor='k')
    ax = fig.add_subplot(111)
    ax.pie(values, labels=labels, autopct='%1.1f%%', textprops={'color': 'w'}, wedgeprops={'linewidth': 0.25},
           colors=('b', 'g', 'r', 'c', 'm', 'y', '#ff9900', '#00ff00', '#663300'))
    ax.set_title(title, color='white', size=48, weight='bold')

    handles, labels = ax.get_legend_handles_labels()
    legend = ax.legend(handles[0:5], labels[0:5], title='Top %s' % title, loc='lower left')  # best
    frame = legend.get_frame()
    frame.set_color((0, 0, 0, 0.75))
    frame.set_edgecolor('w')
    legend.get_title().set_color('w')
    for text in legend.get_texts():
        plt.setp(text, color='w')

    canvas = agg.FigureCanvasAgg(fig)
    canvas.draw()
    renderer = canvas.get_renderer()
    raw_data = renderer.tostring_rgb()

    plt.close(fig)

    canvas_size = canvas.get_width_height()
    logging.debug('make_pie(...,...,%s) done', title)
    return raw_data, canvas_size
项目:structured-output-ae    作者:sbelharbi    | 项目源码 | 文件源码
def plot_errorbar_bbox_stats(self, stats_w, stats_h, base_names, path):
        """Plot the errorbar graph of the bbox mean+-std (of the width or hieght) of multiple sets.

        stats_w/h= listof tuplet (mean, std) of the w (h)
        """
        fig, axs = plt.subplots(nrows=1, ncols=2, sharex=True)
        ax_w = axs[0]
        ax_h = axs[1]
        i=1
        for data_w, data_h in zip(stats_w, stats_h):
            ax_w.errorbar(x=i, y=data_w[0], yerr=data_w[1], fmt='o', label=base_names[i-1] )
            ax_h.errorbar(x=i, y=data_h[0], yerr=data_h[1], fmt='o', label=base_names[i-1] )
            i +=1

        # hide the xlabels
        plt.setp(ax_w.get_xticklabels(), visible=False)
        plt.setp(ax_h.get_xticklabels(), visible=False)
        # st the x axis limits.
        ax = plt.gca()
        ax.set_xlim([-0.5, len(base_names)+1])
        ax_w.set_title('mean(hight) +- std(hieght) of bbox', fontsize=10)
        ax_h.set_title('mean(hight) +- std(hieght) of bbox', fontsize=10)
        ax_w.legend(numpoints=1, fancybox=True, shadow=True, prop={'size':6})
        ax_h.legend(numpoints=1, fancybox=True, shadow=True, prop={'size':6})
        fig.suptitle('Statistics over the bounding box width and hieght of mutliple datasets.')
        fig.savefig(path, bbox_inches='tight')
项目:fabric8-analytics-common    作者:fabric8-analytics    | 项目源码 | 文件源码
def create_summary_graph(title, y_axis_label, labels, values):
    """Create summary (column) graph for any measurement."""
    N = len(values)
    indexes = np.arange(N)

    fig = plt.figure()
    plt.xlabel("call #")
    plt.ylabel(y_axis_label)
    plt.grid(True)
    plt.xticks(indexes, labels)
    locs, plt_labels = plt.xticks()
    plt.setp(plt_labels, rotation=90)
    plt.bar(indexes, values, 0.80, color='yellow',
            edgecolor='black', label=title)

    # plt.legend(loc='lower right')

    for tick in plt_labels:
        tick.set_horizontalalignment("left")
        tick.set_verticalalignment("top")
        tick.set_visible(False)

    for tick in plt_labels[::5]:
        tick.set_visible(True)

    plt.tick_params(axis='x', which='major', labelsize=10)

    fig.subplots_adjust(bottom=0.4)
    fig.suptitle(title)
    return fig
项目:fabric8-analytics-common    作者:fabric8-analytics    | 项目源码 | 文件源码
def create_statistic_graph(title, y_axis_label, labels, min_values, max_values, avg_values,
                           x_axis_label="pause time (seconds)", width=DEFAULT_WIDTH,
                           height=DEFAULT_HEIGHT, dpi=DPI):
    """Create summary (column) graph with min, average, and max values."""
    N = len(labels)
    indexes = np.arange(N)

    fig = plt.figure(figsize=(1.0 * width / dpi, 1.0 * height / dpi), dpi=dpi)
    plt.xlabel(x_axis_label)
    plt.ylabel(y_axis_label)
    plt.grid(True)
    plt.xticks(indexes, labels)
    locs, plt_labels = plt.xticks()
    plt.setp(plt_labels, rotation=90)

    plt.bar(indexes - 0.27, min_values, 0.25, color='red',
            edgecolor='black', label='min values')
    plt.bar(indexes, avg_values, 0.25, color='yellow',
            edgecolor='black', label='avg values')
    plt.bar(indexes + 0.27, max_values, 0.25, color='green',
            edgecolor='black', label='max values')

    plt.legend(loc='upper left')
    for tick in plt_labels:
        tick.set_horizontalalignment("left")
        tick.set_verticalalignment("top")
    plt.tick_params(axis='x', which='major', labelsize=10)
    # fig.subplots_adjust(bottom=0.4)
    fig.suptitle(title)
    return fig
项目:nn4nlp-code    作者:neubig    | 项目源码 | 文件源码
def plot_attention(src_words, trg_words, attention_matrix, file_name=None):
  """This takes in source and target words and an attention matrix (in numpy format)
  and prints a visualization of this to a file.
  :param src_words: a list of words in the source
  :param trg_words: a list of target words
  :param attention_matrix: a two-dimensional numpy array of values between zero and one,
    where rows correspond to source words, and columns correspond to target words
  :param file_name: the name of the file to which we write the attention
  """
  fig, ax = plt.subplots()
  #a lazy, rough, approximate way of making the image large enough
  fig.set_figwidth(int(len(trg_words)*.6))

  # put the major ticks at the middle of each cell
  ax.set_xticks(np.arange(attention_matrix.shape[1]) + 0.5, minor=False)
  ax.set_yticks(np.arange(attention_matrix.shape[0]) + 0.5, minor=False)
  ax.invert_yaxis()

  # label axes by words
  ax.set_xticklabels(trg_words, minor=False)
  ax.set_yticklabels(src_words, minor=False)
  ax.xaxis.tick_top()
  plt.setp(ax.get_xticklabels(), rotation=50, horizontalalignment='right')
  # draw the heatmap
  plt.pcolor(attention_matrix, cmap=plt.cm.Blues, vmin=0, vmax=1)
  plt.colorbar()

  if file_name != None:
    plt.savefig(file_name, dpi=100)
  else:
    plt.show()
  plt.close()
项目:tomato    作者:sertansenturk    | 项目源码 | 文件源码
def _plot_pitch_dist_note_models(cls, ax2, note_models,
                                     pitch_distribution):
        # plot pitch distribution
        try:
            ax2.plot(pitch_distribution.vals, pitch_distribution.bins,
                     color='gray')
        except AttributeError:
            logging.debug('The pitch distribution is not computed.')
            return

        # plot note models
        if note_models is not None:
            ytick_vals = cls._plot_note_models(
                ax2, note_models, pitch_distribution)
        else:
            peak_idx = pitch_distribution.detect_peaks()[0]
            ytick_vals = pitch_distribution.bins[peak_idx]

        # set the frequency ticks and grids
        ax2.set_yticks(ytick_vals)
        plt.setp(ax2.get_yticklabels(), visible=False)

        # define xlim higher than the highest peak so the note names have space
        ax2.set_xlim([0, 1.2 * max(pitch_distribution.vals)])

        # remove spines from the second subplot
        ax2.spines['top'].set_visible(False)
        ax2.spines['bottom'].set_visible(False)
        ax2.spines['left'].set_visible(False)
        ax2.spines['right'].set_visible(False)

        # remove the axis of the subplot 2
        ax2.axis('off')
项目:extinction    作者:kbarbary    | 项目源码 | 文件源码
def extinction_figure(wave, a_lambda, residual_from, residual_lims=(-0.1, 0.4), title_text='$R_V = 3.1$'):

    names = list(a_lambda.keys())  # consistent ordering between panels
    fig = plt.figure(figsize=(8.5, 6.))

    ax = plt.axes()
    for name in names:
        plt.plot(wave, a_lambda[name], label=name)
    plt.axvline(x=2700., ls=':', c='k')
    plt.axvline(x=3030.3030, ls=':', c='k')
    plt.axvline(x=9090.9091, ls=':', c='k')
    plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
    plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)    
    plt.text(0.65, 0.95, title_text, transform=ax.transAxes, va='top',
             ha='right', size='x-large')
    plt.ylabel('Extinction ($A(\lambda)$ / $A_V$)')
    plt.legend()
    plt.setp(ax.get_xticklabels(), visible=False)

    divider = make_axes_locatable(ax)
    axresid = divider.append_axes("bottom", size=2.0, pad=0.2, sharex=ax)
    for name in names:
        plt.plot(wave, a_lambda[name] - a_lambda[residual_from])
    plt.axvline(x=2700., ls=':', c='k')
    plt.axvline(x=3030.3030, ls=':', c='k')
    plt.axvline(x=9090.9091, ls=':', c='k')
    plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
    plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)
    plt.xlim(wave[0], wave[-1])
    plt.ylim(ymin=residual_lims[0], ymax=residual_lims[1])
    plt.ylabel('residual from ' + residual_from)
    plt.xlabel(r'Wavelength ($\mathrm{\AA}$)')

    ax.set_xscale('log')
    axresid.set_xscale('log')
    plt.tight_layout()

    return fig
项目:POWER    作者:pennelise    | 项目源码 | 文件源码
def wrcontour(dir, var, **kwargs):
    fig = plt.figure()
    rect = [0.1, 0.1, 0.8, 0.8]
    ax = WindroseAxes(fig, rect)
    fig.add_axes(ax)
    ax.contour(dir, var, **kwargs)
    l = ax.legend(axespad=-0.10)
    plt.setp(l.get_texts(), fontsize=8)
    plt.draw()
    plt.show()
    return ax
项目:POWER    作者:pennelise    | 项目源码 | 文件源码
def wrcontourf(dir, var, **kwargs):
    fig = plt.figure()
    rect = [0.1, 0.1, 0.8, 0.8]
    ax = WindroseAxes(fig, rect)
    fig.add_axes(ax)
    ax.contourf(dir, var, **kwargs)
    l = ax.legend(axespad=-0.10)
    plt.setp(l.get_texts(), fontsize=8)
    plt.draw()
    plt.show()
    return ax
项目:POWER    作者:pennelise    | 项目源码 | 文件源码
def wrbox(dir, var, **kwargs):
    fig = plt.figure()
    rect = [0.1, 0.1, 0.8, 0.8]
    ax = WindroseAxes(fig, rect)
    fig.add_axes(ax)
    ax.box(dir, var, **kwargs)
    l = ax.legend(axespad=-0.10)
    plt.setp(l.get_texts(), fontsize=8)
    plt.draw()
    plt.show()
    return ax
项目:POWER    作者:pennelise    | 项目源码 | 文件源码
def wrbar(dir, var, **kwargs):
    fig = plt.figure()
    rect = [0.1, 0.1, 0.8, 0.8]
    ax = WindroseAxes(fig, rect)
    fig.add_axes(ax)
    ax.bar(dir, var, **kwargs)
    l = ax.legend(axespad=-0.10)
    plt.setp(l.get_texts(), fontsize=8)
    plt.draw()
    plt.show()
    return ax
项目:POWER    作者:pennelise    | 项目源码 | 文件源码
def set_legend(ax):
    """Create a legend for the wind rose."""
    l = ax.legend(borderaxespad=-0.10)
    plt.setp(l.get_texts(), fontsize=8)
项目:coquery    作者:gkunter    | 项目源码 | 文件源码
def rotate_annotations(self, grid):
        for ax in grid.fig.axes:
            #ax.get_xaxis().get_major_formatter().set_scientific(False)

            xtl = ax.get_xticklabels()
            ytl = ax.get_yticklabels()
            plt.setp(xtl, rotation="horizontal")
            plt.setp(ytl, rotation="horizontal")

            sns_overlap = sns.utils.axis_ticklabels_overlap(xtl)

        if sns_overlap:
            grid.fig.autofmt_xdate()
项目:nxviz    作者:ericmjl    | 项目源码 | 文件源码
def despine(ax):
    for spine in ax.spines:
        ax.spines[spine].set_visible(False)
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.setp(ax.get_yticklabels(), visible=False)
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
项目:bolero    作者:rock-learning    | 项目源码 | 文件源码
def plot_objective():
    x, y = np.meshgrid(np.arange(-6, 6, 0.1), np.arange(-6, 6, 0.1))
    z = np.array([[objective.feedback([y[i, j], x[i, j]])
                   for i in range(x.shape[0])]
                   for j in range(x.shape[1])])
    plt.contourf(x, y, z, cmap=plt.cm.Blues,
                 levels=np.linspace(z.min(), z.max(), 30))
    plt.setp(plt.gca(), xticks=(), yticks=(), xlim=(-5, 5), ylim=(-5, 5))
项目:georges    作者:chernals    | 项目源码 | 文件源码
def prepare(ax, bl, **kwargs):
    bl = bl.line
    ticks_locations = beamline_get_ticks_locations(bl)
    ticks_labels = beamline_get_ticks_labels(bl)
    ax.tick_params(axis='both', which='major')
    ax.tick_params(axis='x', labelsize=6)
    ax.xaxis.set_major_locator(FixedLocator(ticks_locations))

    ax.set_xlim([ticks_locations[0], ticks_locations[-1]])
    ax.get_xaxis().set_tick_params(direction='out')
    plt.setp(ax.xaxis.get_majorticklabels(), rotation=-45)
    ax.yaxis.set_major_locator(MultipleLocator(10))
    ax.yaxis.set_minor_locator(MultipleLocator(5))
    ax.set_ylim(kwargs.get('ylim', [-60, 60]))
    ax.set_xlim([ticks_locations[0], ticks_locations[-1]])
    ax.set_xlabel('s (m)')
    ax.set_ylabel(r'Beam size (mm)')
    ax.grid(False, alpha=0.25)

    if kwargs.get('print_label', True):
        ax2 = ax.twiny()
        ax2.set_xlim([ticks_locations[0], ticks_locations[-1]])
        ax2.get_xaxis().set_tick_params(direction='out')
        ax2.tick_params(axis='both', which='major')
        ax2.tick_params(axis='x', labelsize=6)
        plt.setp(ax2.xaxis.get_majorticklabels(), rotation=-90)
        ax2.xaxis.set_major_formatter(FixedFormatter(ticks_labels))
        ax2.xaxis.set_major_locator(FixedLocator(ticks_locations))

    if kwargs.get("size_arrows", False):
        ax.set_yticklabels([str(abs(x)) for x in ax.get_yticks()])
        ax.annotate('', xy=(-0.103, 0.97), xytext=(-0.103, 0.75),
                    arrowprops=dict(arrowstyle="->", color='k'), xycoords=ax.transAxes)
        ax.annotate('', xy=(-0.103, 0.25), xycoords='axes fraction', xytext=(-0.103, 0.03),
                    arrowprops=dict(arrowstyle="<-", color='k'))
        ax.text(-0.126, 0.86, "Vertical", fontsize=7, rotation=90, transform=ax.transAxes)
        ax.text(-0.126, 0.22, "Horizontal", fontsize=7, rotation=90, transform=ax.transAxes)
项目:freqtrade    作者:gcarq    | 项目源码 | 文件源码
def plot_analyzed_dataframe(pair: str) -> None:
    """
    Calls analyze() and plots the returned dataframe
    :param pair: pair as str
    :return: None
    """

    # Init Bittrex to use public API
    exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
    dataframe = analyze.analyze_ticker(pair)

    # Two subplots sharing x axis
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
    fig.suptitle(pair, fontsize=14, fontweight='bold')
    ax1.plot(dataframe.index.values, dataframe['close'], label='close')
    # ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
    ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
    ax1.plot(dataframe.index.values, dataframe['tema'], ':', label='TEMA')
    ax1.plot(dataframe.index.values, dataframe['blower'], '-.', label='BB low')
    ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
    ax1.legend()

    ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
    ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
    # ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
    ax2.legend()

    ax3.plot(dataframe.index.values, dataframe['fastk'], label='k')
    ax3.plot(dataframe.index.values, dataframe['fastd'], label='d')
    ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
    ax3.legend()

    # Fine-tune figure; make subplots close to each other and hide x ticks for
    # all but bottom plot.
    fig.subplots_adjust(hspace=0)
    plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
    plt.show()
项目:NetPower_TestBed    作者:Vignesh2208    | 项目源码 | 文件源码
def plot_data(self, series):

        f, (ax1) = plt.subplots(1, 1, sharex=True, sharey=False, figsize=(5.0, 4.0))

        data_xtick_labels = self.data["10"].keys()
        data_xticks = [int(x) for x in data_xtick_labels]

        ylabel = None
        if series == "mean":
            ylabel = "Mean Latency"
        elif series == "sd":
            ylabel = "Standard Deviation of Latency"
        elif series == "sem":
            ylabel = "Standard Error of Mean of Latency"

        self.plot_lines_with_error_bars(series,
                                        ax1,
                                        "Per Link Latency",
                                        ylabel,
                                        "",
                                        y_scale='linear',
                                        x_min_factor=0.75,
                                        x_max_factor=1.1,
                                        y_min_factor=0.9,
                                        y_max_factor=1,
                                        xticks=data_xticks,
                                        xtick_labels=data_xtick_labels)

        xlabels = ax1.get_xticklabels()
        plt.setp(xlabels, rotation=0, fontsize=10)

        # Shrink current axis's height by 25% on the bottom
        box = ax1.get_position()
        ax1.set_position([box.x0, box.y0 + box.height * 0.3, box.width, box.height * 0.7])
        handles, labels = ax1.get_legend_handles_labels()

        ax1.legend(handles, labels, shadow=True, fontsize=10, loc='upper center', ncol=2, markerscale=1.0,
                   frameon=True, fancybox=True, columnspacing=0.5, bbox_to_anchor=[0.5, -0.25])

        plt.savefig(series + "_latency_evaluation_" + self.evaluation_type + ".png", dpi=1000)
        plt.show()