Python matplotlib.pyplot 模块,fill_between() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.fill_between()

项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot_joints_step(self, stamp):
        if self.plots == '':
            return

        mean_joints = self.get_mean_joints()
        std_joints = self.get_std_joints()
        f = plt.figure(facecolor="white", figsize=(16, 12))
        ax = f.add_subplot(111)
        ax.set_title('Mean +- {}std'.format(self.std_factor))
        color_id = 0
        for joint_id, joint_mean in enumerate(mean_joints):
            ax.plot(self.x, joint_mean, label='Joint {}'.format(joint_id), color=self.colors[color_id], linestyle='dashed')
            plt.fill_between(self.x, joint_mean - self.std_factor*std_joints[joint_id],
                             joint_mean + self.std_factor*std_joints[joint_id],
                             alpha=0.1, color=self.colors[color_id])
            color_id = (color_id + 1) % len(self.colors)
        plt.legend(loc='upper left')
        self._mk_dirs()
        filename = '_'.join(['joints', stamp])
        plt.savefig(join(self.plots, filename) + '.svg', dpi=100, transparent=False)
        plt.close('all')
项目:snn4hrl    作者:florensacc    | 项目源码 | 文件源码
def plot_series(series):
    plt.figure(1)
    # colors = [np.array([1, 0.1, 0.1]), np.array([0.1, 1, 0.1]), np.array([0.1, 0.1, 1])]
    colors = ['m', 'g', 'r', 'b', 'y']
    for i, s in enumerate(series):
        print(s['x'], s['y'], s['std'], s['label'])
        small_number = np.ones_like(s['x']) * (s['x'][1]*0.1)
        x_axis = np.where(s['x'] == 0, small_number, s['x'])
        plt.plot(x_axis, s['y'], color=colors[i], label=s['label'])
        plt.fill_between(x_axis, s['y'] - s['std'], s['y'] + s['std'], color=colors[i], alpha=0.2)
    plt.semilogx()
    plt.xlabel('MI reward bonus')
    plt.ylabel('Final intrinsic reward')
    plt.title('Final intrinsic reward in pointMDP with 10 good modes')
    plt.legend(loc='best')
    plt.show()
项目:scipyplot    作者:robertocalandra    | 项目源码 | 文件源码
def set_data(self, y, variance, x=None):
        """
        update a gauss_1D with new data
        :param y: 
        :param variance: 
        :param x: 
        :return: 
        """
        n_points = len(y)
        if x is None:
            x = np.arange(n_points)
        self._handle.set_data(x, y)  # Update mean
        new_percentiles = []
        out = self.distribution.split("+")
        n_percentiles = len(out)
        sub_alpha = str(self.alpha / n_percentiles)  # Normalize w.r.t. the number of percentiles
        for i, percentile in enumerate(self._percentiles):
            percentile.remove()
            percentile = float(out[i])
            assert 0 <= percentile <= 100, 'Percentile must be >0 & <100. Instead is %f' % percentile
            interval = scipy.stats.norm.interval(percentile/100, loc=y, scale=np.sqrt(variance))
            interval = np.nan_to_num(interval)  # Fix stupid case of norm.interval(0) returning nan
            new_percentiles.append(plt.fill_between(x, interval[0], interval[1], color=self._handle.get_color(), alpha=sub_alpha))
        #       TODO: not implemented yet
        pass
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def plot_evolution(params, color=None, label=None):
    data = get_results(NAME, params, calc=do_calculations)
    times = data.times
    success = data.success
    N = float(len(success))
    t = sorted(times[success])
    p = np.arange(sum(success))/N
    t.append(endtime)
    p = np.append(p, [p[-1]])
    errp = 1.96*np.sqrt(p*(1.-p)/N) # 95% confidence

    plt.semilogx(t, p, color=color, label=label)
    plt.fill_between(t, p - errp, p + errp, alpha=0.2,
                     facecolor=color, linewidth=0)
    plt.xlabel("Time [ns]")
    plt.ylabel("Exit probability")
    plt.xlim(xmin=0.1, xmax=5e6)
    print "last time: %.5f ms\nend prob: %.3f\nstd. dev.: %.3f" % (
        t[-2]*1e-6, p[-2], errp[-2])
项目:eemeter    作者:openeemeter    | 项目源码 | 文件源码
def plot(self):
        ''' Plots fit against input data. Should not be run before the
        :code:`.fit(` method.
        '''

        try:
            import matplotlib.pyplot as plt
        except ImportError:
            warnings.warn("Cannot plot - no matplotlib.")
            return None

        plt.title("actual v. estimated w/ 95% confidence")

        self.estimated.plot(color='b', alpha=0.7)

        plt.fill_between(self.estimated.index.to_datetime(),
                         self.estimated + self.upper,
                         self.estimated - self.lower,
                         color='b', alpha=0.3)

        pd.Series(self.y.values.ravel(), index=self.estimated.index).plot(
            color='k', linewidth=1.5)

        plt.show()
项目:Cocktail-Party-Problem    作者:vishwajeet97    | 项目源码 | 文件源码
def plotSounds(sound_list, name_list, samplerate, path, toSave=False):
    """Plots the sounds as a time series data"""

    times = np.arange(len(sound_list[0]))/float(samplerate)

    fig = plt.figure(figsize=(15,4))
    imageCoordinate = 100 + 10*len(sound_list) + 1
    i = 0

    for sound in sound_list:
        fig.add_subplot(imageCoordinate)
        plt.fill_between(times, sound, color='k')
        plt.xlim(times[0], times[-1])
        plt.title(name_list[i])
        plt.xlabel('time (s)')
        plt.ylabel('amplitude')
        # plt.axis("off")
        plt.plot(sound)

        imageCoordinate += 1
        i += 1

    if toSave:
        plt.savefig("./plots/sounds/" + path + ".png", bbox_inches='tight')
    plt.show()
项目:Cocktail-Party-Problem    作者:vishwajeet97    | 项目源码 | 文件源码
def plotSounds(sound_list, name_list, samplerate, path, toSave=False):
    """Plots the sounds as a time series data"""

    times = np.arange(len(sound_list[0]))/float(samplerate)

    fig = plt.figure(figsize=(15,4))
    imageCoordinate = 100 + 10*len(sound_list) + 1
    i = 0

    for sound in sound_list:
        fig.add_subplot(imageCoordinate)
        plt.fill_between(times, sound, color='k')
        plt.xlim(times[0], times[-1])
        plt.title(name_list[i])
        plt.xlabel('time (s)')
        plt.ylabel('amplitude')
        # plt.axis("off")
        plt.plot(sound)

        imageCoordinate += 1
        i += 1

    if toSave:
        plt.savefig(path + ".jpg", bbox_inches='tight')
    plt.show()
项目:python_demo    作者:Wasim37    | 项目源码 | 文件源码
def fill_plot():
    """
    fill plot
    """
    # ??????
    x = np.linspace(-2*np.pi, 2*np.pi, 1000, endpoint=True)
    y = np.sin(x)

    # ??
    plt.plot(x, y, color="blue", alpha=1.00)

    # ????
    # plt.fill_between(x, y1, y2, where=None, *kwargs)
    plt.fill_between(x, 0, y, y > 0, color="blue", alpha=.25)
    plt.fill_between(x, 0, y, y < 0, color="red", alpha=.25)

    # ????
    plt.show()
    return
# fill_plot()
项目:pyGPGO    作者:hawk31    | 项目源码 | 文件源码
def plotGPGO(gpgo, param):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    hat = gpgo.GP.predict(x_test, return_std=True)
    y_hat, y_std = hat[0], np.sqrt(hat[1])
    l, u = y_hat - 1.96 * y_std, y_hat + 1.96 * y_std
    fig = plt.figure()
    r = fig.add_subplot(2, 1, 1)
    r.set_title('Fitted Gaussian process')
    plt.fill_between(x_test.flatten(), l, u, alpha=0.2)
    plt.plot(x_test.flatten(), y_hat, color='red', label='Posterior mean')
    plt.legend(loc=0)
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    r = fig.add_subplot(2, 1, 2)
    r.set_title('Acquisition function')
    plt.plot(x_test, a, color='green')
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=1000)
    plt.axvline(x=gpgo.best, color='black', label='Found optima')
    plt.legend(loc=0)
    plt.tight_layout()
    plt.savefig(os.path.join(os.getcwd(), 'mthesis_text/figures/chapter3/sine/{}.pdf'.format(i)))
    plt.show()
项目:pyGPGO    作者:hawk31    | 项目源码 | 文件源码
def plotGPGO(gpgo, param, index, new=True):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    y_hat, y_var = gpgo.GP.predict(x_test, return_std=True)
    std = np.sqrt(y_var)
    l, u = y_hat - 1.96 * std, y_hat + 1.96 * std
    if new:
        plt.figure()
        plt.subplot(5, 1, 1)
        plt.fill_between(x_test.flatten(), l, u, alpha=0.2)
        plt.plot(x_test.flatten(), y_hat)
    plt.subplot(5, 1, index)
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    plt.plot(x_test, a, color=colors[index - 2], label=acq_titles[index - 2])
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=1000)
    plt.axvline(x=gpgo.best)
    plt.legend(loc=0)
项目:Gaussian_process    作者:happyjin    | 项目源码 | 文件源码
def plot_true_diff(X_train, X_test, y_train, true_fun, mu_post, stand_devi):
    """
    plot true function and difference between true function and posterior prediction
    :param X_train: training data
    :param y_train: function value of training data
    :param true_fun: true function which get from dataset_generator function
    :param mu_post: mean of posterior functions
    :param stand_devi: standard derivation of posterior functions
    :return:
    """
    plt.subplot(4, 2, 7)
    plt.plot(X_train, y_train, 'r+', ms=20)
    plt.plot(X_test, true_fun(X_test), 'b-')
    plt.gca().fill_between(X_test.flat, mu_post - 3 * stand_devi, mu_post + 3 * stand_devi, color="#dddddd")
    plt.plot(X_test, mu_post, 'r--', lw=2)
    plt.title('Mean predictions plus 3 st.deviations')
    plt.axis([-5, 5, -3, 3])
项目:pydlm    作者:wwrechard    | 项目源码 | 文件源码
def plotInterval(time, upper, lower, intervalType, color='black'):
    """
    The function to plot confidence interval.

    Args:
        time: time label
        upper: the upper bound
        lower: the lower bound
        color: the color of the plot
    """
    ALPHA = 0.4
    if time is None:
        if intervalType == 'line':
            plt.plot(upper, '--', color=color)
            plt.plot(lower, '--', color=color)
        elif intervalType == 'ribbon':
            plt.fill_between(upper, lower, facecolor=color,
                             alpha=ALPHA)
    else:
        if intervalType == 'line':
            plt.plot(time, upper, '--', color=color)
            plt.plot(time, lower, '--', color=color)
        elif intervalType == 'ribbon':
            plt.fill_between(time, upper, lower,
                             facecolor=color, alpha=ALPHA)
项目:WaNN    作者:TeoZosa    | 项目源码 | 文件源码
def PlotValidationCurve(param_range, train_mean, train_std, test_mean, test_std):
    #todo: automatically save plot to disk for exportation
    #plot data

    plot_params = [item[0] for item in param_range]
    plot.plot(plot_params, train_mean, color='blue', marker='o', markersize=5, label='training accuracy')
    plot.fill_between(plot_params, train_mean+train_std, train_mean-train_std, alpha=0.15, color='blue')

    plot.plot(plot_params, test_mean, color='green', linestyle='--', marker='s', markersize=5, label='validation accuracy')
    plot.fill_between(plot_params, test_mean+test_std, test_mean-test_std, alpha=0.15, color='green')

    #show plot
    plot.grid()
    plot.xscale('log', basex=2)#since hidden units are all powers of 2
    plot.xlabel('Parameter: Number of hidden units')
    plot.ylabel('Accuracy')
    plot.legend(loc='lower right')
    plot.ylim([0, 1.0])
    plot.show()
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def infer_states_Gaussian_ADF(Y,variance,true_states=None,do_plot=True):
    '''
    Parameters
    ----------

    Returns
    -------
    '''
    fx0 = hmm.Gaussian(0,0)
    fA  = hmm.DiffusionGaussian(variance)
    fB  = hmm.PoissonObservationModel(1,0)
    L = len(Y)
    fwd,bwd,posterior = forward_backward_abstract(Y,L,fx0,fA,fB)
    m = np.array([p.m for p in posterior])
    v = np.array([p.t for p in posterior])
    s = v**-.5
    if do_plot:
        plt.figure()
        plt.plot(m,color='k')
        plt.fill_between(range(L),m-s*1.95,m+s*1.95,color=(0.1,)*4,lw=0)
        if not true_states is None:
            plt.plot(true_states,color='r');
        plt.xlim(0,L)
    return m,v
项目:Buffe    作者:bentzinir    | 项目源码 | 文件源码
def main(argv):
    import matplotlib.pyplot as plt
    import numpy as np
    for in_file in argv:
        with open(in_file, 'r') as f:
            lines = [l for l in f.read().split('\n') if l.find('R_std') != -1]
            iters = []
            rewards = []
            errors = []
            for l in lines:
                iters.append(float(l.split(' ')[3].replace(',', '')))
                rewards.append(float(l.split(' ')[-3].replace(',', '')))
                errors.append(float(l.split(' ')[-1].replace(',', '')))

        plt.plot(iters, rewards, label=in_file, linewidth=2.0)
        plt.fill_between(iters, np.asarray(rewards)-errors, np.asarray(rewards)+errors, alpha=0.2)
    plt.title('Learning Curves')
    plt.legend(loc=4)
    plt.xlabel('Iterations[x1000]')
    plt.ylabel('Reward')
    plt.show()
项目:HRG    作者:nddsg    | 项目源码 | 文件源码
def draw_diam_plot(orig_g, mG):
    df = pd.DataFrame(mG)
    gD = bfs_eff_diam(orig_g, 20, .9)
    ori_degree_seq = []
    for i in range(0, len(max(mG))):
        ori_degree_seq.append(gD)

    plt.fill_between(df.columns, df.mean() - df.sem(), df.mean() + df.sem(), color='blue', alpha=0.2, label="se")
    h, = plt.plot(df.mean(), color='blue', aa=True, linewidth=4, ls='--', label="H*")
    orig, = plt.plot(ori_degree_seq, color='black', linewidth=2, ls='-', label="H")

    plt.title('Diameter Plot')
    plt.ylabel('Diameter')
    plt.xlabel('Growth')

    plt.tick_params(
        axis='x',  # changes apply to the x-axis
        which='both',  # both major and minor ticks are affected
        bottom='off',  # ticks along the bottom edge are off
        top='off',  # ticks along the top edge are off
        labelbottom='off')  # labels along the bottom edge are off
    plt.legend([orig, h], ['$H$', 'HRG $H^*$'], loc=4)
    # fig = plt.gcf()
    # fig.set_size_inches(5, 4, forward=True)
    plt.show()
项目:BadParser    作者:stanojevic    | 项目源码 | 文件源码
def meanSwapsShadowedLine(datafile, prefix, ylabel, xmax=None, ylim=None):

    #Process data
    df = pd.read_csv(datafile, delimiter=",")

    #Filter out sentences with 0 swaps
    df = df.loc[df[prefix+"Eager"]>0]
    grouped = df.groupby("words", as_index=True)
    idx = grouped.groups.keys()


    all_means=grouped.mean()
    all_stds=grouped.std(ddof=0)


    #Plot
    cols = [prefix+laziness for laziness in ('Eager', 'Lazy', 'Lazier')]
    labels = ('Eager', 'Lazy', 'Lazier')
    markers = ('p', '^', '8')
    color = ('aquamarine', 'gold', 'purple')
    if xmax is not None:
        plt.xlim(2,xmax+0.5)
    if ylim is not None:
    plt.ylim(ylim) 

    for i in range(len(cols)):
        means = all_means[cols[i]][:xmax]
        stds = all_stds[cols[i]][:xmax]
        idx = idx[:xmax]
        plt.xlabel("Sentence Length", fontsize=16)
        plt.ylabel(ylabel, fontsize=16)
        plt.plot(idx, means, color[i], marker=markers[i], lw=1.5, label=labels[i])
        plt.fill_between(idx, means+stds, means-stds, color=color[i], alpha=0.5*1/(i+1))
    plt.legend(loc="upper left")
    #plt.show()
    plt.savefig("%sswaps.pdf"%prefix)
    plt.close()
项目:histwords    作者:williamleif    | 项目源码 | 文件源码
def plot_nice_err(x, y, y_err, color='blue', ls='-', lw=1):
   plt.plot(x, y, color=color, ls=ls, lw=lw)
   plt.fill_between(x, y-y_err, y+y_err, alpha=0.1, color=color)
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot_conditioned_joints_goal(self, goal, obtained_traj, mean_goal, std_goal, stamp):
        if self.plots == '':
            return

        self._mk_dirs()
        color_id = 0
        mean_joints = self.get_mean_joints()
        std_joints = self.get_std_joints()
        for joint_id, joint_goal in enumerate(goal):
            f = plt.figure(facecolor="white", figsize=(16, 12))
            ax = f.add_subplot(111)
            ax.set_title('Conditioning joint {}: mean, {}std, var(goal), output, goal'.format(joint_id, self.std_factor))
            plt.plot(self.x, mean_joints[joint_id], label='Mean joint {}'.format(joint_id), color=self.colors[color_id], linestyle='dashed')
            plt.fill_between(self.x, mean_joints[joint_id] - self.std_factor*std_joints[joint_id],
                             mean_joints[joint_id] + self.std_factor*std_joints[joint_id],
                             alpha=0.1, color=self.colors[color_id])
            color_goal = '0.2'  # grey 20%
            plt.plot(self.x, mean_goal[joint_id], color=color_goal, label='Conditioned traj joint {}'.format(joint_id), linestyle=':')
            plt.fill_between(self.x, mean_goal[joint_id] - self.std_factor*std_goal[joint_id],
                             mean_goal[joint_id] + self.std_factor*std_goal[joint_id],
                             alpha=0.1, color=color_goal)
            plt.plot([1], [joint_goal], marker='o', markerfacecolor=self.colors[color_id], markersize=7, label='Goal')
            #plt.plot([1], [obtained_traj[-1, joint_id]], marker='o', markerfacecolor=self.colors[color_id], markersize=4)
            plt.plot(self.x, obtained_traj[:, joint_id], color=self.colors[color_id], label='Refined output traj')
            plt.legend(loc='upper left', scatterpoints = 1)
            color_id = (color_id + 1) % len(self.colors)
            end_stamp = '_'.join([stamp, 'joint', str(joint_id)])
            plt.savefig(join(self.plots, end_stamp) + '.svg', dpi=100, transparent=False)
            plt.close('all')
项目:promplib    作者:baxter-flowers    | 项目源码 | 文件源码
def plot(self, x=None, legend='promp', color=None):
        mean = np.dot(self.Phi.T, self.meanW)
        x = self.x if x is None else x
        plt.plot(x, mean, color=color, label=legend)
        std = 2*np.sqrt(np.diag(np.dot(self.Phi.T, np.dot(self.sigmaW, self.Phi))))
        plt.fill_between(x, mean - std, mean + std, color=color, alpha=0.2)
        for viapoint_id, viapoint in enumerate(self.viapoints):
            x_index = x[int(round((len(x)-1)*viapoint['t'], 0))]
            plt.plot(x_index, viapoint['obsy'], marker="o", markersize=10, label="Via {} {}".format(viapoint_id, legend), color=color)
项目:NLP-JD    作者:ZexinYan    | 项目源码 | 文件源码
def plot_learning_curve_helper(self, train_sizes, train_scores, test_scores, title, alpha=0.1):
        train_scores = -train_scores
        test_scores = -test_scores
        train_mean = np.mean(train_scores, axis=1)
        train_std = np.std(train_scores, axis=1)
        test_mean = np.mean(test_scores, axis=1)
        test_std = np.std(test_scores, axis=1)
        plt.plot(train_sizes, train_mean, label='train score', color='blue', marker='o')
        plt.fill_between(train_sizes, train_mean + train_std,
                         train_mean - train_std, color='blue', alpha=alpha)
        plt.plot(train_sizes, test_mean, label='test score', color='red', marker='o')
        plt.fill_between(train_sizes, test_mean + test_std, test_mean - test_std, color='red', alpha=alpha)
        plt.title(title)
        plt.xlabel('Number of training points')
        plt.ylabel(r'Mean Squared Error')
        plt.grid(ls='--')
        plt.legend(loc='best')
        plt.show()

    # def feature_reduction(self, X_train, y_train, X_val):
    #     thresh = 5 * 10 ** (-3)
    #     # model = XGBRegressor()
    #     model.fit(X_train, y_train)
    #     selection = SelectFromModel(model, threshold=thresh, prefit=True)
    #     select_X_train = selection.transform(X_train)
    #     select_X_val = selection.transform(X_val)
    #     return select_X_train, select_X_val
项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码
def nTron_IQ_plot(iq_vals, desc, threshold=0.0):
    iq_vals = iq_vals.real < threshold
    iqr = iq_vals.reshape(desc['Integrated'].dims(), order='C')
    iqrm = np.mean(iqr, axis=0)
    extent = (0.18, 10, 0.14, 0.40)
    aspect = 9.84/0.34
    plt.imshow(iqrm, origin='lower', cmap='RdGy', extent=extent, aspect=aspect)


# def plot_BER(volts, multidata, **kwargs):
#     ber_dat = [switching_BER(data, **kwargs) for data in multidata]
#     mean = []; limit = []; ci68 = []; ci95 = []
#     for datum in ber_dat:
#         mean.append(datum[0])
#         limit.append(datum[1])
#         ci68.append(datum[2])
#         ci95.append(datum[3])
#     mean = np.array(mean)
#     limit = np.array(limit)
#     fig = plt.figure()
#     plt.semilogy(volts, 1-mean, '-o')
#     plt.semilogy(volts, 1-limit, linestyle="--")
#     plt.fill_between(volts, [1-ci[0] for ci in ci68], [1-ci[1] for ci in ci68],  alpha=0.2, edgecolor="none")
#     plt.fill_between(volts, [1-ci[0] for ci in ci95], [1-ci[1] for ci in ci95],  alpha=0.2, edgecolor="none")
#     plt.ylabel("Switching Error Rate", size=14)
#     plt.xlabel("Pulse Voltage (V)", size=14)
#     plt.title("Bit Error Rate", size=16)
#     return fig

# def load_BER_data_legacy(filename):
#     with h5py.File(filename, 'r') as f:
#         dsets = [f[k] for k in f.keys() if "data" in k]
#         data_mean = [np.mean(dset.value, axis=-1) for dset in dsets]
#         volts = [float(dset.attrs['pulse_voltage']) for dset in dsets]
#     return volts, data_mean
项目:scipyplot    作者:robertocalandra    | 项目源码 | 文件源码
def distribution_1D(y, percentiles, x=None, color=None, alpha=0.60, distribution='68+95+99', linewidth=4, linestyle='-',
                    marker=None, markersize=10, markevery=0.1):
    """
    Plot a distribution
    :param y:
    :param percentiles:
    :param x:
    :param color: Color used for plotting the curve
    :param alpha: Transparency level used for plotting the distributions
    :param distribution: The percentiles of the data that are to be plotter
    :param linewidth:
    :param linestyle:
    :param marker:
    :param markersize:
    :param markevery: scalar [0-1]
    :return:
    """
    n_points = len(y)
    if x is None:
        x = np.arange(n_points)
    # assert len(y) == len(variance), 'Dimensions variance do not match dimensions y'
    assert len(y) == len(x), 'Dimensions x do not match dimensions y'
    if color is None:
        handle, = plt.plot(x, y, linewidth=linewidth, linestyle=linestyle,
                           marker=marker, markersize=markersize, markevery=markevery)
    else:
        handle, = plt.plot(x, y, linewidth=linewidth, linestyle=linestyle,
                           marker=marker, markersize=markersize, markevery=markevery, color=color)
    out_des = distribution.split("+")
    # assert out > len()
    out = len(percentiles)
    sub_alpha = str(alpha / out * 2)  # Normalize w.r.t. the number of percentiles
    for i in range(0, out, 2):
        plt.fill_between(x, percentiles[i], percentiles[i+1], color=handle.get_color(), alpha=sub_alpha)
    return handle
项目:dmon-adp    作者:igabriel85    | 项目源码 | 文件源码
def validation_crv(estimator, X, y, title, n_jobs=1):
    param_range = np.logspace(-6, -1, 5)
    train_scores, test_scores = validation_curve(
        estimator, X, y, param_name="max_features", param_range=param_range,
        cv=10, scoring="accuracy", n_jobs=n_jobs)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)

    plt.title(title)
    plt.xlabel("$\gamma$")
    plt.ylabel("Score")
    plt.ylim(0.0, 1.1)
    lw = 2
    plt.semilogx(param_range, train_scores_mean, label="Training score",
                 color="darkorange", lw=lw)
    plt.fill_between(param_range, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.2,
                     color="darkorange", lw=lw)
    plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",
                 color="navy", lw=lw)
    plt.fill_between(param_range, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.2,
                     color="navy", lw=lw)
    plt.legend(loc="best")
    return plt
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def plot_cdf(self, x, *args, **kwargs):
        fx = self.cdf(x, N=1000, compute_std=True)
        itv = 2*self._std
        line, = plt.plot(x, fx, *args, **kwargs)
        plt.fill_between(x, fx - itv, fx + itv,
                         color=line.get_color(), alpha=0.2)
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def plot_pdf(self, x, *args, **kwargs):
        log = False if not "log" in kwargs else kwargs.pop("log")
        # plot at centers for compatibility with hist
        x = .5*(x[1:] + x[:-1])
        fx = self.pdf(x, N=100, compute_std=True, log=log)
        itv = 2*self._std
        line, = plt.plot(x, fx, *args, **kwargs)
        plt.fill_between(x, fx - itv, fx + itv,
                         color=line.get_color(), alpha=0.2)
项目:brainpipe    作者:EtienneCmb    | 项目源码 | 文件源码
def _BorderPlot(time, x, color, kind, alpha, legend, linewidth, axes):
    npts, dev = x.shape
    # Get the deviation/sem :
    xStd = np.std(x, axis=1)
    if kind is 'sem':
        xStd = xStd/np.sqrt(npts-1)
    xMean = np.mean(x, 1)
    xLow, xHigh = xMean-xStd, xMean+xStd

    # Plot :
    if axes is None:
        axes = plt.gca()
    plt.sca(axes)
    ax = plt.plot(time, xMean, color=color, label=legend, linewidth=linewidth)
    plt.fill_between(time, xLow, xHigh, alpha=alpha, color=ax[0].get_color())
项目:supvisors    作者:julien6387    | 项目源码 | 文件源码
def export_image(self, image_contents):
        """ Write curves into a PNG image. """
        if self.ydata:
            # calculate and apply max range
            all_ydata = []
            map(all_ydata.extend, [ydata for ydata in self.ydata.values()])
            plt.ylim(self.get_range(all_ydata))
            # create plots for each series of data
            for i, ((title, unit), ydata) in enumerate(self.ydata.items()):
                # create X axis
                xdata = [x for x in range(len(ydata))]
                # get additional statistics
                avg, rate, (a, b), dev = get_stats(ydata)
                # plot the data
                dataLine, = plt.plot(xdata, ydata, label=title)
                plotColor = dataLine.get_color()
                # plot the mean line
                avg_data = [avg for _ in ydata]
                meanLine, = plt.plot(xdata, avg_data, label='Mean: {:.2f}{}'.format(avg, unit), linestyle='--', color=plotColor)
                if a is not None:
                    # plot the linear regression
                    plt.plot([xdata[0], xdata[-1]], [a * xdata[0] + b,  a * xdata[-1] + b], linestyle=':', color=plotColor)
                if dev is not None:
                    # plot the standard deviation
                    plt.fill_between(xdata, avg-dev, avg+dev, facecolor=plotColor, alpha=.3)
                # create the legend
                legend = plt.legend(handles=[dataLine, meanLine], loc=i+1, fontsize='small', fancybox=True, shadow=True)
                # add the legend to the current axes
                plt.gca().add_artist(legend)
            # save image to internal memory buffer
            plt.savefig(image_contents.new_image(), dpi=80, bbox_inches='tight', format='png')
            # reset yData
            self.ydata = {}
        # close plot
        plt.close()
项目:pyjoyplot    作者:neal-o-r    | 项目源码 | 文件源码
def _line_plot(self):

        fig = plt.figure(figsize=figsize)
        ax = plt.axes(frameon=False)

        self.data = self.data.sort_values(by=self.x)

        for i, c in enumerate(self.categories):

            i = self.n - (i + 1)
            df = self.data[
                self.data[self.hue] == c
                ].rolling(self.smooth).mean()

            x_d = df.loc[df[self.hue] == c, self.x].values
            y_d = df.loc[df[self.hue] == c, self.y].values
            y_d = (y_d - np.nanmin(y_d)
                )/(np.nanmax(y_d) - np.nanmin(y_d))

            y_d += i * self.offset
            y_min = np.tile(np.nanmin(y_d), (len(y_d)))

            col = self.colours[i % self.n_c]

            plt.plot(x_d, y_d, 
                    color=col, 
                    label=c,
                    alpha=0.8)

            plt.fill_between(x_d, y_d, y_min,
                    alpha=0.6,
                    color=col)

        x_min = self.data[self.x].min()
        x_max = self.data[self.x].max()
        plt.xlim(x_min, x_max)  
        plt.xlabel(self.x)
        ax.set_yticks([self.offset*i for i in range(self.n)[::-1]])
        ax.set_yticklabels(self.categories)

        return ax
项目:radwatch-analysis    作者:bearing    | 项目源码 | 文件源码
def highlight(energy_axis, counts, zero_offset, energy_per_channel,
              channel_list, facecolor):
    left_region = (energy_axis >=
                   zero_offset + energy_per_channel * channel_list[0])
    right_region = (energy_axis <=
                    zero_offset + energy_per_channel * channel_list[1])
    region = left_region & right_region
    plt.fill_between(energy_axis, counts, where=region, facecolor=facecolor)
项目:DeepRL    作者:arnomoonens    | 项目源码 | 文件源码
def plot_tasks(data, x_label, smoothing_function=None, xmin=None, xmax=None, max_reward=None, legend=True, save_directory=None, show_plots=True):
    x_label_upper = x_label[0].upper() + x_label[1:]
    for scalar, tasks in data.items():
        fig = plt.figure()
        # min_y = np.inf
        # max_y = -np.inf
        for task, epochs_values in sorted(tasks.items(), key=operator.itemgetter(0)):
            mean = np.mean(epochs_values["values"], axis=0)
            if smoothing_function:
                mean = smoothing_function(mean)
            # percentiles = np.percentile(epochs_values["values"], [25, 75], axis=0)
            std = np.std(epochs_values["values"], axis=0)
            std = std[len(std) - len(mean):]
            # error_min, error_max = mean - std, mean + std
            plt.plot(epochs_values["epochs"], mean, label="Task " + str(task))
            # plt.fill_between(x, error_min, error_max, alpha=0.3)
            # min_y = min(min_y, min(error_min))
            # max_y = max(max_y, max(filter(lambda x: x != np.inf, error_max)))
        if legend:
            plt.legend()
        plt.xlim(xmin=xmin, xmax=xmax)
        # plt.ylim(ymin=min(0, min_y), ymax=max(0, max_y + 0.1 * max_y))
        if "reward" in scalar.lower() and max_reward is not None:
            ymax = max_reward * 1.1
        else:
            ymax = None
        plt.ylim(ymax=ymax)
        plt.xlabel(x_label_upper)
        plt.ylabel(scalar)
        plt.title("{} per {}".format(scalar, x_label))
        fig.canvas.set_window_title("{} per {}".format(scalar, x_label))
        if save_directory is not None:
            plt.savefig(os.path.join(save_directory, "{}_per_{}".format(scalar, x_label) + IMAGES_EXT))
    if show_plots:
        plt.show()
项目:pyprocessmacro    作者:QuentinAndre    | 项目源码 | 文件源码
def plot_errorbands(x, y, llci, ulci, plot_kws=None, err_kws=None, *args, **kwargs):
    err_kws_final = kwargs.copy()
    err_kws_final.update(err_kws)
    err_kws_final.update({'label':''})
    plot_kws_final = kwargs.copy()
    plot_kws_final.update(plot_kws)
    plt.plot(x, y, **plot_kws_final)
    plt.fill_between(x, llci, ulci, **err_kws_final)
    return None
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        #np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(5,700)
        train_scores, valid_scores = validation_curve(self.adaReg, X, y, "n_estimators",
                                              train_sizes, cv=5, scoring='mean_squared_error')
        train_scores = -1.0/5 *train_scores
        valid_scores = -1.0/5 *valid_scores

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training MSE")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation MSE")

        plt.legend(loc="best")

        plt.xlabel('Estimators')
        plt.ylabel('MSE')
        plt.title('Validation Curve with AdaBoost-DecisionTree Regression\n on the parameter of Estimators when the Decsion Tree has max depth=10')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        #np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(2,60)
        train_scores, valid_scores = validation_curve(DecisionTreeRegressor(max_features=None), X, y, "max_depth",
                                              train_sizes, cv=5, scoring='mean_squared_error')
        train_scores = -1.0/5 *train_scores
        valid_scores = -1.0/5 *valid_scores

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training MSE")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation MSE")

        plt.legend(loc="best")

        plt.xlabel('Max Depth')
        plt.ylabel('MSE')
        plt.title('Validation Curve with Decision \nTree Regression on the parameter of Max Depth')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        #np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(2,100,2)
        train_scores, valid_scores = validation_curve(self.regr, X, y, "n_neighbors",
                                              train_sizes, cv=5, scoring='mean_squared_error')
        train_scores = -1.0/5*train_scores
        valid_scores = -1.0/5*valid_scores

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training MSE")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation MSE")

        plt.legend(loc="best")

        plt.xlabel('K Neighbors')
        plt.ylabel('MSE')
        plt.title('Validation Curve with KNN Regression on the parameter of K Neighbors')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve_maxdepth(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        #np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(1,60)
        train_scores, valid_scores = validation_curve(self.model, X, y, "max_depth",
                                              train_sizes, cv=5, scoring='mean_squared_error')
        train_scores = -1.0/5*train_scores
        valid_scores = -1.0/5*valid_scores

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training MSE")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation MSE")

        plt.legend(loc="best")

        plt.xlabel('Max Depth')
        plt.ylabel('MSE')
        plt.title('Validation Curve with Random Forest Regression \non the parameter of Max Depth when n_estimators=32')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve_estimators(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        #np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(1,40)
        train_scores, valid_scores = validation_curve(self.model, X, y, "n_estimators",
                                              train_sizes, cv=5, scoring='mean_squared_error')
        train_scores = -1.0/5*train_scores
        valid_scores = -1.0/5*valid_scores

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training MSE")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation MSE")

        plt.legend(loc="best")

        plt.xlabel('Estimators')
        plt.ylabel('MSE')
        plt.title('Validation Curve with Random Forest Regression \non the parameter of estimators when max_depth=39')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(1,60)
        train_scores, valid_scores = validation_curve(self.clf, X, y, "n_neighbors",
                                              train_sizes, cv=5)

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training Precision")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation Precision")

        plt.legend(loc="best")

        plt.xlabel('K Neighbors')
        plt.ylabel('Precision')
        plt.title('Validation Curve with KNN on the parameter of K')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve_maxdepth(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(2,60)
        train_scores, valid_scores = validation_curve(self.clf, X, y, "max_depth",
                                              train_sizes, cv=5)

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training Precision")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation Precision")

        plt.legend(loc="best")

        plt.xlabel('Max Depth')
        plt.ylabel('Precision')
        plt.title('Validation Curve with Random Forest Classification\n on the parameter of Max Depth when n_stimators=20')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve_estimators(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(2,40)
        train_scores, valid_scores = validation_curve(self.clf, X, y, "n_estimators",
                                              train_sizes, cv=5)

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training Precision")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation Precision")

        plt.legend(loc="best")

        plt.xlabel('Estimators')
        plt.ylabel('Precision')
        plt.title('Validation Curve with Random Forest Classification\n on the parameter of Estimators when Max Depth=30')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(2,75)
        train_scores, valid_scores = validation_curve(self.ada, X, y, "n_estimators",
                                              train_sizes, cv=5)

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training Precision")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation Precision")

        plt.legend(loc="best")

        plt.xlabel('Estimators')
        plt.ylabel('Precision')
        plt.title('Validation Curve with AdaBoost-DecisionTree on the parameter of Estimators')
        plt.grid(True)
        plt.show()
项目:AirTicketPredicting    作者:junlulocky    | 项目源码 | 文件源码
def drawValidationCurve(self):
        """
        To draw the validation curve
        :return:NA
        """
        X, y = self.X_train, self.y_train.ravel()
        indices = np.arange(y.shape[0])
        np.random.shuffle(indices)
        X, y = X[indices], y[indices]

        train_sizes = range(2,60)
        train_scores, valid_scores = validation_curve(self.clf, X, y, "max_depth",
                                              train_sizes, cv=5)

        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        valid_scores_mean = np.mean(valid_scores, axis=1)
        valid_scores_std = np.std(valid_scores, axis=1)

        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
        plt.fill_between(train_sizes, valid_scores_mean - valid_scores_std,
                         valid_scores_mean + valid_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training Precision")
        plt.plot(train_sizes, valid_scores_mean, '*-', color="g",
                 label="Cross-validation Precision")

        plt.legend(loc="best")

        plt.xlabel('Max Depth(log2(all features) to be considered) ')
        plt.ylabel('Precision')
        plt.title('Validation Curve with Decision Tree on the parameter of Max Depth')
        plt.grid(True)
        plt.show()
项目:twitter_LDA_topic_modeling    作者:kenneth-orton    | 项目源码 | 文件源码
def draw_community_median_distances(user_topics_dir, distance_file, df):
    y_axis = [row['avg_distance'] for idx, row in df.iterrows()]
    x_axis = np.arange(0, len(y_axis))
    plt.figure(figsize=(20, 10))
    plt.plot(x_axis, y_axis, 'r')
    plt.fill_between(x_axis, y_axis, color='red', alpha=0.5)
    plt.xlabel('Community ID')
    plt.ylabel('Divergence from Clique')
    plt.title('Community Users Divergence from Clique', fontsize=14, fontweight='bold')
    plt.xticks(rotation='vertical', fontsize=8)
    plt.subplots_adjust(bottom=0.2)
    plt.ylim([0, np.log(2) + 0.01])
    plt.xlim([0, len(x_axis) - 1])
    plt.savefig(distance_file)
    plt.close()
项目:cfrnet    作者:clinicalml    | 项目源码 | 文件源码
def plot_with_fill(x, y, axis=0, std_error=False, color='r'):
    plt.plot(x, np.mean(y, axis), '.-', linewidth=2, color=color)
    lb, ub = fill_bounds(y, axis=axis, std_error=std_error)
    plt.fill_between(x, lb, ub, linewidth=0, facecolor=color, alpha=0.1)
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def plot_P_rf(self):
       print len(self.time), len(self.prf)
       zeros = np.zeros((len(self.prf)))
       where = self.prf >= 0
       plt.plot(self.time, self.prf,'k')
       plt.fill_between(self.time,zeros,self.prf,where,facecolor='k')
       plt.show()
项目:deep-ensembles-uncertainty    作者:vvanirudh    | 项目源码 | 文件源码
def test_ensemble(ensemble, sess, dataLoader):
    test_xs, test_ys = dataLoader.get_test_data()
    mean, var = ensemble_mean_var(ensemble, test_xs, sess)
    std = np.sqrt(var)
    upper = mean + 3*std
    lower = mean - 3*std

    test_xs_scaled = dataLoader.input_mean + dataLoader.input_std*test_xs

    plt.plot(test_xs_scaled, test_ys, 'b-')
    plt.plot(test_xs_scaled, mean, 'r-')

    plt.fill_between(test_xs_scaled[:, 0], lower[:, 0], upper[:, 0], color='yellow', alpha=0.5)
    plt.show()
项目:deep-ensembles-uncertainty    作者:vvanirudh    | 项目源码 | 文件源码
def test_dropout(model, sess, dataLoader, args):
    test_xs, test_ys = dataLoader.get_test_data()
    mean, var = dropout_mean_var(model, test_xs, sess, args)
    std = np.sqrt(var)
    upper = mean + 3*std
    lower = mean - 3*std

    test_xs_scaled = dataLoader.input_mean + dataLoader.input_std*test_xs

    plt.plot(test_xs_scaled, test_ys, 'b-')
    plt.plot(test_xs_scaled, mean, 'r-')

    plt.fill_between(test_xs_scaled[:, 0], lower[:, 0], upper[:, 0], color='yellow', alpha=0.5)
    plt.show()
项目:augur    作者:nextstrain    | 项目源码 | 文件源码
def plot_trace(ax, pivots, freq, err, n_std_dev=1, err_smoothing=3, show_errorbars=True, c='r', ls='-', label=None):
    ax.plot(pivots, freq, c=c, ls=ls, label=label)
    if show_errorbars:
        smerr = 1.0/np.convolve(1.0/err, np.ones(err_smoothing, dtype=float)/err_smoothing, mode='same')
        ax.fill_between(pivots, np.maximum(0,freq-n_std_dev*smerr),
                np.minimum(1,freq+n_std_dev*smerr),
                facecolor=c, linewidth=0, alpha=0.1)