Python matplotlib.pyplot 模块,cla() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用matplotlib.pyplot.cla()

项目:dpl    作者:ppengtang    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:py-faster-rcnn-tk1    作者:joeking11829    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:voxcelchain    作者:hiroaki-kaneda    | 项目源码 | 文件源码
def create_graph():
    logfile = 'result/log'
    xs = []
    ys = []
    ls = []
    f = open(logfile, 'r')
    data = json.load(f)

    print(data)

    for d in data:
        xs.append(d["iteration"])
        ys.append(d["main/accuracy"])
        ls.append(d["main/loss"])

    plt.clf()
    plt.cla()
    plt.hlines(1, 0, np.max(xs), colors='r', linestyles="dashed")  # y=-1, 1??????
    plt.title(r"loss/accuracy")
    plt.plot(xs, ys, label="accuracy")
    plt.plot(xs, ls, label="loss")
    plt.legend()
    plt.savefig("result/log.png")
项目:nelder_mead    作者:owruby    | 项目源码 | 文件源码
def plot2d_simplex(simplex, ind):
    fig_dir = "./"
    plt.cla()
    n = 1000
    x1 = np.linspace(-256, 1024, n)
    x2 = np.linspace(-256, 1024, n)
    X, Y = np.meshgrid(x1, x2)
    Z = np.sqrt(X ** 2 + Y ** 2)
    plt.contour(X, Y, Z, levels=list(np.arange(0, 1200, 10)))
    plt.gca().set_aspect("equal")
    plt.xlim((-256, 768))
    plt.ylim((-256, 768))

    plt.plot([simplex[0].x[0], simplex[1].x[0]],
             [simplex[0].x[1], simplex[1].x[1]], color="#000000")
    plt.plot([simplex[1].x[0], simplex[2].x[0]],
             [simplex[1].x[1], simplex[2].x[1]], color="#000000")
    plt.plot([simplex[2].x[0], simplex[0].x[0]],
             [simplex[2].x[1], simplex[0].x[1]], color="#000000")
    plt.savefig(os.path.join(fig_dir, "{:03d}.png".format(ind)))
项目:adversarial-frcnn    作者:xiaolonw    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:fast-rcnn-distillation    作者:xiaolonw    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:faster-rcnn-resnet    作者:Eniac-Xie    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def fast_run(args):
    model = Model(args)
    feed = {}
    #feed[model.train_batch]=False
    xx,ss,yy=model.inputs(args.input_path)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    tf.train.start_queue_runners(sess=sess)
    xxx,sss,yyy=sess.run([xx,ss,yy])
    #print(yyy)
    #print(yyy[1])
    print('len:',xxx.shape)
    import matplotlib.cm as cm
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    plt.figure(figsize=(16,4))
    #plt.imshow()
    plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
    plt.savefig("img.jpg")
    plt.clf() ; plt.cla()
项目:zhusuan    作者:thu-ml    | 项目源码 | 文件源码
def draw(vmean, vlogstd):
        from scipy import stats
        plt.cla()
        xlimits = [-2, 2]
        ylimits = [-4, 2]

        def log_prob(z):
            z1, z2 = z[:, 0], z[:, 1]
            return stats.norm.logpdf(z2, 0, 1.35) + \
                stats.norm.logpdf(z1, 0, np.exp(z2))

        plot_isocontours(ax, lambda z: np.exp(log_prob(z)), xlimits, ylimits)

        def variational_contour(z):
            return stats.multivariate_normal.pdf(
                z, vmean, np.diag(np.exp(vlogstd)))

        plot_isocontours(ax, variational_contour, xlimits, ylimits)
        plt.draw()
        plt.pause(1.0 / 30.0)
项目:py-faster-rcnn-resnet-imagenet    作者:tianzhi0549    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:focal-loss    作者:unsky    | 项目源码 | 文件源码
def show_boxes(im, dets, classes, scale = 1.0):
    plt.cla()
    plt.axis("off")
    plt.imshow(im)
    for cls_idx, cls_name in enumerate(classes):
        cls_dets = dets[cls_idx]
        for det in cls_dets:
            bbox = det[:4] * scale
            color = (rand(), rand(), rand())
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                  bbox[2] - bbox[0],
                                  bbox[3] - bbox[1], fill=False,
                                  edgecolor=color, linewidth=2.5)
            plt.gca().add_patch(rect)

            if cls_dets.shape[1] == 5:
                score = det[-1]
                plt.gca().text(bbox[0], bbox[1],
                               '{:s} {:.3f}'.format(cls_name, score),
                               bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
    plt.show()
    return im
项目:pystudio    作者:satorchi    | 项目源码 | 文件源码
def plot_Vavg(self,Vavg,Vbias,offset=None,axes=None):
    Iavg=self.ADU2I(Vavg,offset)

    lbl=str('V$_{bias}$ = %.2fV' % Vbias)
    plt.cla()
    if isinstance(axes,list) or isinstance(axes,np.ndarray): plt.axis(axes)
    plt.xlabel('TES number')
    plt.ylabel('I  /  $\mu$A')
    # plot markers with no lines
    plt.plot(Iavg,marker='D',drawstyle='steps-mid',linestyle='none',color='green',label=lbl)
    # plot bars up to the markers
    tes_axis=np.arange(self.NPIXELS)-0.25
    plt.bar(tes_axis,height=Iavg,color='pink',width=0.5)
    plt.legend()
    plt.pause(0.01)
    return
项目:RON    作者:taokong    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.5):
    """Visual debugging of detections."""

    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(5, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]

        if score > thresh:

            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:Dstl-Satellite-Imagery-Feature-Detection    作者:DeepVoltaire    | 项目源码 | 文件源码
def visualize_scores(avg_scores, ind_scores_over_time, trs, name):
    """
    Visualizes the validation Jaccard Scores for all ten classes over the epochs.
    """
    plt.plot(avg_scores, lw=3)
    for z in range(10):
        plt.plot(ind_scores_over_time[z], ls="--")
    plt.title('Jaccard Scores')
    plt.ylabel('Score')
    plt.xlabel('Epoch')
    legend = plt.legend(["Avg Score", "Buildings", "Structures", "Road", "Track", "Trees", "Crops", "Waterway",
                  "Standing Water", "Trucks", "Cars"], loc='upper left', frameon=True)
    frame = legend.get_frame()
    frame.set_facecolor('white')
    os.makedirs("../plots", exist_ok=True)
    plt.savefig("../plots/scores_{}.png".format(name), bbox_inches="tight", pad_inches=1)
    plt.clf()
    plt.cla()
    plt.close()
项目:face-py-faster-rcnn    作者:playerkk    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt 
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4] 
        score = dets[i, -1] 
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()
项目:deep-fashion    作者:zuowang    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:Deformable-ConvNets    作者:msracver    | 项目源码 | 文件源码
def show_boxes(im, dets, classes, scale = 1.0):
    plt.cla()
    plt.axis("off")
    plt.imshow(im)
    for cls_idx, cls_name in enumerate(classes):
        cls_dets = dets[cls_idx]
        for det in cls_dets:
            bbox = det[:4] * scale
            color = (rand(), rand(), rand())
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                  bbox[2] - bbox[0],
                                  bbox[3] - bbox[1], fill=False,
                                  edgecolor=color, linewidth=2.5)
            plt.gca().add_patch(rect)

            if cls_dets.shape[1] == 5:
                score = det[-1]
                plt.gca().text(bbox[0], bbox[1],
                               '{:s} {:.3f}'.format(cls_name, score),
                               bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
    plt.show()
    return im
项目:RPN    作者:hfut721    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:retrieval-2016-deepvision    作者:imatge-upc    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:Deep-Feature-Flow    作者:msracver    | 项目源码 | 文件源码
def show_boxes(im, dets, classes, scale = 1.0):
    plt.cla()
    plt.axis("off")
    plt.imshow(im)
    for cls_idx, cls_name in enumerate(classes):
        cls_dets = dets[cls_idx]
        for det in cls_dets:
            bbox = det[:4] * scale
            color = (random.random(), random.random(), random.random())
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                  bbox[2] - bbox[0],
                                  bbox[3] - bbox[1], fill=False,
                                  edgecolor=color, linewidth=2.5)
            plt.gca().add_patch(rect)

            if cls_dets.shape[1] == 5:
                score = det[-1]
                plt.gca().text(bbox[0], bbox[1],
                               '{:s} {:.3f}'.format(cls_name, score),
                               bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
    plt.show()
    return im
项目:oicr    作者:ppengtang    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()
项目:FPN    作者:xmyqsh    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt 
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4] 
        score = dets[i, -1] 
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()
项目:TFFRCNN    作者:InterVideo    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt 
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4] 
        score = dets[i, -1] 
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()
项目:Neural_Network    作者:Shoeboxam    | 项目源码 | 文件源码
def post_graph(self, error, prediction):
        self.plot_points.append((self.iteration, error))

        # Error plot
        plt.subplot(1, 2, 1)
        plt.cla()
        plt.title('Error')
        plt.plot(*zip(*self.plot_points), marker='.', color=(.9148, .604, .0945))

        # Environment plot
        plt.subplot(1, 2, 2)
        plt.cla()
        plt.title('Environment')
        self.environment.plot(plt, prediction)

        plt.pause(0.00001)
项目:Neural_Network    作者:Shoeboxam    | 项目源码 | 文件源码
def post_graph(self, error, prediction):
        self.plot_points.append((self.iteration, error))

        # Error plot
        plt.subplot(1, 2, 1)
        plt.cla()
        plt.title('Error')
        plt.plot(*zip(*self.plot_points), marker='.', color=(.9148, .604, .0945))

        # Environment plot
        plt.subplot(1, 2, 2)
        plt.cla()
        plt.title('Environment')
        self.environment.plot(plt, prediction)

        plt.pause(0.00001)
项目:Neural_Network    作者:Shoeboxam    | 项目源码 | 文件源码
def post_graph(self, error, prediction):
        self.plot_points.append((self.iteration, error))

        # Error plot
        plt.subplot(1, 2, 1)
        plt.cla()
        plt.title('Error')
        plt.plot(*zip(*self.plot_points), marker='.', color=(.9148, .604, .0945))

        # Environment plot
        plt.subplot(1, 2, 2)
        plt.cla()
        plt.title('Environment')
        self.environment.plot(plt, prediction)

        plt.pause(0.00001)
项目:ccf-price-prediction    作者:wqlin    | 项目源码 | 文件源码
def plot(self, sort_csv_file, forecast_csv_file, save_fig_file):
        sort_df = pd.read_csv(sort_csv_file)
        sort_df['date'] = pd.to_datetime(sort_df['date'], format='%Y-%m-%d')
        sort_df = sort_df.set_index(pd.DatetimeIndex(sort_df['date']))

        forecast_df = pd.read_csv(forecast_csv_file, header=None,
                                  names=['date', 'aver'])
        forecast_df['date'] = pd.to_datetime(forecast_df['date'], format='%Y-%m-%d')
        forecast_df = forecast_df.set_index(pd.DatetimeIndex(forecast_df['date']))
        forecast_df['aver'].plot(figsize=(20, 20), c='r', linewidth=3.0)
        ax = sort_df['aver'].plot(figsize=(20, 20), linewidth=3.0)
        plt.ylabel('price')
        plt.xlabel('date')
        ax.set_ylim(sort_df['aver'].min() * 0.8, sort_df['aver'].max() * 1.2)
        plt.savefig(save_fig_file)
        plt.cla()
        plt.clf()
        plt.close()
项目:ARES    作者:junjieqian    | 项目源码 | 文件源码
def lineplot(gcfreqdict):
  namelist = []
  i = -1
  xlist = ['1', '2', '4', '8', '16', '32', '48']
  ylist = []
  for name in gcfreqdict:
    i += 1
    ylist = []
    namelist.append(name)
    base = gcfreqdict[name][0]
    for gc in gcfreqdict[name]:
      ylist.append(float(gc/base))
    plt.figure(0)
    plt.plot(range(len(ylist)), ylist, marker=markerlist[i], color='#d3d3d3',label=name)
    plt.savefig("GC_Frequency.pdf", format='pdf', bbox_inches='tight')
  plt.figure(0)
  plt.xticks(range(len(xlist)), xlist)
  plt.ylabel("Number of GC")
  plt.xlabel("Benchmarks run with different processor cores number")
  plt.legend(loc="upper left", ncol=3)
  plt.savefig("GC_Frequency.pdf", format='pdf', bbox_inches='tight')
  plt.cla()
项目:ssd_pytorch    作者:miraclebiu    | 项目源码 | 文件源码
def show_boxes(im, dets, classes, scale = 1.0):
    plt.cla()
    plt.axis("off")
    plt.imshow(im)
    for cls_idx, cls_name in enumerate(classes):
        cls_dets = dets[cls_idx]
        for det in cls_dets:
            bbox = det[:4] * scale
            color = (rand(), rand(), rand())
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                  bbox[2] - bbox[0],
                                  bbox[3] - bbox[1], fill=False,
                                  edgecolor=color, linewidth=2.5)
            plt.gca().add_patch(rect)

            if cls_dets.shape[1] == 5:
                score = det[-1]
                plt.gca().text(bbox[0], bbox[1],
                               '{:s} {:.3f}'.format(cls_name, score),
                               bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
    plt.show()
    return im
项目:TattDL    作者:z-harry-sun    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:CRAFT    作者:byangderek    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:CRAFT    作者:byangderek    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:CRAFT    作者:byangderek    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:vicsek_model    作者:alsignoriello    | 项目源码 | 文件源码
def save_plot(file, eta):

    # axes between 0 and 1
    ax.set_xlim3d(0, 1)
    ax.set_ylim3d(0, 1)
    ax.set_zlim3d(0, 1)

    # remove tick marks
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_zticks([])

    # title 
    # plt.title("$\eta$ = %.2f" % eta)

    # save plot
    plt.savefig("plots/%s.jpg" % file)
    plt.close()

    # clear for next plot
    plt.cla()

    return
项目:vicsek_model    作者:alsignoriello    | 项目源码 | 文件源码
def save_plot(file, eta):

    # axes between 0 and 1
    plt.axis([0,1,0,1])

    # remove tick marks
    frame = plt.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([])

    # title 
    plt.title("$\eta$ = %.2f" % eta)

    # save plot
    plt.savefig("plots/%s.jpg" % file[10:-4])
    plt.close()

    # clear for next plot
    plt.cla()

    return
项目:lens    作者:ASIDataScience    | 项目源码 | 文件源码
def test_cdf_plot(artworks_df, artworks_summary):
    column = 'Height (cm)'
    plt.cla()

    def mock_render(fig):
        ax = fig.axes[0]
        assert len(ax.lines) == 1
        line = ax.lines[0]

        tdigest = artworks_summary.tdigest(column)
        xs = [tdigest.percentile(p) for p in [0, 100]]

        assert line.get_xdata()[0] == xs[0]
        assert line.get_xdata()[-1] == xs[-1]
        assert line.get_ydata()[0] == 0
        assert line.get_ydata()[-1] == 100

    explorer = Explorer(artworks_summary, plot_renderer=mock_render)
    explorer.cdf_plot('Height (cm)')
项目:faster_rcnn_logo    作者:romyny    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:TF_Deformable_Net    作者:Zardinality    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt 
    #im = im[:, :, (2, 1, 0)]
    for i in range(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4] 
        score = dets[i, -1]
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()
项目:Faster_RCNN_Training_Toolkit    作者:VerseChow    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:picasso    作者:jungmannlab    | 项目源码 | 文件源码
def calculate_histogram(self):
        slice = self.pick_slice.value()
        ax = self.figure.add_subplot(111)
        ax.hold(False)
        plt.cla()
        n_channels = len(self.zcoord)

        hues = np.arange(0, 1, 1 / n_channels)
        self.colors = [colorsys.hsv_to_rgb(_, 1, 1) for _ in hues]

        self.bins = np.arange(np.amin(np.hstack(self.zcoord)),np.amax(np.hstack(self.zcoord)),slice)
        self.patches = []
        ax.hold(True)
        for i in range(len(self.zcoord)):
            n, bins, patches = plt.hist(self.zcoord[i], self.bins, normed=1, facecolor=self.colors[i], alpha=0.5)
            self.patches.append(patches)

        plt.xlabel('Z-Coordinate [nm]')
        plt.ylabel('Counts')
        plt.title(r'$\mathrm{Histogram\ of\ Z:}$')
        # refresh canvas
        self.canvas.draw()
        self.sl.setMaximum(len(self.bins)-2)
        #self.sl.setValue(np.ceil((len(self.bins)-2)/2))
项目:KITTI-detection-OHEM    作者:manutdzou    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()
项目:corelm    作者:nusnlp    | 项目源码 | 文件源码
def plot(self):
        plt.title(self.title, y=1.01, fontsize='medium')
        plt.xlabel(self.xlabel)
        plt.ylabel(self.ylabel)
        plt.grid('on')
        plt.margins(0.1)
        for i in range(len(self.series_list)):
            x_list = []
            y_list = []
            for x in sorted(self.series_list[i].keys()):
                x_list.append(x)
                y_list.append(self.series_list[i][x])
            #xmin, xmax = min(self.x_list), max(self.x_list) + 1
            #ymin, ymax = min(self.y_list), max(self.y_list) + 1
            #plt.xticks(np.arange(xmin, xmax, 1.0), np.arange(xmin, xmax, 1.0), fontsize='x-small')
            #plt.yticks(np.arange(ymin, ymax, 0.5), np.arange(ymin, ymax, 0.5), fontsize='x-small')
            plt.plot(x_list, y_list, self.tix_list[i], label='S' + str(i))
        plt.legend(bbox_to_anchor=(1.15, 0.5), loc='center right', borderaxespad=0.2, fontsize='x-small')
        plt.savefig(self.path, format='pdf', bbox_inches='tight', pad_inches=0.3)
        plt.cla()
项目:ohem    作者:abhi2610    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:py-faster-rcnn-dockerface    作者:natanielruiz    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show()
项目:qtim_ROP    作者:QTIM-Lab    | 项目源码 | 文件源码
def misclassifications(file_names, img_path, y_true, y_pred, classes, out_dir, n=10):

    class_count = [0] * (np.max(y_true) + 1)
    fig, ax = plt.subplots()

    classes = dict_reverse(classes)

    for img, yt, yp in zip(file_names, y_true, y_pred):

        if yt != yp:  # and class_count[yp] < n:

            plt.cla()
            img = np.asarray(Image.open(join(img_path, img)))
            ax.imshow(img)  # np.transpose(img, (1, 2, 0)))
            ax.text(5, 10, 'True: {}'.format(classes[yt]), fontdict=FONT)
            ax.text(5, 25, 'Predicted: {}'.format(classes[yp]), fontdict=FONT)
            ax.axis('off')

            plt.savefig(join(out_dir, '{}_{}.png'.format(classes[yp], class_count[yp])))
            class_count[yp] += 1
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt 
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4] 
        score = dets[i, -1] 
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show()