Python matplotlib.pyplot 模块,axvline() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.axvline()

项目:copper_price_forecast    作者:liyinwei    | 项目源码 | 文件源码
def data_visualization(co_price, pcb_price):
    """
    ???????
    """
    x_co_values = co_price.index
    y_co_values = co_price.price / 100

    x_pcb_values = pcb_price.index
    y_pcb_values = pcb_price.price

    plt.figure(figsize=(10, 6))
    plt.title('copper price(100rmb/t) vs. pcb price(rmb/sq.m.)')
    plt.xlabel('date')
    plt.ylabel('history price')

    plt.plot(x_co_values, y_co_values, '-', label='co price')
    plt.plot(x_pcb_values, y_pcb_values, '-', label='pcb price')
    plt.axvline('2015-04-23', linewidth=1, color='r', linestyle='dashed')
    plt.axvline('2015-10-23', linewidth=1, color='r', linestyle='dashed')
    plt.axvline('2016-04-23', linewidth=1, color='r', linestyle='dashed')
    plt.axvline('2016-10-23', linewidth=1, color='r', linestyle='dashed')

    plt.legend(loc='upper right')

    plt.show()
项目:sl-quant    作者:danielzak    | 项目源码 | 文件源码
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, eval=False, epoch=0):
    reward = 0
    signal.fillna(value=0, inplace=True)

    if eval == False:
        bt = twp.Backtest(pd.Series(data=[x for x in xdata[time_step-2:time_step]], index=signal[time_step-2:time_step].index.values), signal[time_step-2:time_step], signalType='shares')
        reward = ((bt.data['price'].iloc[-1] - bt.data['price'].iloc[-2])*bt.data['shares'].iloc[-1])

    if terminal_state == 1 and eval == True:
        #save a figure of the test set
        bt = twp.Backtest(pd.Series(data=[x for x in xdata], index=signal.index.values), signal, signalType='shares')
        reward = bt.pnl.iloc[-1]
        plt.figure(figsize=(3,4))
        bt.plotTrades()
        plt.axvline(x=400, color='black', linestyle='--')
        plt.text(250, 400, 'training data')
        plt.text(450, 400, 'test data')
        plt.suptitle(str(epoch))
        plt.savefig('plt/'+str(epoch)+'.png', bbox_inches='tight', pad_inches=1, dpi=72)
        plt.close('all')
    #print(time_step, terminal_state, eval, reward)

    return reward
项目:IonNIPT    作者:AllanSSX    | 项目源码 | 文件源码
def plotNucProfile(values, output):
    plt.figure(figsize=(16, 4))

    plt.plot(values)

    plt.xlim([0,292])
    center = 147-1
    plt.xticks([0,center-93, center-73,center, center+73,center+93, 292],['\nUpstream','93','73\nStart','0\nCenter','73\nEnd','93','\nDownstream'])
    plt.axvline(x=center-93, linewidth=1, ls='--', color = 'k')
    plt.axvline(x=center-73, linewidth=1, ls='--', color = 'k')
    plt.axvline(x=center, linewidth=1, ls='--', color = 'k')
    plt.axvline(x=center+73, linewidth=1, ls='--', color = 'k')
    plt.axvline(x=center+93, linewidth=1, ls='--', color = 'k')

    plt.title("Nucleosome Profile")
    plt.xlabel("Nucleosome BP Position")
    plt.ylabel("Ratio")

    plt.savefig(output, dpi=400)
项目:pyGPGO    作者:hawk31    | 项目源码 | 文件源码
def plotGPGO(gpgo, param):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    hat = gpgo.GP.predict(x_test, return_std=True)
    y_hat, y_std = hat[0], np.sqrt(hat[1])
    l, u = y_hat - 1.96 * y_std, y_hat + 1.96 * y_std
    fig = plt.figure()
    r = fig.add_subplot(2, 1, 1)
    r.set_title('Fitted Gaussian process')
    plt.fill_between(x_test.flatten(), l, u, alpha=0.2)
    plt.plot(x_test.flatten(), y_hat, color='red', label='Posterior mean')
    plt.legend(loc=0)
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    r = fig.add_subplot(2, 1, 2)
    r.set_title('Acquisition function')
    plt.plot(x_test, a, color='green')
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=1000)
    plt.axvline(x=gpgo.best, color='black', label='Found optima')
    plt.legend(loc=0)
    plt.tight_layout()
    plt.savefig(os.path.join(os.getcwd(), 'mthesis_text/figures/chapter3/sine/{}.pdf'.format(i)))
    plt.show()
项目:pyGPGO    作者:hawk31    | 项目源码 | 文件源码
def plotGPGO(gpgo, param, index, new=True):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    y_hat, y_var = gpgo.GP.predict(x_test, return_std=True)
    std = np.sqrt(y_var)
    l, u = y_hat - 1.96 * std, y_hat + 1.96 * std
    if new:
        plt.figure()
        plt.subplot(5, 1, 1)
        plt.fill_between(x_test.flatten(), l, u, alpha=0.2)
        plt.plot(x_test.flatten(), y_hat)
    plt.subplot(5, 1, index)
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    plt.plot(x_test, a, color=colors[index - 2], label=acq_titles[index - 2])
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=1000)
    plt.axvline(x=gpgo.best)
    plt.legend(loc=0)
项目:astrology    作者:mattsgithub    | 项目源码 | 文件源码
def plot_coefficient(self, feature):
        from scipy.stats import t
        import matplotlib.pyplot as plt

        x = np.linspace(-5.0, 5.0)
        t_score = self.t[self.features.index(feature)]

        # At what point is the 5% percentile?
        t_05 = t.ppf(0.05, self.df)

        # At what point is the 95% percentile?
        t_95 = t.ppf(0.95, self.df)

        plt.axvline(x=t_05)
        plt.axvline(x=t_95)
        plt.scatter(t_score, t.pdf(t_score, self.df), marker='o', color='red')
        plt.plot(x, t.pdf(x, self.df), color='gray', lw=5, alpha=0.6)
        plt.title('t-distribtion for {0} coefficient'.format(feature))
        plt.show()
项目:mlens    作者:flennerhag    | 项目源码 | 文件源码
def plot_rss(cm, t1, t2, t3):
    """Plot the memory profile."""
    f = plt.figure(figsize=(8, 6))
    plt.plot(range(cm.cpu.shape[0]), cm.rss / 1000000)
    plt.axvline(t1 - 3, color='darkcyan', linestyle='--', linewidth=1.0,
                label='load data')
    plt.axvline(t2, color='blue', linestyle='--', linewidth=1.0,
                label='fit start')
    plt.axvline(t3, color='blue', linestyle='-.', linewidth=1.0,
                label='fit end')
    plt.xticks([i for i in [0, 50, 100, 150, 200, 250]],
               [i for i in [0, 5, 10, 15, 20, 25]])
#    plt.ylim(120, 240)
    plt.title("ML-Ensemble memory profile (working set)")
    plt.ylabel("Working set memory (MB)")
    plt.xlabel("Time (s)")
    plt.legend()
    plt.show()

    if PRINT:
        try:
            f.savefig("dev/img/memory_profile.png", dpi=600)
        except:
            f.savefig("memory_profile.png", dpi=600)
项目:mlens    作者:flennerhag    | 项目源码 | 文件源码
def plot_cpu(cm, t1, t2, t3):
    """Plot the CPU profile."""
    f = plt.figure()
    plt.plot(range(cm.cpu.shape[0]), cm.cpu)
    plt.axvline(t1 - 3, color='darkcyan', linestyle='--', linewidth=1.0,
                label='load data')
    plt.axvline(t2, color='blue', linestyle='--', linewidth=1.0,
                label='fit start')
    plt.axvline(t3, color='blue', linestyle='-.', linewidth=1.0,
                label='fit end')
    plt.xticks([i for i in [0, 50, 100, 150, 200, 250]],
               [i for i in [0, 5, 10, 15, 20, 25]])
    plt.title("ML-Ensemble CPU profile")
    plt.ylabel("CPU utilization (%)")
    plt.xlabel("Time (s)")
    plt.legend()

    if PRINT:
        try:
            f.savefig("dev/cpu_profile.png", dpi=600)
        except:
            f.savefig("cpu_profile.png", dpi=600)
项目:OpenGoddard    作者:istellartech    | 项目源码 | 文件源码
def plot(self, title_comment=""):
        """ plot inner variables that to be optimized

        Args:
            title_comment (str) : string for title

        """
        plt.figure()
        plt.title("OpenGoddard inner variables" + title_comment)
        plt.plot(self.p, "o")
        plt.xlabel("variables")
        plt.ylabel("value")
        for section in range(self.number_of_section):
            for line in self.div[section]:
                plt.axvline(line, color="C%d" % ((section+1) % 6), alpha=0.5)
        plt.grid()
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def runobsplot(self):
        """
        A quick histogram to see that intrinsic variance compared to the initial estimate
        """

        tdmin = self.iniest.td - 3.0*self.iniest.tderr
        tdmax = self.iniest.td + 3.0*self.iniest.tderr

        fig = plt.figure(figsize=(6, 3))
        fig.subplots_adjust(top=0.95, bottom=0.2)
        if len(self.obsmesdelays) != 0:
            plt.hist(self.obsmesdelays, range=(tdmin, tdmax), bins=200, color="green", lw=0)
        plt.xlim(tdmin, tdmax)
        plt.xlabel("Delay [day]")
        plt.ylabel("Counts")
        #ax = plt.gca()
        plt.figtext(0.15, 0.8, "Intrinsic/initial error ratio: %.2f" % self.intrinsicratio)
        plt.axvline(self.iniest.td - self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axvline(self.iniest.td + self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axvline(self.outest.td, color="red", linestyle="-", zorder=20)
        plt.savefig(os.path.join(self.plotdir, "intrinsic_variance.png"))
        plt.close()
项目:NGS-Pipeline    作者:LewisLabUCSD    | 项目源码 | 文件源码
def hist_plot(hist_out):
    #Visualize histogram.
    plt.figure()
    df = pd.read_csv(hist_out,sep='\t',header=0,names=['Distance from TSS','Coverage','+ Tags','- Tags'])
    plt.plot(df['Distance from TSS'],df['+ Tags'],label='+ Tags')
    plt.plot(df['Distance from TSS'],df['- Tags'],label='- Tags')
    plt.xlim([-500,500])
    plt.xlabel('Distance from TSS')
    plt.ylabel('Reads per bp per TSS')
    plt.axvline(x=0,c='k')
    plt.legend(loc='upper right')

    plt.savefig(os.path.splitext(hist_out)[0]+'.png')

# if __name__ == '__main__':
#     import glob
#     hists = glob.glob('/data/shangzhong/TSS/fq/f03_tags/*/hist.txt')
#     for h in hists:
#         plt.figure()
#         hist_plot(h)
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def sdss_plot_velocity(wave, interest_wave, flux, name, target):

    # define the velocity scale
    vel_aas = (wave/(1+z) - interest_wave) * c / interest_wave 
    # convert to [km / s]
    vel_kms = vel_aas.to('km/s')
    #define parameters for the x and y axes
    ax.set_xlim(xmin, xmax)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.tick_params(axis='x', labelsize=7)
    ax.set_ylim(0., 15.)
    # make the plot
    ax.plot(vel_kms, flux)
    # include the name of the line
    plt.text(xmin+0.03*(xmax-xmin), 0.15, name)
    # mark the approximate velocities of interest
    plt.axvline(x=target, ymin=0., ymax = 15., linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=target +30., ymin=0., ymax = 15., linewidth=0.5, color='k')
    plt.axvline(x=target -30., ymin=0., ymax = 15., linewidth=0.5, color='k')
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def plot_profile(wave, flux, line, name):
    # define the velocity scale [AA / s]
    vel_aas = (wave - line*(1+zem[i])) / (line*(1+zem[i])) * c
    # convert to [km / s]
    vel_kms = vel_aas.to('km/s')
    # define parameters for the x and y axes
    ax.set_xlim(xmin, xmax)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.tick_params(axis='x', labelsize=xls)
    ax.set_ylim(0., 1.5)
    # make the plot
    ax.plot(vel_kms, flux)
    # include the name of the line
    plt.text(xmin+0.03*(xmax-xmin), 0.15, name)
    # mark the approximate centroid velocity
    plt.axvline(x=vcen[i], ymin=0., ymax = 1.5, linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=vcen[i]+30., ymin=0., ymax = 1.5, linewidth=0.5, color='k')
    plt.axvline(x=vcen[i]-30., ymin=0., ymax = 1.5, linewidth=0.5, color='k')
    # label other lines for clarity
    for k in range(0, len(lines)):
        vel_off_aas = (lines[k] - line) / line * c
        vel_off_kms = vel_off_aas.to('km/s') / (u.km / u.s)
        plt.axvline(x=vcen[i]+vel_off_kms, ymin=0., ymax = 1.5, linewidth=1, color='k', linestyle='dotted')

# define the data directory
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def sdss_plot_velocity(wave, interest_wave, flux, name, target):

    # define the velocity scale
    vel_aas = (wave/(1+z) - interest_wave) * c / interest_wave 
    # convert to [km / s]
    vel_kms = vel_aas.to('km/s')
    #define parameters for the x and y axes
    ax.set_xlim(xmin, xmax)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.tick_params(axis='x', labelsize=7)
    ax.set_ylim(0., 15.)
    # make the plot
    ax.plot(vel_kms, flux)
    # include the name of the line
    plt.text(xmin+0.03*(xmax-xmin), 0.15, name)
    # mark the approximate velocities of interest
    plt.axvline(x=target, ymin=0., ymax = 15., linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=target +30., ymin=0., ymax = 15., linewidth=0.5, color='k')
    plt.axvline(x=target -30., ymin=0., ymax = 15., linewidth=0.5, color='k')
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_2D_contour(states,p,labels,inter=False):
    import pylab as pl

    from pyme.statistics import expectation as EXP
    exp = EXP((states,p)) 
    X = np.unique(states[0,:])
    Y = np.unique(states[1,:])
    X_len = len(X)
    Y_len = len(Y)
    Z = np.zeros((X.max()+1,Y.max()+1))
    for i in range(len(p)):
        Z[states[0,i],states[1,i]] = p[i]

    Z = np.where(Z < 1e-8,0.0,Z)
    pl.clf()
    XX, YY = np.meshgrid(X,Y)   
    pl.contour(range(X.max()+1),range(Y.max()+1),Z.T)
    pl.axhline(y=exp[1])
    pl.axvline(x=exp[0])
    pl.xlabel(labels[0])
    pl.ylabel(labels[1])
    if inter == True:
        pl.draw()
    else:
        pl.show()
项目:TikZ    作者:ellisk42    | 项目源码 | 文件源码
def showFigure(y):
    plot.xlabel('# objects')
    plot.ylabel(y)
    plot.xticks(xs,
                ['1'] + ['']*10 + ['12'] + ['']*11 + ['24'] + ['']*10 + ['36'])
    ys = range(-1,int(MAXIMUMY + 1))
    print MAXIMUMY
    plot.ylim(ymin = -1)
    #plot.axvline(x = 12,ymin = 0,ymax = 24,color = 'k')
    # plot.annotate("Within-sample generalization",
    #               rotation = 90,
    #               xytext = (11.5,10),
    #               xy = (7,10),
    #               arrowprops = dict(facecolor = 'black',shrink = 0.05))
    # plot.annotate("out-of-sample generalization",
    #               rotation = 90,
    #               xytext = (12.5,10),
    #               xy = (12 + 5,10),
    #               arrowprops = dict(facecolor = 'black',shrink = 0.05))
    plot.legend(['SMC+NN (100 particles)','NN (10 particles)','SMC (1000 particles)','LSTM (1000 particles)'], loc = 0, fontsize = 9)
    plot.show()
项目:lstmprovisor-python    作者:Impro-Visor    | 项目源码 | 文件源码
def plot_note_dist(mat, name="", show_octaves=True):
    f = plt.figure(figsize=(20,5))
    f.canvas.set_window_title(name)
    plt.imshow(mat.T, origin="lower", interpolation="nearest", cmap=my_cmap)
    plt.xticks( np.arange(0,4*(constants.WHOLE//constants.RESOLUTION_SCALAR),(constants.QUARTER//constants.RESOLUTION_SCALAR)) )
    plt.xlabel('Time (beat/12)')
    plt.ylabel('Note')
    plt.colorbar()
    if show_octaves:
        for y in range(0,36,12):
            plt.axhline(y + 1.5, color='c')
    for x in range(0,4*(constants.WHOLE//constants.RESOLUTION_SCALAR),(constants.QUARTER//constants.RESOLUTION_SCALAR)):
        plt.axvline(x-0.5, color='k')
    for x in range(0,4*(constants.WHOLE//constants.RESOLUTION_SCALAR),(constants.WHOLE//constants.RESOLUTION_SCALAR)):
        plt.axvline(x-0.5, color='c')
    plt.show()
项目:artemis    作者:QUVA-Lab    | 项目源码 | 文件源码
def axvlines(xs, **plot_kwargs):
    """
    Draw vertical lines on plot
    :param xs: A scalar, list, or 1D array of horizontal offsets
    :param plot_kwargs: Keyword arguments to be passed to plot
    :return: The plot object corresponding to the lines.
    """
    xs = np.array((xs, ) if np.isscalar(xs) else xs, copy=False)
    lims = plt.gca().get_ylim()
    x_points = np.repeat(xs[:, None], repeats=3, axis=1).flatten()
    y_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(xs), axis=0).flatten()
    plot = plt.plot(x_points, y_points, scaley = False, **plot_kwargs)
    return plot

    # return [plt.axhline(y, **specs) for y in ys]
    # return [plt.axvline(x, **specs) for x in xs]
项目:SampleScanner    作者:psobot    | 项目源码 | 文件源码
def process(aif, sample_rate=48000):
    file = read_wave_file(aif)

    # loop_start, loop_size = window_match(file)
    # loop_start, loop_size = zero_crossing_match(file)
    loop_start, loop_end = find_loop_points(file)
    loop_size = loop_end - loop_start

    file = file[0]

    print 'start, end', loop_start, loop_end

    plt.plot(file[loop_start:loop_end])
    plt.plot(file[loop_end:loop_start + (2 * loop_size)])
    plt.show()

    plt.plot(file[
        loop_start - (sample_rate * 2):
        loop_start + (sample_rate * 2)
    ])
    plt.axvline(sample_rate * 2)
    plt.axvline((sample_rate * 2) + loop_size)
    plt.show()
项目:machine-learning-for-trading    作者:arjun-joshua    | 项目源码 | 文件源码
def plotVline(order):
    """
    @Summary: Plots vertical lines for buy and sell orders
    @param order: Series, consists of the values -2, -1, 0, 1, 2 denoting 
                  buying/selling of 200 or 400 shares or just holding
    @returns nothing
    """


    for date in order.index[order == 1]: # for dates corr. to buy 200 shares
        plt.axvline(date, color = 'g', linestyle = '--')

    for date in order.index[order == -1]: # for dates corr. to sell 200 shares
        plt.axvline(date, color = 'r', linestyle = '--')

    for date in order.index[order == 2]: # for dates corr. to buy 400 shares
        plt.axvline(date, color = 'g')

    for date in order.index[order == -2]: # for dates corr. to sell 400 shares
        plt.axvline(date, color = 'r')
项目:trading-stock-thailand    作者:adminho    | 项目源码 | 文件源码
def plotDailyHist(df, symbol, title="Selected data"):
    """Plot the desired columns over index values in the given range."""        
    df_plot = ind.daily_returns(df)[symbol]

    """Plot stock prices with a custom title and meaningful axis labels.""" 
    df_plot.hist(bins=20)
    ax = plt.axvline(df_plot.mean(), color='w', linestyle='dashed',linewidth=2)
    std = df_plot.std()
    plt.axvline(std,  color='r', linestyle='dashed',linewidth=2)
    plt.axvline(-std, color='r', linestyle='dashed',linewidth=2)

    #ax.set_xlabel("Daily returns")
    #ax.set_ylabel("Frequency")
    plt.show()

# Borrowed code from : http://matplotlib.org/examples/pylab_examples/finance_demo.
项目:githubgraph    作者:0x0FFF    | 项目源码 | 文件源码
def draw_timeline(self):
        plt.axhspan(0.97, 0.98, 0.1, 0.9, facecolor='#808080', linewidth=0)
        for year in range(2006, 2017):
            plt.text(0.1 + 0.75*(year-2006)/10.0, 0.96,
                     "%d" % year,
                     size = 10,
                     weight='bold',
                     color='white',
                     horizontalalignment='left',
                     verticalalignment='top',
                     transform=plt.gca().transAxes)
        cur = self.current_date * self.ticks_in_week + self.tick
        top = len(self.dates) * self.ticks_in_week
        pos = 0.1 + 0.8 * (float(cur) / float(top))
        plt.axvline(pos, 0.963, 0.987, color='orange', linewidth=3)
        plt.text(0.95, 0.01, "http://0x0fff.com",
                 size=8,
                 weight='bold',
                 style='italic',
                 color='white',
                 horizontalalignment='center',
                 transform=plt.gca().transAxes)
        return
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def display_convw2(w, s, r, c, fig, title='conv_filters'):
  """w: num_filters X sizeX**2 * num_colors."""
  num_f, num_d = w.shape
  assert s**2 * 3 == num_d
  pvh = np.zeros((s*r, s*c, 3))
  for i in range(r):
    for j in range(c):
      pvh[i*s:(i+1)*s, j*s:(j+1)*s, :] = w[i*c + j, :].reshape(3, s, s).T
  mx = pvh.max()
  mn = pvh.min()
  pvh = 255*(pvh - mn) / (mx-mn)
  pvh = pvh.astype('uint8')
  plt.figure(fig)
  plt.suptitle(title)
  plt.imshow(pvh, interpolation="nearest")
  scale = 1
  xmax = s * c
  ymax = s * r
  color = 'k'
  for x in range(0, c):
    plt.axvline(x=x*s/scale, ymin=0, ymax=ymax/scale, color=color)
  for y in range(0, r):
    plt.axhline(y=y*s/scale, xmin=0, xmax=xmax/scale, color=color)
  plt.draw()
  return pvh
项目:quoll    作者:LanguageMachines    | 项目源码 | 文件源码
def visualize_document_topics_heatmap(self, outfile, set_topics=False):
        self.sort_doctopics_groups()
        doctopics_raw_hm = numpy.rot90(self.document_topics_raw)
        rows, columns = doctopics_raw_hm.shape
        rownames = self.topic_labels
        columnnames = self.document_names
        pyplot.pcolor(doctopics_raw_hm, norm=None, cmap='Blues')
        pyplot.gca().invert_yaxis()
        if self.group_names:
            ticks_groups = []
            bounds = []
            current_group = False
            start = 0
            for i,doc in enumerate(self.document_names):
                group = self.document_group_dict[doc]
                if group != current_group:
                    if i != 0:
                        bounds.append(i-1)
                        ticks_groups[start+int((i-start)/2)] = current_group
                    current_group = group
                    start=i
                ticks_groups.append('')
            ticks_groups[start+int((i-start)/2)] = current_group
            pyplot.xticks(numpy.arange(columns)+0.5,ticks_groups, fontsize=11)
            if set_topics:
                for index in set_topics:
                    pyplot.axhline(y=index)
                topic_names = self.return_topic_names(set_topics)
                pyplot.yticks(set_topics,topic_names,fontsize=8)
            else:
                pyplot.yticks(numpy.arange(rows)+0.5, rownames, fontsize=8)
            for bound in bounds:
                pyplot.axvline(x=bound)
        pyplot.colorbar(cmap='Blues')
        pyplot.savefig(outfile)
        pyplot.clf()
项目:extinction    作者:kbarbary    | 项目源码 | 文件源码
def extinction_figure(wave, a_lambda, residual_from, residual_lims=(-0.1, 0.4), title_text='$R_V = 3.1$'):

    names = list(a_lambda.keys())  # consistent ordering between panels
    fig = plt.figure(figsize=(8.5, 6.))

    ax = plt.axes()
    for name in names:
        plt.plot(wave, a_lambda[name], label=name)
    plt.axvline(x=2700., ls=':', c='k')
    plt.axvline(x=3030.3030, ls=':', c='k')
    plt.axvline(x=9090.9091, ls=':', c='k')
    plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
    plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)    
    plt.text(0.65, 0.95, title_text, transform=ax.transAxes, va='top',
             ha='right', size='x-large')
    plt.ylabel('Extinction ($A(\lambda)$ / $A_V$)')
    plt.legend()
    plt.setp(ax.get_xticklabels(), visible=False)

    divider = make_axes_locatable(ax)
    axresid = divider.append_axes("bottom", size=2.0, pad=0.2, sharex=ax)
    for name in names:
        plt.plot(wave, a_lambda[name] - a_lambda[residual_from])
    plt.axvline(x=2700., ls=':', c='k')
    plt.axvline(x=3030.3030, ls=':', c='k')
    plt.axvline(x=9090.9091, ls=':', c='k')
    plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
    plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)
    plt.xlim(wave[0], wave[-1])
    plt.ylim(ymin=residual_lims[0], ymax=residual_lims[1])
    plt.ylabel('residual from ' + residual_from)
    plt.xlabel(r'Wavelength ($\mathrm{\AA}$)')

    ax.set_xscale('log')
    axresid.set_xscale('log')
    plt.tight_layout()

    return fig
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def plot_grid():
    plt.axvline(x=0, color="#999999", linestyle="-")
    plt.axhline(y=0, color="#999999", linestyle="-")
项目:housebot    作者:jbkopecky    | 项目源码 | 文件源码
def plot_ic_criterion(model, name, color):
    alpha_ = model.alpha_
    alphas_ = model.alphas_
    criterion_ = model.criterion_
    plt.plot(-np.log10(alphas_), criterion_, '--', color=color,
             linewidth=3, label='%s criterion' % name)
    plt.axvline(-np.log10(alpha_), color=color, linewidth=3,
                label='alpha: %s estimate' % name)
    plt.xlabel('-log(alpha)')
    plt.ylabel('criterion')
项目:SecuML    作者:ANSSI-FR    | 项目源码 | 文件源码
def printSilhouette(self, output_dir, assigned_clusters):
        num_clusters = len(set(assigned_clusters))
        plt.clf()
        y_lower = 10
        all_colors = colors_tools.colors(num_clusters)
        for i in range(num_clusters):
            # Aggregate the silhouette scores for samples belonging to
            # cluster i, and sort them
            ith_cluster_silhouette_values = \
                self.sample_silhouette_values[assigned_clusters == i]
            ith_cluster_silhouette_values.sort()
            size_cluster_i = ith_cluster_silhouette_values.shape[0]
            y_upper = y_lower + size_cluster_i
            color = all_colors[i]
            plt.fill_betweenx(np.arange(y_lower, y_upper),
                              0, ith_cluster_silhouette_values,
                              facecolor=color, edgecolor=color, alpha=0.7)
            # Label the silhouette plots with their cluster numbers at the middle
            plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
            # Compute the new y_lower for next plot
            y_lower = y_upper + 10  # 10 for the 0 samples
        plt.title('The silhouette plot for the various clusters.')
        plt.xlabel('The silhouette coefficient values')
        plt.ylabel('Cluster label')
        # The vertical line for average silhoutte score of all the values
        plt.axvline(x=self.silhouette_avg, color='red', linestyle='--')
        plt.yticks([])  # Clear the yaxis labels / ticks
        plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
        plt.savefig(output_dir + 'silhouette.png')
        plt.clf()
项目:wtte-rnn    作者:ragulpr    | 项目源码 | 文件源码
def weibull_contour(Y, U, is_discrete, true_alpha, true_beta, logx=True, samples=200, lines=True):

    xlist = np.linspace(true_alpha / np.e, true_alpha * np.e, samples)
    ylist = np.linspace(true_beta / np.e, true_beta * np.e, samples)
    x_grid, y_grid = np.meshgrid(xlist, ylist)

    loglik = x_grid * 0

    if is_discrete:
        fun = weibull.discrete_loglik
    else:
        fun = weibull.continuous_loglik

    for i in xrange(len(Y)):
        loglik = loglik + \
            fun(Y[i], x_grid, y_grid, U[i])

    z_grid = loglik / len(Y)

    plt.figure()
    if logx:
        x_grid = np.log(x_grid)
        true_alpha = np.log(true_alpha)
        xlab = r'$\log(\alpha)$'
    else:
        xlab = r'$\alpha$'

    cp = plt.contourf(x_grid, y_grid, z_grid, 100, cmap='jet')
    plt.colorbar(cp)
    if lines:
        plt.axvline(true_alpha, linestyle='dashed', c='black')
        plt.axhline(true_beta, linestyle='dashed', c='black')
    plt.xlabel(xlab)
    plt.ylabel(r'$\beta$')
项目:cuvarbase    作者:johnh2o2    | 项目源码 | 文件源码
def test_inject_and_recover(self, freq,
                                use_double, mag_bins, phase_bins, mag_overlap,
                                phase_overlap, use_fast, t0, balanced_magbins,
                                weighted, shmem_lc, freq_batch_size):

        kwargs = dict(use_double=use_double,
                      mag_bins=mag_bins,
                      phase_bins=phase_bins,
                      phase_overlap=phase_overlap,
                      mag_overlap=mag_overlap,
                      use_fast=use_fast,
                      balanced_magbins=balanced_magbins,
                      weighted=weighted)
        proc = ConditionalEntropyAsyncProcess(**kwargs)
        t, y, err = data(freq=freq, t0=t0)

        df = 1. / (max(t) - min(t)) / 10
        max_freq = 1.1 * freq
        min_freq = 0.9 * freq
        nf = int((max_freq - min_freq) / df)
        freqs = min_freq + df * np.arange(nf)

        run_kw = dict(shmem_lc=shmem_lc, freq_batch_size=freq_batch_size)
        results = proc.large_run([(t, y, err)],
                                 freqs=freqs, **run_kw)
        proc.finish()
        frq, p = results[0]
        best_freq = frq[np.argmin(p)]

        if self.plot:
            import matplotlib.pyplot as plt
            f, ax = plt.subplots()
            ax.plot(frq, p)
            ax.axvline(freq, ls='-', color='k')
            ax.axvline(best_freq, ls=':', color='r')
            plt.show()

        # print best_freq, freq, abs(best_freq - freq) / freq
        assert(not any(np.isnan(p)))
        assert(abs(best_freq - freq) / freq < 3E-2)
项目:autoreject    作者:autoreject    | 项目源码 | 文件源码
def bayes_opt(f, initial_x, all_x, acquisition, max_iter=100, debug=False,
              random_state=None):
    """The actual bayesian optimization function.

    f is the very expensive function we want to minimize.

    initial_x is a matrix of at least two data points (preferrably
    more, randomly sampled).

    acquisition is the acquisiton function we want to use to find
    query points."""

    X, y = list(), list()
    for x in initial_x:
        if not np.isinf(f(x)):
            y.append(f(x))
            X.append(x)

    best_x = X[np.argmin(y)]
    best_f = y[np.argmin(y)]
    gp = gaussian_process.GaussianProcessRegressor(random_state=random_state)

    if debug:
        print("iter", -1, "best_x", best_x, best_f)

    for i in range(max_iter):
        gp.fit(np.array(X)[:, None], np.array(y))
        new_x = all_x[acquisition(gp, best_f, all_x).argmin()]
        new_f = f(new_x)
        if not np.isinf(new_f):
            X.append(new_x)
            y.append(new_f)
            if new_f < best_f:
                best_f = new_f
                best_x = new_x

        if debug:
            print("iter", i, "best_x", best_x, best_f)
    if debug:
        import matplotlib.pyplot as plt
        scale = 1e6
        sort_idx = np.argsort(X)
        plt.plot(np.array(X)[sort_idx] * scale,
                 np.array(y)[sort_idx] * scale, 'bo-')
        plt.axvline(best_x * scale, linestyle='--')
        plt.show()

    return best_x, best_f
项目:icing    作者:slipguru    | 项目源码 | 文件源码
def show_fit(filename, ax=None):
    """Util function. Show a gaussian fit on nearest distances.

    Usage example:
        np.mean([show_fit(f) for f in list_naive_npy])
    """
    from sklearn.mixture import GMM
    X = np.load("{}".format(filename))
    dist2nearest = np.array(X).reshape(-1, 1)
    if dist2nearest.shape[0] < 2:
        print("Cannot fit a Gaussian with two distances.")
        return

    dist2nearest_2 = -(np.array(sorted(dist2nearest)).reshape(-1, 1))
    dist2nearest = np.array(list(dist2nearest_2) +
                            list(dist2nearest)).reshape(-1, 1)
    gmm = GMM(n_components=3)
    gmm.fit(dist2nearest)

    plt.hist(dist2nearest, bins=50, normed=True)
    linspace = np.linspace(-1, 1, 1000)[:, np.newaxis]
    plt.plot(linspace, np.exp(gmm.score_samples(linspace)[0]), 'r')

    lin = np.linspace(0, 1, 10000)[:, np.newaxis]
    pred = gmm.predict(linspace)
    argmax = np.argmax(gmm.means_)
    idx = np.min(np.where(pred == argmax)[0])
    plt.axvline(x=lin[idx], linestyle='--', color='r')
    plt.show()
    return lin[idx]  # threshold
项目:icing    作者:slipguru    | 项目源码 | 文件源码
def _gaussian_fit(array):
    if array.shape[0] < 2:
        logging.error("Cannot fit a Gaussian with two distances.")
        return 0

    array_2 = -(np.array(sorted(array)).reshape(-1, 1))
    array = np.array(list(array_2) + list(array)).reshape(-1, 1)

    try:
        # new sklearn GMM
        gmm = mixture.GaussianMixture(n_components=3,
                                      covariance_type='diag')
        gmm.fit(array)
        # gmmmean = np.max(gmm.means_)
        # gmmsigma = gmm.covariances_[np.argmax(gmm.means_)]
    except AttributeError:
        # use old sklearn method
        gmm = mixture.GMM(n_components=3)
        gmm.fit(array)
        # gmmmean = np.max(gmm.means_)
        # gmmsigma = gmm.covars_[np.argmax(gmm.means_)]

    # Extract optimal threshold
    plt.hist(array, bins=50, normed=True)  # debug, print

    lin = np.linspace(0, 1, 10000)[:, np.newaxis]
    # plt.plot(lin, np.exp(gmm.score_samples(lin)[0]), 'r')
    pred = gmm.predict(lin)
    try:
        idx = np.min(np.where(pred == np.argmax(gmm.means_))[0])
    except ValueError:
        # print("Error", np.unique(pred))
        idx = 0

    plt.axvline(x=lin[idx], linestyle='--', color='r')
    # plt.gcf().savefig("threshold_naive{}.png".format(k))
    plt.close()
    threshold = lin[idx][0]  # threshold
    # np.save("threshold_naive", threshold)
    return threshold
项目:pyGPGO    作者:hawk31    | 项目源码 | 文件源码
def plotGPGO(gpgo, param):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    fig = plt.figure()
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    r = fig.add_subplot(1, 1, 1)
    r.set_title('Acquisition function')
    plt.plot(x_test, a, color='green')
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=25)
    plt.axvline(x=gpgo.best, color='black', label='Found optima')
    plt.legend(loc=0)
    plt.tight_layout()
    plt.show()
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def compare(st, **kwargs):
  from seis_tools.seispy.data import phase_window

  plt.style.use('mystyle')
  window = kwargs.get('window',(-10,100))
  phase  = kwargs.get('phase',['P'])
  phase_list = kwargs.get('phase_list',['P'])
  taup_model = kwargs.get('taup_model','none')
  plot_all = kwargs.get('plot_all',False)
  phase_name = phase[0]

  if taup_model == 'none':
     taup_model = model

  if plot_all == True:
     arrs = taup_model.get_travel_times(source_depth_in_km = st[0].stats.sac['evdp'],
                                        distance_in_degree = st[0].stats.sac['gcarc'],
                                        phase_list=phase_list)

  i = 0
  for tr in st:
     if plot_all == False:
        windowed_trace = phase_window(tr,phases=phase,window_tuple=window,taup_model=taup_model)
        label_str = tr.stats.station+tr.stats.channel
        time = np.linspace(window[0],window[1],len(windowed_trace.data))
        plt.plot(time, windowed_trace.data,label=label_str)
        i += 1
     else:
        t_0 = 0.0
        t_e = tr.stats.npts * (1/tr.stats.sampling_rate)
        time = np.linspace(t_0,t_e,tr.stats.npts)
        plt.plot(time,tr.data)

  if plot_all == True:
     for arr in arrs:
        print arr
        plt.axvline(arr.time,label=arr.phase.name)

  plt.legend()
  plt.xlabel('time (s), windowed on '+phase_name) 
  plt.show()
项目:astrology    作者:mattsgithub    | 项目源码 | 文件源码
def plot_f_distrib_for_many_coefficients(self, features):
        from scipy.stats import f

        # Remove a particular subset of features
        X = np.delete(self.X, [self.features.index(_) for _ in features], 1)

        # Prediction from reduced model
        XT = X.T
        std_error_matrix = inv(XT.dot(X))
        beta = std_error_matrix.dot(XT).dot(self.y)
        y_hat = X.dot(beta)
        rss_reduced_model = np.sum((self.y - y_hat)**2)

        dfn = len(features)
        dfd = self.df

        # This should be distributed as chi squared
        # with degrees of freedom equal to number
        # of dropped features
        rss_diff = (rss_reduced_model - self.rss)
        chi_1 = rss_diff / dfn
        chi_2 = self.pop_var
        f_score = chi_1 / chi_2

        # 5% and 95% percentile
        f_05, f_95 = f.ppf([0.05, 0.95], dfn, dfd)

        x = np.linspace(0.001, 5.0)

        plt.axvline(x=f_05)
        plt.axvline(x=f_95)

        plt.scatter(f_score, f.pdf(f_score, dfn, dfd), marker='o', color='red')
        plt.plot(x, f.pdf(x, dfn, dfd), color='gray', lw=5, alpha=0.6)
        plt.title('f-distribtion for dropping features: {0}'.format(features))
        plt.show()
项目:Thrifty    作者:swkrueger    | 项目源码 | 文件源码
def plot(soa0, residuals, discontinuities, avg_snr=None):
    s2m = 3e8 / 2.4e6  # FIXME

    avg_snr_db = 10 * np.log10(avg_snr)

    print("residuals: std dev = {:.01f} m; max = {:.01f} m; "
          "avg corr snr = {:.01f}"
          .format(np.std(residuals) * s2m,
                  np.max(np.abs(residuals)) * s2m,
                  avg_snr_db))

    plt.figure(figsize=(11, 6))
    plt.subplot(1, 2, 1)
    plt.plot(soa0, residuals * S2M, '.-')
    plt.title("Residuals")
    plt.xlabel("RX sample")
    plt.ylabel("Residual (samples)")
    plt.grid()
    # plt.ylim([-0.5, 0.5])

    for discontinuity in discontinuities:
        plt.axvline(discontinuity, color='k')

    plt.subplot(1, 2, 2)
    plt.hist(residuals, 20)
    plt.title("Histogram: residuals")
    plt.grid()

    plt.suptitle("Clock sync (stddev = {:.01f} m; max = {:.01f} m; "
                 "avg corr SNR: {:.01f} dB)"
                 .format(np.std(residuals) * s2m,
                         np.max(np.abs(residuals)) * s2m,
                         avg_snr_db))

    plt.tight_layout()
    plt.subplots_adjust(top=0.90)
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def plotIndividualData(data, idx = 0, cls = -1):
  """Plots the individual data including the markers for the different developmetnal stages"""
  p = plt.plot(data[:,idx]);

  ## add developmental stages
  # detect switches
  stages = stageIndex(data, cls = cls);
  for s in stages:
    plt.axvline(s, linewidth = 1, color = 'k');

  return p;
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def runsimplot(self):
        """
        Viz of the MC results
        """

        tdmin = self.iniest.td - 3.0*self.iniest.tderr
        tdmax = self.iniest.td + 3.0*self.iniest.tderr

        fig = plt.figure(figsize=(6, 3))
        fig.subplots_adjust(top=0.95, bottom=0.2)
        plt.scatter(self.simtruedelays, self.simmesdelays - self.simtruedelays)
        plt.xlim(tdmin, tdmax)
        plt.xlabel("True delay [day]")
        plt.ylabel("Measurement error [day]")
        plt.axvline(self.iniest.td - self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axvline(self.iniest.td + self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axhline(0, color="black", linestyle="-", zorder=20)
        plt.axhline(- self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axhline(+ self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axhspan(-self.outest.tderr, self.outest.tderr, xmin=0, xmax=1, lw=0, color="red", alpha=0.2)
        #plt.ylim(- 2.0*self.iniest.tderr, + 2.0*self.iniest.tderr)


        plt.figtext(0.15, 0.8, "Total/initial error ratio: %.2f" % self.totalratio)

        #ax = plt.gca()
        #plt.figtext(0.15, 0.8, "Intrinsic/initial error ratio: %.2f" % self.intrinsicratio)
        #plt.axvline(self.iniest.td - self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        #plt.axvline(self.iniest.td + self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        #plt.axvline(self.outest.td, color="red", linestyle="-", zorder=20)

        plt.savefig(os.path.join(self.plotdir, "measvstrue.png"))
        plt.close()
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def maxPplot(estslist, N, filepath=None):
    """
    Give me a list of estimate-lists, I plot P as a function of f
    N is the total number of curves (e.g. 56 for tdc0) (defines f=1)
    """

    for ests in estslist:
        estscp = ests[:] # Important, we work on a copy, do not modify the original !
        for e in estscp:
            if e.td == 0.0: # We want to avoid that...
                #print e
                e.td = 0.1
        ests = sortbyP(estscp)
        fs = []
        Ps = []
        for n in range(len(ests)):
            subests = ests[n:]
            fs.append(f(subests, N))
            Ps.append(P(subests))
        plt.plot(fs, Ps, ".-", label=ests[0].method)
    plt.xlabel("f")
    plt.ylabel("Approximation of P")
    plt.xlim(0.0, 0.8)
    plt.ylim(0.0, 0.8)
    plt.axvline(0.3, color="black")
    plt.axhline(0.15, color="black")
    if len(estslist) > 1:
        plt.legend()
    plt.grid()
    if filepath:
        plt.savefig(filepath)
    else:
        plt.show()



############## Here, we work with the database from analyse_results ##############
项目:seasonal    作者:welch    | 项目源码 | 文件源码
def _periodogram_plot(title, column, data, trend, peaks):
    """display periodogram results using matplotlib"""

    periods, power = periodogram(data)
    plt.figure(1)
    plt.subplot(311)
    plt.title(title)
    plt.plot(data, label=column)
    if trend is not None:
        plt.plot(trend, linewidth=3, label="broad trend")
        plt.legend()
        plt.subplot(312)
        plt.title("detrended")
        plt.plot(data - trend)
    else:
        plt.legend()
        plt.subplot(312)
        plt.title("(no detrending specified)")
    plt.subplot(313)
    plt.title("periodogram")
    plt.stem(periods, power)
    for peak in peaks:
        period, score, pmin, pmax = peak
        plt.axvline(period, linestyle='dashed', linewidth=2)
        plt.axvspan(pmin, pmax, alpha=0.2, color='b')
        plt.annotate("{}".format(period), (period, score * 0.8))
        plt.annotate("{}...{}".format(pmin, pmax), (pmin, score * 0.5))
    plt.tight_layout()
    plt.show()
项目:wub    作者:nanoporetech    | 项目源码 | 文件源码
def plot_arrays(self, data_map, title="", xlab="", ylab="", marker='.', legend_loc='best', legend=True, vlines=None, vlcolor='green', vlwitdh=0.5):
        """Plot multiple pairs of data arrays.

        :param self: object.
        :param data_map: A dictionary with labels as keys and tupples of data arrays (x,y) as values.
        :param title: Figure title.
        :param xlab: X axis label.
        :param ylab: Y axis label.
        :param marker: Marker passed to the plot function.
        :param legend_loc: Location of legend.
        :param legend: Plot legend if True
        :param vlines: Dictionary with labels and positions of vertical lines to draw.
        :param vlcolor: Color of vertical lines drawn.
        :param vlwidth: Width of vertical lines drawn.
        :returns: None
        :rtype: object
        """
        fig = plt.figure()

        for label, data_arrays in six.iteritems(data_map):
            plt.plot(data_arrays[0], data_arrays[1], marker, label=label)
        if vlines is not None:
            for label, pos in six.iteritems(vlines):
                plt.axvline(x=pos, label=label, color=vlcolor, lw=vlwitdh)
        if legend:
            plt.legend(loc=legend_loc)
        self._set_properties_and_close(fig, title, xlab, ylab)
项目:wub    作者:nanoporetech    | 项目源码 | 文件源码
def plot_histograms(self, data_map, title="", xlab="", ylab="", bins=50, alpha=0.7, legend_loc='best', legend=True, vlines=None):
        """Plot histograms of multiple data arrays.

        :param self: object.
        :param data_map: A dictionary with labels as keys and data arrays as values.
        :param title: Figure title.
        :param xlab: X axis label.
        :param ylab: Y axis label.
        :param bins: Number of bins.
        :param alpha: Transparency value for histograms.
        :param legend_loc: Location of legend.
        :param legend: Plot legend if True.
        :param vlines: Dictionary with labels and positions of vertical lines to draw.
        :returns: None
        :rtype: object
        """
        fig = plt.figure()

        for label, data in six.iteritems(data_map):
            if len(data) > 0:
                plt.hist(data, bins=bins, label=label, alpha=alpha)
        if vlines is not None:
            for label, pos in six.iteritems(vlines):
                plt.axvline(x=pos, label=label)
        if legend:
            plt.legend(loc=legend_loc)

        self._set_properties_and_close(fig, title, xlab, ylab)
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def plot_vline():
    plt.axvline(x=vcen[i], ymin=0., ymax = 1.5, linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=vcen[i]+30., ymin=0., ymax = 1.5, linewidth=0.5, color='k')
    plt.axvline(x=vcen[i]-30., ymin=0., ymax = 1.5, linewidth=0.5, color='k')

# define the data directory
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def sdss_plot_wavelength(wavelengths, name):

    # define parameters for the x and y axes
    ax.set_xlim(xmin, xmax)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.tick_params(axis='x', labelsize=7)
    ax.set_ylim(0., 15.)
    # make the plot
    ax.plot(wavelength, flux)
    # include the name of the line
    plt.text(xmin+0.03*(xmax-xmin), 0.15, name)
    # mark the approximate centroid velocity
    plt.axvline(x=wavelengths, ymin=0., ymax = 15., linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=wavelengths + 30., ymin=0., ymax = 15., linewidth=0.5, color='k')
    plt.axvline(x=wavelengths - 30., ymin=0., ymax = 15., linewidth=0.5, color='k')
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def plot_profile(wave, flux, line, name, fosc):
    # define the velocity scale [AA / s]
    vel_aas = (wave - line*(1+zem[i])) / (line*(1+zem[i])) * c
    # convert to [km / s]
    vel_kms = vel_aas.to('km/s')
    # define parameters for the x and y axes
    ax.set_xlim(xmin, xmax)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.tick_params(axis='x', labelsize=xls)
    ymax = 3.e12
    ax.set_ylim(0., ymax)
    # make the plot (using equations 5 and 8 from Savage & Sembach 1991)
    ax.plot(vel_kms, np.log(1/flux) / 2.654e-15 / (fosc * line))
    # include the name of the line
    plt.text(xmin+0.03*(xmax-xmin), ymax*0.6, name)
    # mark the approximate centroid velocity
    plt.axvline(x=vcen[i], ymin=0., ymax = 1.5, linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=vcen[i]+30., ymin=0., ymax = 1.5, linewidth=0.5, color='k')
    plt.axvline(x=vcen[i]-30., ymin=0., ymax = 1.5, linewidth=0.5, color='k')
    # label other lines for clarity
    for k in range(0, len(lines)):
        vel_off_aas = (lines[k] - line) / line * c
        vel_off_kms = vel_off_aas.to('km/s') / (u.km / u.s)
        plt.axvline(x=vcen[i]+vel_off_kms, ymin=0., ymax = 1.5, linewidth=1, color='k', linestyle='dotted')

# define the data directory
项目:bates_galaxies_lab    作者:aleksds    | 项目源码 | 文件源码
def sdss_plot_wavelength(wavelengths, name):

    # define parameters for the x and y axes
    ax.set_xlim(xmin, xmax)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.tick_params(axis='x', labelsize=7)
    ax.set_ylim(0., 15.)
    # make the plot
    ax.plot(wavelength, flux)
    # include the name of the line
    plt.text(xmin+0.03*(xmax-xmin), 0.15, name)
    # mark the approximate centroid velocity
    plt.axvline(x=wavelengths, ymin=0., ymax = 15., linewidth=1, color='k', linestyle='dotted')
    plt.axvline(x=wavelengths + 30., ymin=0., ymax = 15., linewidth=0.5, color='k')
    plt.axvline(x=wavelengths - 30., ymin=0., ymax = 15., linewidth=0.5, color='k')
项目:astetik    作者:mikkokotila    | 项目源码 | 文件源码
def bubble(data,x,y,hue,bsize,palette='Reds',xscale='linear',yscale='linear',title='',suptitle=0):

    if suptitle == 0:
        suptitle = bsize

    sns.set(style="whitegrid")
    sns.set_context("notebook", font_scale=3, rc={"lines.linewidth": 0.3})

    sns.set_color_codes("bright")

    size = (1500 / float(data[bsize].max()))
    size = data[bsize] * size

    g = sns.PairGrid(data, hue=hue, palette=palette, y_vars=y, x_vars=x, size=12, aspect=3)

    g.map(plt.scatter, s=size);

    g.set(xscale=xscale)
    g.set(yscale=yscale)

    g.add_legend(title=hue, bbox_to_anchor=(0.9, 0.6))

    plt.title(title, fontsize=48, y=1.12, color="gray");

    plt.suptitle("size = " + suptitle, verticalalignment='top', fontsize=35, y=1.01, x=0.48, color="gray")
    plt.xlabel(x, fontsize=38, labelpad=30, color="gray");
    plt.ylabel(y, fontsize=38, labelpad=30, color="gray");

    plt.tick_params(axis='both', which='major', pad=25)

    plt.axhline(linewidth=2.5, color="black");
    plt.axvline(linewidth=2.5, color="black");
    plt.ylim(0,);
    plt.xlim(0,);
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_marginals(state_space,p,name,t,labels = False):
    import matplotlib
    #matplotlib.use("PDF")
    #matplotlib.rcParams['figure.figsize'] = 5,10
    import matplotlib.pyplot as pl
    pl.suptitle("time: "+ str(t)+" units")
    print("time : "+ str(t))

    D = state_space.shape[1]

    for i in range(D):
        marg_X = np.unique(state_space[:,i])
        A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0)
        marg_p = np.dot(A,p)
        pl.subplot(int(D/2)+1,2,i+1)
        pl.plot(marg_X,marg_p)
        pl.axvline(np.sum(marg_X*marg_p),color= 'r')
        pl.axvline(marg_X[np.argmax(marg_p)],color='g')
        if labels == False:
            pl.xlabel("Specie: " + str(i+1))
        else:
            pl.xlabel(labels[i])
    #pl.savefig("Visuals/marginal_"+name+".pdf",format='pdf')
    pl.show()
    pl.clf()

##Simple Compress : best N-term approximation under the ell_1 norm
#@param state_space the state space shape: (Number of Species X Number of states) 
#@param p probability vector
#@param eps the ell_1 error to remove
#@return -Compressed state space
#       -Compressed Probs
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_marginals(state_space,p,name,t,labels = False,interactive = False):
    import matplotlib

    import matplotlib.pyplot as pl
    if interactive == True: 
        pl.ion()
    pl.clf()
    pl.suptitle("time: "+ str(t)+" units")
    #print("time : "+ str(t))
    D = state_space.shape[1]

    for i in range(D):
        marg_X = np.unique(state_space[:,i])
        A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0)
        marg_p = np.dot(A,p)
        pl.subplot(int(D/2)+1,2,i+1)
        pl.plot(marg_X,marg_p)
        pl.yticks(np.linspace(np.amin(marg_p), np.amax(marg_p), num=3))
        pl.axvline(np.sum(marg_X*marg_p),color= 'r')
        pl.axvline(marg_X[np.argmax(marg_p)],color='g')
        if labels == False:
            pl.xlabel("Specie: " + str(i+1))
        else:
            pl.xlabel(labels[i])
    if interactive == True:
        pl.draw()
    else:
        pl.tight_layout()
        pl.show()