Python matplotlib.pyplot 模块,contour() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.contour()

项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def plot_density_map(x, y, xbins, ybins, Nlevels=4, cbar=True, weights=None):

    Z = np.histogram2d(x, y, bins=(xbins, ybins), weights=weights)[0].astype(float).T

    # central values
    lt = get_centers_from_bins(xbins)
    lm = get_centers_from_bins(ybins)
    cX, cY = np.meshgrid(lt, lm)
    X, Y = np.meshgrid(xbins, ybins)

    im = plt.pcolor(X, Y, Z, cmap=plt.cm.Blues)
    plt.contour(cX, cY, Z, levels=nice_levels(Z, Nlevels), cmap=plt.cm.Greys_r)

    if cbar:
        cb = plt.colorbar(im)
    else:
        cb = None
    plt.xlim(xbins[0], xbins[-1])
    plt.ylim(ybins[0], ybins[-1])

    try:
        plt.tight_layout()
    except Exception as e:
        print(e)
    return plt.gca(), cb
项目:nelder_mead    作者:owruby    | 项目源码 | 文件源码
def plot2d_simplex(simplex, ind):
    fig_dir = "./"
    plt.cla()
    n = 1000
    x1 = np.linspace(-256, 1024, n)
    x2 = np.linspace(-256, 1024, n)
    X, Y = np.meshgrid(x1, x2)
    Z = np.sqrt(X ** 2 + Y ** 2)
    plt.contour(X, Y, Z, levels=list(np.arange(0, 1200, 10)))
    plt.gca().set_aspect("equal")
    plt.xlim((-256, 768))
    plt.ylim((-256, 768))

    plt.plot([simplex[0].x[0], simplex[1].x[0]],
             [simplex[0].x[1], simplex[1].x[1]], color="#000000")
    plt.plot([simplex[1].x[0], simplex[2].x[0]],
             [simplex[1].x[1], simplex[2].x[1]], color="#000000")
    plt.plot([simplex[2].x[0], simplex[0].x[0]],
             [simplex[2].x[1], simplex[0].x[1]], color="#000000")
    plt.savefig(os.path.join(fig_dir, "{:03d}.png".format(ind)))
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def showHeightMap(x,y,z,zi):
    ''' show height map in maptplotlib '''
    zi=zi.transpose()

    plt.imshow(zi, vmin=z.min(), vmax=z.max(), origin='lower',
               extent=[ y.min(), y.max(),x.min(), x.max()])

    plt.colorbar()

    CS = plt.contour(zi,15,linewidths=0.5,colors='k',
               extent=[ y.min(), y.max(),x.min(), x.max()])
    CS = plt.contourf(zi,15,cmap=plt.cm.rainbow, 
               extent=[ y.min(), y.max(),x.min(), x.max()])

    z=z.transpose()
    plt.scatter(y, x, c=z)

    # achsen umkehren
    #plt.gca().invert_xaxis()
    #plt.gca().invert_yaxis()

    plt.show()
    return
项目:cupy    作者:cupy    | 项目源码 | 文件源码
def draw(X, pred, means, covariances, output):
    xp = cupy.get_array_module(X)
    for i in six.moves.range(2):
        labels = X[pred == i]
        if xp is cupy:
            labels = labels.get()
        plt.scatter(labels[:, 0], labels[:, 1], c=np.random.rand(3))
    if xp is cupy:
        means = means.get()
        covariances = covariances.get()
    plt.scatter(means[:, 0], means[:, 1], s=120, marker='s', facecolors='y',
                edgecolors='k')
    x = np.linspace(-5, 5, 1000)
    y = np.linspace(-5, 5, 1000)
    X, Y = np.meshgrid(x, y)
    for i in six.moves.range(2):
        Z = mlab.bivariate_normal(X, Y, np.sqrt(covariances[i][0]),
                                  np.sqrt(covariances[i][1]),
                                  means[i][0], means[i][1])
        plt.contour(X, Y, Z)
    plt.savefig(output)
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def maskfill_edgeinclude(a, iterations=1, erode=False):
    import scipy.ndimage as ndimage
    a = checkma(a)
    if erode: 
        a = mask_islands(a, iterations=1)
    #This is the dilation version
    #newmask = ~np.ma.getmaskarray(a)
    #newmask = ndimage.morphology.binary_dilation(newmask, iterations=iterations)
    #newmask = ndimage.morphology.binary_dilation(~newmask, iterations=iterations)
    #And the erosion version
    newmask = np.ma.getmaskarray(a)
    newmask = ndimage.morphology.binary_erosion(newmask, iterations=iterations)
    newmask = ndimage.morphology.binary_dilation(newmask, iterations=iterations)
    return newmask

#This is an alternative to the ma.notmasked_edges
#Note: probably faster/simpler to contour the mask
项目:pygeotools    作者:dshean    | 项目源码 | 文件源码
def contour_edges(a):
    import matplotlib.pyplot as plt
    a = checkma(a)
    #Contour nodata value
    levels = [a.fill_value]
    #kw = {'antialiased':True, 'colors':'r', 'linestyles':'-'}
    kw = {'antialiased':True}
    #Generate contours around nodata
    cs = plt.contour(a.filled(), levels, **kw)
    #This returns a list of numpy arrays
    #allpts = np.vstack(cs.allsegs[0])
    #Extract paths
    p = cs.collections[0].get_paths()
    #Sort by number of vertices in each path
    p_len = [i.vertices.shape[0] for i in p]
    p_sort = [x for (y,x) in sorted(zip(p_len,p), reverse=True)]    
    #cp = p[0].make_compound_path(*p)
    return p_sort

#Brute force search for edges of valid data
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def detect_contour(img, level):

  #parameter
  mask = None;
  corner_mask = True;
  nchunk = 0;

  #prepare image data
  z = ma.asarray(img, dtype=np.float64); 
  ny, nx = z.shape;
  x, y = np.meshgrid(np.arange(nx), np.arange(ny));

  #find contour
  contour_generator = _contour.QuadContourGenerator(x, y, z.filled(), mask, corner_mask, nchunk)
  vertices = contour_generator.create_contour(level);

  return vertices;
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def detect_contour(img, level):

  #parameter
  mask = None;
  corner_mask = True;
  nchunk = 0;

  #prepare image data
  z = ma.asarray(img, dtype=np.float64); 
  ny, nx = z.shape;
  x, y = np.meshgrid(np.arange(nx), np.arange(ny));

  #find contour
  contour_generator = _contour.QuadContourGenerator(x, y, z.filled(), mask, corner_mask, nchunk)
  vertices = contour_generator.create_contour(level);

  return vertices;
项目:Steal-ML    作者:ftramer    | 项目源码 | 文件源码
def plot_decision_boundary(pred_func, X, y, bounds, filename=None):
    if plt is None:
        return

    fig = plt.figure()
    h = 0.01
    # Generate a grid of points with distance h between them
    x_min, x_max, y_min, y_max = bounds
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    # Predict the function value for the whole gid
    Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)

    if filename:
        plt.savefig(filename)
        plt.close()
    else:
        plt.show()
    return fig
项目:Steal-ML    作者:ftramer    | 项目源码 | 文件源码
def compare_boundaries(pred_func1, pred_func2, bounds, filename=None):
    if plt is None:
        return
    # Set min and max values and give it some padding
    x_min, x_max, y_min, y_max = bounds
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole gid
    Z1 = pred_func1(np.c_[xx.ravel(), yy.ravel()])
    Z1 = Z1.reshape(xx.shape)

    plt.figure()
    # Plot the contour and training examples
    plt.contour(xx, yy, Z1, cmap=plt.cm.Reds)

    Z2 = pred_func2(np.c_[xx.ravel(), yy.ravel()])
    Z2 = Z2.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contour(xx, yy, Z2, cmap=plt.cm.Blues)
    if filename:
        plt.savefig(filename)
        plt.close()
    else:
        plt.show()
项目:Steal-ML    作者:ftramer    | 项目源码 | 文件源码
def plot_decision_boundary(pred_func, X, y, bounds, filename=None):
    if plt is None:
        return
    plt.figure()
    h = 0.01
    # Generate a grid of points with distance h between them
    x_min, x_max, y_min, y_max = bounds
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    # Predict the function value for the whole gid
    Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)

    if filename:
        plt.savefig(filename)
        plt.close()
    else:
        plt.show()
项目:Steal-ML    作者:ftramer    | 项目源码 | 文件源码
def compare_decision_boundary(pred_func1, pred_func2, X, filename):
    if plt is None:
        return
    # Set min and max values and give it some padding
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole gid
    Z1 = pred_func1(np.c_[xx.ravel(), yy.ravel()])
    Z1 = Z1.reshape(xx.shape)

    plt.figure()
    # Plot the contour and training examples
    plt.contour(xx, yy, Z1, cmap=plt.cm.Reds)

    Z2 = pred_func2(np.c_[xx.ravel(), yy.ravel()])
    Z2 = Z2.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contour(xx, yy, Z2, cmap=plt.cm.Blues)
    plt.savefig(filename)
    plt.close()
项目:Music-Classification-MedleyDB    作者:DeepeshAgarawal    | 项目源码 | 文件源码
def plot_model(model, data):
    """

    :param model: the GMM model
    :param data: the data set 2D
    :return:
    """
    delta = 0.025
    x = np.arange(0.0, 4, delta)
    y = np.arange(0.0, 4, delta)
    X, Y = np.meshgrid(x, y)
    z = np.zeros((np.size(x), np.size(y)))
    # sum of Gaussian
    plt.figure()
    for i in range(np.size(model)):
        ztemp = mlab.bivariate_normal(X, Y, np.sqrt(model['cov'][i][0, 0]), np.sqrt(model['cov'][i][1, 1]), model['mu'][i][0], model['mu'][i][1], model['cov'][i][0,1])
        plt.contour(X, Y, model['w'][i]*ztemp)
        z = np.add(z, ztemp)
    plt.scatter(data[0, :], data[1, :], s=5)
    plt.figure()
    plt.contour(X, Y, z*np.size(model))
    plt.scatter(data[0, :], data[1, :], s=5)
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def scatter_plot(x, y, ellipse=False, levels=[0.99, 0.95, 0.68], color='w', ax=None, **kwargs):
    if ax is None:
        ax = plt.gca()

    if faststats is not None:
        im, e = faststats.fastkde.fastkde(x, y, (50, 50), adjust=2.)
        V = im.max() * np.asarray(levels)

        plt.contour(im.T, levels=V, origin='lower', extent=e, linewidths=[1, 2, 3], colors=color)

    ax.plot(x, y, 'b,', alpha=0.3, zorder=-1, rasterized=True)

    if ellipse is True:
        data = np.vstack([x, y])
        mu = np.mean(data, axis=1)
        cov = np.cov(data)
        error_ellipse(mu, cov, ax=plt.gca(), edgecolor="g", ls="dashed", lw=4, zorder=2)
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_reg_2D_stoc(X,stoc_vector):

    deter_vec = np.invert(stoc_vector)

    dom_max = np.amax(X[stoc_vector,:]) + 1

    A = np.zeros((dom_max,dom_max))

    stoc_indexs = np.arange(0,X.shape[0],1)[stoc_vector].astype(int)

    for i,deter_element in enumerate(deter_vec):
        if deter_element == True:
            A[X[int(stoc_indexs[0]),:].astype(int), X[int(stoc_indexs[1]),:].astype(int)] = X[i,:]
            pl.figure(i)
            #ax = fig.gca(projection='3d')
            #surf = ax.plot_surface(X[int(stoc_indexs[0]),:].astype(int), X[int(stoc_indexs[1]),:].astype(int),X[i,:], rstride=1, cstride=1,
#cmap=cm.coolwarm,linewidth=0, antialiased=False)
            pl.contour(A,X[i,:])
            #ax.zaxis.set_major_locator(LinearLocator(10))
            #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
            #fig.colorbar(surf, shrink=0.5, aspect=5)
            pl.show()
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_reg_2D_stoc(X,stoc_vector):

    deter_vec = np.invert(stoc_vector)

    dom_max = np.amax(X[stoc_vector,:]) + 1

    A = np.zeros((dom_max,dom_max))

    stoc_indexs = np.arange(0,X.shape[0],1)[stoc_vector].astype(int)

    for i,deter_element in enumerate(deter_vec):
        if deter_element == True:
            A[X[int(stoc_indexs[0]),:].astype(int), X[int(stoc_indexs[1]),:].astype(int)] = X[i,:]
            pl.figure(i)
            #ax = fig.gca(projection='3d')
            #surf = ax.plot_surface(X[int(stoc_indexs[0]),:].astype(int), X[int(stoc_indexs[1]),:].astype(int),X[i,:], rstride=1, cstride=1,
#cmap=cm.coolwarm,linewidth=0, antialiased=False)
            pl.contour(A,X[i,:])
            #ax.zaxis.set_major_locator(LinearLocator(10))
            #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
            #fig.colorbar(surf, shrink=0.5, aspect=5)
            pl.show()
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_2D_contour(states,p,labels,inter=False):
    import pylab as pl

    from pyme.statistics import expectation as EXP
    exp = EXP((states,p)) 
    X = np.unique(states[0,:])
    Y = np.unique(states[1,:])
    X_len = len(X)
    Y_len = len(Y)
    Z = np.zeros((X.max()+1,Y.max()+1))
    for i in range(len(p)):
        Z[states[0,i],states[1,i]] = p[i]

    Z = np.where(Z < 1e-8,0.0,Z)
    pl.clf()
    XX, YY = np.meshgrid(X,Y)   
    pl.contour(range(X.max()+1),range(Y.max()+1),Z.T)
    pl.axhline(y=exp[1])
    pl.axvline(x=exp[0])
    pl.xlabel(labels[0])
    pl.ylabel(labels[1])
    if inter == True:
        pl.draw()
    else:
        pl.show()
项目:FunnyPyML    作者:MrPig    | 项目源码 | 文件源码
def plot(self, X):
        nSize, nFeat = X.shape
        if nFeat != 2:
            logger.warning('feature number must be 2.')
            return
        logger.info('start plotting...')
        pred = self._predict(X)
        h = 0.02  # step size in the mesh
        x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
        Z = self._predict(np.c_[xx.ravel(), yy.ravel()])
        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.scatter(X[:, 0], X[:, 1], c=pred, cmap=plt.cm.Paired)
        plt.contour(xx, yy, Z, cmap=plt.cm.Paired)
        plt.show()
项目:FunnyPyML    作者:MrPig    | 项目源码 | 文件源码
def plot(self, X):
        nSize, nFeat = X.shape
        if nFeat != 2:
            logger.warning('feature number must be 2.')
            return
        logger.info('start plotting...')
        pred = self._predict(X)
        h = 0.02  # step size in the mesh
        x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
        Z = self._predict(np.c_[xx.ravel(), yy.ravel()])
        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.scatter(X[:, 0], X[:, 1], c=pred, cmap=plt.cm.Paired)
        plt.contour(xx, yy, Z, cmap=plt.cm.Paired)
        plt.show()
项目:house-price-map    作者:andyljones    | 项目源码 | 文件源码
def plot_price_with_time_contours(smoothed_prices, walking_time):
    map_image = sp.ndimage.imread('map.png')
    plt.imshow(map_image.mean(2), interpolation='nearest', cmap=plt.cm.gray)

    zoomed_prices = sp.ndimage.zoom(smoothed_prices, map_image.shape[1]/float(smoothed_prices.shape[0]))

    plt.imshow(zoomed_prices.T[::-1], alpha=0.5, interpolation='nearest', cmap=plt.cm.viridis, vmin=5.25, vmax=5.75)

    plt.colorbar(fraction=0.03)

    smoothed_times = smooth(walking_time, sigma=2)
    zoomed_times = sp.ndimage.zoom(smoothed_times, map_image.shape[1]/float(smoothed_prices.shape[0]))
    plt.contour(zoomed_times.T[::-1], cmap=plt.cm.Reds, levels=range(15, 61, 15), linewidths=3)

    plt.gcf().set_size_inches(36, 36)
    plt.savefig(os.path.join(OUTPUT_PATH, 'price_with_time_contours.png'), bbox_inches='tight')
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
    """Makes a pseudocolor plot.

    xs:
    ys:
    zs:
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    options: keyword args passed to pyplot.pcolor and/or pyplot.contour
    """
    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    X, Y = np.meshgrid(xs, ys)
    Z = zs

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = pyplot.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        pyplot.pcolormesh(X, Y, Z, **options)

    if contour:
        cs = pyplot.contour(X, Y, Z, **options)
        pyplot.clabel(cs, inline=1, fontsize=10)
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
    """Makes a pseudocolor plot.

    xs:
    ys:
    zs:
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    options: keyword args passed to plt.pcolor and/or plt.contour
    """
    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    X, Y = np.meshgrid(xs, ys)
    Z = zs

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = plt.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        plt.pcolormesh(X, Y, Z, **options)

    if contour:
        cs = plt.contour(X, Y, Z, **options)
        plt.clabel(cs, inline=1, fontsize=10)
项目:ConvNetQuake    作者:tperol    | 项目源码 | 文件源码
def plot_proba_map(i, lat,lon, clusters, class_prob, label,
                   lat_event, lon_event):

    plt.clf()
    class_prob = class_prob / np.sum(class_prob)
    assert np.isclose(np.sum(class_prob),1)
    risk_map = np.zeros_like(clusters,dtype=np.float64)
    for cluster_id in range(len(class_prob)):
        x,y = np.where(clusters == cluster_id)
        risk_map[x,y] = class_prob[cluster_id]

    plt.contourf(lon,lat,risk_map,cmap='YlOrRd',alpha=0.9,
                 origin='lower',vmin=0.0,vmax=1.0)
    plt.colorbar()

    plt.plot(lon_event, lat_event, marker='+',c='k',lw='5')
    plt.contour(lon,lat,clusters,colors='k',hold='on')
    plt.xlim((min(lon),max(lon)))
    plt.ylim((min(lat),max(lat)))
    png_name = os.path.join(args.output,
                    '{}_pred_{}_label_{}.eps'.format(i,np.argmax(class_prob),
                                                     label))
    plt.savefig(png_name)
    plt.close()
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def mcontour(xs, ys, fs, levels=None, **kw):
    """
    wrapper function for contour

    example
    ======
    mcontour(linspace(-4,4),linspace(-4,4),lambda x,y: x*y)
    """
    x,y=np.meshgrid(xs,ys)
    z=fs(x,y)
    if levels!=None:
        plt.contour(x,y,z,sorted(set(levels)),**kw)
    else:
        plt.contour(x,y,z,**kw)
项目:Fluid2d    作者:pvthinker    | 项目源码 | 文件源码
def imvort(self,kt,cax=[-1,1],scaled=None,maxi=None):
        t,z2d = self.read_crop('vorticity',kt)
        t,psi = self.read_crop('psi',kt)
        z2d[z2d==0]=nan
        cm=redblue(nstripes=10)
        cm.set_bad((0.3,0.3,0.3,1))
        if scaled==None:
            im=plt.imshow(flipud(z2d),vmin=cax[0],vmax=cax[1],cmap=cm,extent=self.domain)
        else:
            idx=where(~isnan(z2d))
            print('\n',shape(idx))
            #wc = median(abs(z2d[idx[0],idx[1]]))
            wc = median(abs(z2d[idx]))
            print('wc=%g'%wc)
            z2d = flipud(z2d)
            im=plt.imshow(sign(z2d)*log(1+(z2d/wc)**2),vmin=-12,vmax=12,cmap=cm,extent=self.domain)


        plt.colorbar(im)
        if maxi == None:
            maxi = roundlog( max(abs(psi)))
        #print(linspace(-maxi,maxi,21))
        ci = maxi/10
        if scaled==None:
            plt.annotate('CI=%2g'%ci,(0.95,0.05),xycoords='axes fraction',color='g',fontsize=16,horizontalalignment='right')            
        plt.contour(self.x[self.xidx],self.y[self.yidx],psi,linspace(-maxi,maxi,21),colors='g',linewidths=2)

        #'ci=%2g'%ci
        #plt.contour(psi,[0],colors='k',linewidths=2)
        if scaled==None:
            plt.title('N = %i / t = %4.2f'%(self.nx,t),fontsize=14)
            plt.xlabel('x')
            plt.ylabel('y')
        else:
            plt.title(r'$t_v=%4.0f$'%t,fontsize=16)
            plt.xlabel(r'$x$',fontsize=16)
            plt.ylabel(r'$y$',fontsize=16)
项目:driveboardapp    作者:nortd    | 项目源码 | 文件源码
def main():
    # Part of the example at 
    # http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/contour_demo.py
    delta = 0.025
    x = numpy.arange(-3.0, 3.0, delta)
    y = numpy.arange(-2.0, 2.0, delta)
    X, Y = numpy.meshgrid(x, y)
    Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
    Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
    Z = 10.0 * (Z2 - Z1)
    pyplot.figure()
    CS = pyplot.contour(X, Y, Z)
    pyplot.show()
项目:information-bottleneck    作者:djstrouse    | 项目源码 | 文件源码
def plot_smoothed_coord(self,save=False,path=None):
        fig = plt.figure()
        plt.title('s = %i' % self.s,fontsize=18,fontweight='bold')
        plt.contour(self.y1v,self.y2v,self.smoothed_coord_density)
        plt.scatter(self.coord[:,0],self.coord[:,1])
        #plt.axis('scaled')
        plt.axis([-22,22,-15,15])
        plt.show()
        if save:
            if path is None: raise ValueError('must specify path to save figure')
            else: fig.savefig(path+self.name+'_smoothed_coord_s%i'%self.s+'.pdf',bbox_inches='tight')
项目:trump-weather    作者:JulianNorton    | 项目源码 | 文件源码
def plotBoundary(mytheta, myX, myy, mylambda=0.):
    """
    Function to plot the decision boundary for arbitrary theta, X, y, lambda value
    Inside of this function is feature mapping, and the minimization routine.
    It works by making a grid of x1 ("xvals") and x2 ("yvals") points,
    And for each, computing whether the hypothesis classifies that point as
    True or False. Then, a contour is drawn with a built-in pyplot function.
    """
    theta, mincost = optimizeRegularizedTheta(mytheta,myX,myy,mylambda)
    xvals = np.linspace(-1,1.5,50)
    yvals = np.linspace(-1,1.5,50)
    zvals = np.zeros((len(xvals),len(yvals)))
    for i in range(len(xvals)):
        for j in range(len(yvals)):
            myfeaturesij = mapFeature(np.array([xvals[i]]),np.array([yvals[j]]))
            zvals[i][j] = np.dot(theta,myfeaturesij.T)
    zvals = zvals.transpose()

    u, v = np.meshgrid( xvals, yvals )
    mycontour = plt.contour( xvals, yvals, zvals, [0])
    #Kind of a hacky way to display a text on top of the decision boundary
    myfmt = { 0:'Lambda = %d'%mylambda}
    plt.clabel(mycontour, inline=1, fontsize=15, fmt=myfmt)
    plt.title("Decision Boundary")


#Build a figure showing contours for various values of regularization parameter, lambda
#It shows for lambda=0 we are overfitting, and for lambda=100 we are underfitting
项目:OTC3D    作者:tiffanyts    | 项目源码 | 文件源码
def contour(self,title='',cbartitle = '',model=[], zmax = None, zmin = None, filename = None, resolution = 1, unit_str = '', bar = True):
        """ Returns a figure with contourplot of 2D spatial data. Insert filename to save the figure as an image. Increase resolution to increase detail of interpolated data (<1 to decrease)"""

        font = {'weight' : 'medium',
                'size'   : 22}

        xi = np.linspace(min(self.data.x), max(self.data.x),len(set(self.data.x))*resolution)
        yi = np.linspace(min(self.data.y), max(self.data.y),len(set(self.data.y))*resolution)


        zi = ml.griddata(self.data.x, self.data.y, self.data.v.interpolate(), xi, yi,interp='linear')

        fig = plt.figure()
        plt.rc('font', **font)
        plt.title(title)
        plt.contour(xi, yi, zi, 15, linewidths = 0, cmap=plt.cm.bone)
        plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap('rainbow'),vmax = zmax, vmin = zmin)
        if bar: cbar = plt.colorbar(); cbar.ax.set_ylabel(cbartitle)

        plt.absolute_import
        try:
            vertices = [(vertex.X(), vertex.Y()) for vertex in pyliburo.py3dmodel.fetch.vertex_list_2_point_list(pyliburo.py3dmodel.fetch.topos_frm_compound(model)["vertex"])]
            shape = patches.PathPatch(Path(vertices), facecolor='white', lw=0)
            plt.gca().add_patch(shape)
        except TypeError:
            pass
        plt.show()

        try:
            fig.savefig(filename)
        except TypeError:
            return fig

#    def plot_along_line(self,X,Y, tick_list):
#        V = self.data.v
#        plt.plot(heights, SVFs_can, label='Canyon')
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def normals_from_contour_discrete(contour):
  """Returns normal vectors along the contour

  Arguments:
    contours (Curve or 2xn array): contour

  Returns:
    nx2 array: normals corresponding to the contours

  Note:
    Assumes closed contour with contour[0]==contour[-1] for all i.
  """
  if isinstance(contour, Curve):
    contour = contour.values;

  if not np.allclose(contour[0], contour[-1]):
     raise ValueError('contour not closed!');

  #vectors along contour line
  centervec = np.diff(contour, axis = 0);

  # absolute orientation
  t0 = np.array([1,0], dtype = float); #vertical reference
  t1 = centervec[0];
  orientation = np.mod(np.arctan2(t0[0], t0[1]) - np.arctan2(t1[0], t1[1]) + np.pi, 2 * np.pi) - np.pi;

  # discrete thetas (no rescaling)
  theta = np.arctan2(centervec[:-1,0], centervec[:-1,1]) - np.arctan2(centervec[1:,0], centervec[1:,1]);
  theta = np.mod(theta + np.pi, 2 * np.pi) - np.pi;
  theta = np.hstack([0, theta]);

  # integrate and rotate by pi/2 / half angle at point
  itheta = np.cumsum(theta);
  itheta += np.pi/2 + orientation;
  itheta -= theta / 2;
  itheta[0] -= theta[-1] / 2;

  #ithetas.append(itheta);
  return np.vstack([np.cos(itheta), np.sin(itheta)]).T;
项目:improved_wgan_training    作者:YuguangTong    | 项目源码 | 文件源码
def generate_image(true_dist):
    """
    Generates and saves a plot of the true distribution, the generator, and the
    critic.
    """
    N_POINTS = 128
    RANGE = 3

    points = np.zeros((N_POINTS, N_POINTS, 2), dtype='float32')
    points[:,:,0] = np.linspace(-RANGE, RANGE, N_POINTS)[:,None]
    points[:,:,1] = np.linspace(-RANGE, RANGE, N_POINTS)[None,:]
    points = points.reshape((-1,2))
    samples, disc_map = session.run(
        [fake_data, disc_real], 
        feed_dict={real_data:points}
    )
    disc_map = session.run(disc_real, feed_dict={real_data:points})

    plt.clf()

    x = y = np.linspace(-RANGE, RANGE, N_POINTS)
    plt.contour(x,y,disc_map.reshape((len(x), len(y))).transpose())

    plt.scatter(true_dist[:, 0], true_dist[:, 1], c='orange',  marker='+')
    plt.scatter(samples[:, 0],    samples[:, 1],    c='green', marker='+')

    plt.savefig('frame'+str(frame_index[0])+'.jpg')
    frame_index[0] += 1

# Dataset iterator
项目:MLLearning    作者:buptdjd    | 项目源码 | 文件源码
def draw_decision_boundary(self, data, X, theta):
        self.draw(data)
        x1_min, x1_max = X[:, 1].min(), X[:, 1].max()
        x2_min, x2_max = X[:, 2].min(), X[:, 2].max()
        x1_range, x2_range = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
        h = self.sigmoid(np.c_[np.ones((x1_range.ravel().shape[0], 1)), x1_range.ravel(), x2_range.ravel()].dot(theta))
        h = h.reshape(x1_range.shape)
        plt.contour(x1_range, x2_range, h, [0.5], linewiths=1, colors='b')
        plt.show()
项目:Boxy-disky-parameter-of-E-galaxies    作者:spica095    | 项目源码 | 文件源码
def ContourSet(img):
    med_img = medfilt(img,kernel_size=11)
    cs = plt.contour(med_img, np.arange(0.1,2,0.1), origin='lower')
    return cs
项目:improved_wgan_training    作者:igul222    | 项目源码 | 文件源码
def generate_image(true_dist):
    """
    Generates and saves a plot of the true distribution, the generator, and the
    critic.
    """
    N_POINTS = 128
    RANGE = 3

    points = np.zeros((N_POINTS, N_POINTS, 2), dtype='float32')
    points[:,:,0] = np.linspace(-RANGE, RANGE, N_POINTS)[:,None]
    points[:,:,1] = np.linspace(-RANGE, RANGE, N_POINTS)[None,:]
    points = points.reshape((-1,2))
    samples, disc_map = session.run(
        [fake_data, disc_real], 
        feed_dict={real_data:points}
    )
    disc_map = session.run(disc_real, feed_dict={real_data:points})

    plt.clf()

    x = y = np.linspace(-RANGE, RANGE, N_POINTS)
    plt.contour(x,y,disc_map.reshape((len(x), len(y))).transpose())

    plt.scatter(true_dist[:, 0], true_dist[:, 1], c='orange',  marker='+')
    plt.scatter(samples[:, 0],    samples[:, 1],    c='green', marker='+')

    plt.savefig('frame'+str(frame_index[0])+'.jpg')
    frame_index[0] += 1

# Dataset iterator
项目:Music-Classification-MedleyDB    作者:DeepeshAgarawal    | 项目源码 | 文件源码
def plot_lr(self):
        xx, yy = np.mgrid[0:5:.1, 0:5:.1]
        probs = np.zeros(xx.shape)
        for k in range(3):
            for i in range(xx.shape[0]):
                for j in range(xx.shape[1]):
                    probs[i, j] = self.predict([xx[i, j], yy[i, j]])[k]
            plt.contour(xx, yy, probs, levels=[0.5])
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def plot_contour(self): 
        X, Y = np.meshgrid(np.arange(-1.00, 1.01, 2./(len(self.lattice_in) - 1)), np.arange(-1.00, 1.01, 2./(len(self.lattice_in) - 1)))
        plt.figure(figsize = (8,8))
        CS = plt.contour(X, Y, self.lattice_in, 19)
        plt.clabel(CS, inline=1, fontsize=10)
        plt.title('Electric potential near two metal plates')
        #plt.show()
        return 0
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def contour(self, *args, **kwargs):
        defaults = {'origin': 'lower', 'cmap': plt.cm.Greys,
                    'levels': np.sort(self.nice_levels())}
        defaults.update(**kwargs)
        ax = kwargs.pop('ax', plt.gca())
        return ax.contour(self.im.T, *args, extent=self.e, **defaults)
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def plot(self, contour={}, scatter={}, **kwargs):
        # levels = np.linspace(self.im.min(), self.im.max(), 10)[1:]
        levels = self.nice_levels()
        c_defaults = {'origin': 'lower', 'cmap': plt.cm.Greys_r, 'levels':
                      levels}
        c_defaults.update(**contour)

        c = self.contourf(**c_defaults)

        lvls = np.sort(c.levels)
        s_defaults = {'c': '0.0', 'edgecolor':'None', 's':2}
        s_defaults.update(**scatter)

        self.scatter(lvl=[lvls], **s_defaults)
项目:mplbplot    作者:pieterdavid    | 项目源码 | 文件源码
def contour(first, *args, **kwargs):
    """
    Wrapper around matplotlib.pyplot.contour that also takes TH2

    see mplbplot.draw_th2.contour or matplotlib.pyplot.contour for details
    """
    if isinstance(first, gbl.TH2):
        kwargs["axes"] = plt.gca()
        return draw_th2.contour(first, *args, **kwargs)
    else:
        return plt.contour(first, *args, **args)
项目:HIT_ML_2017    作者:Red-Night-Aria    | 项目源码 | 文件源码
def Output():
    x1     = np.linspace(0, 0.85, 1e2)
    x2     = np.linspace(0, 0.55, 1e2)
    x1, x2 = pl.meshgrid(x1, x2)

    plt.figure(figsize = (20, 15))

    for id, item in enumerate(traits):
        plt.scatter(item[0], item[1], c = 'r' if judge[id] == 1.0 else 'b', s = 200, marker = 'o')

    plt.contour(x1, x2, f(x1, x2), 0)
    plt.show()
    plt.savefig("MMMMMMMua.png", dpi = 300)
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def Contour(obj, pcolor=False, contour=True, imshow=False, **options):
    """Makes a contour plot.

    d: map from (x, y) to z, or object that provides GetDict
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    imshow: boolean, whether to use pyplot.imshow
    options: keyword args passed to pyplot.pcolor and/or pyplot.contour
    """
    try:
        d = obj.GetDict()
    except AttributeError:
        d = obj

    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    xs, ys = zip(*d.keys())
    xs = sorted(set(xs))
    ys = sorted(set(ys))

    X, Y = np.meshgrid(xs, ys)
    func = lambda x, y: d.get((x, y), 0)
    func = np.vectorize(func)
    Z = func(X, Y)

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = pyplot.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        pyplot.pcolormesh(X, Y, Z, **options)
    if contour:
        cs = pyplot.contour(X, Y, Z, **options)
        pyplot.clabel(cs, inline=1, fontsize=10)
    if imshow:
        extent = xs[0], xs[-1], ys[0], ys[-1]
        pyplot.imshow(Z, extent=extent, **options)
项目:ThinkX    作者:AllenDowney    | 项目源码 | 文件源码
def Contour(obj, pcolor=False, contour=True, imshow=False, **options):
    """Makes a contour plot.

    d: map from (x, y) to z, or object that provides GetDict
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    imshow: boolean, whether to use plt.imshow
    options: keyword args passed to plt.pcolor and/or plt.contour
    """
    try:
        d = obj.GetDict()
    except AttributeError:
        d = obj

    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    xs, ys = zip(*d.keys())
    xs = sorted(set(xs))
    ys = sorted(set(ys))

    X, Y = np.meshgrid(xs, ys)
    func = lambda x, y: d.get((x, y), 0)
    func = np.vectorize(func)
    Z = func(X, Y)

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = plt.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        plt.pcolormesh(X, Y, Z, **options)
    if contour:
        cs = plt.contour(X, Y, Z, **options)
        plt.clabel(cs, inline=1, fontsize=10)
    if imshow:
        extent = xs[0], xs[-1], ys[0], ys[-1]
        plt.imshow(Z, extent=extent, **options)
项目:mac-package-build    作者:persepolisdm    | 项目源码 | 文件源码
def main():
    # Part of the example at 
    # http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/contour_demo.py
    delta = 0.025
    x = numpy.arange(-3.0, 3.0, delta)
    y = numpy.arange(-2.0, 2.0, delta)
    X, Y = numpy.meshgrid(x, y)
    Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
    Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
    Z = 10.0 * (Z2 - Z1)
    pyplot.figure()
    CS = pyplot.contour(X, Y, Z)
    pyplot.show()
项目:GPS    作者:golsun    | 项目源码 | 文件源码
def show_2D_GPSA(raw, GPSA_data_list, 
    key_x='axis0', key_y='axis1',
    clim=None, cmap='jet', 
    mutiplier=1.0,
    Z_cut=None,
    Z_contour=([],[]),
    ):

    x = raw[key_x]
    y = raw[key_y]
    Z = raw['mixture fraction']

    xx = sorted(list(set(x)))
    yy = sorted(list(set(y)))

    n_x = len(xx)
    n_y = len(yy)

    print 'n_x = '+str(n_x)
    print 'n_y = '+str(n_y)

    if n_x*n_y == 0:
        print 'cannot build as n_x = '+str(n_x)+', n_y = '+str(n_y)
        print 'raw = '+str(raw)
        return


    print 'building matrix'
    data = np.zeros((n_y,n_x))
    Zmat = np.zeros((n_y,n_x))

    for i in range(len(x)):
        i_y = yy.index(y[i])
        i_x = xx.index(x[i])
        #if raw['active species'][i]>5:
        if Z_cut is not None and Z[i]<Z_cut:
            data[i_y, i_x] = float('nan')
        else:
            data[i_y, i_x] = GPSA_data_list[i] * mutiplier
        Zmat[i_y, i_x] = Z[i]

    print 'plotting'


    colors = ['k','w']
    lw = [1,3]
    if len(Z_contour)>0:
        for i_v in range(len(Z_contour)):
            CS = plt.contour(Zmat, [Z_contour[0][i_v]], colors=colors[i_v], linewidths=lw[i_v])
            #plt.clabel(CS, fontsize=10, inline=1, fmt=Z_contour[1][i_v])
    #plt.legend(Z_contour[1])

    #imsave(key_show+'.png',data)
    if clim is None:
        plt.imshow(data, cmap=cmap)
    else:
        plt.imshow(data, clim=clim, cmap=cmap)

    plt.colorbar()

    #plt.show()
项目:elfi    作者:elfi-dev    | 项目源码 | 文件源码
def draw_contour(fn, bounds, nodes=None, points=None, title=None, **options):
    """Plot a contour of a function.

    Experimental, only 2D supported.

    Parameters
    ----------
    fn : callable
    bounds : list[arraylike]
        Bounds for the plot, e.g. [(0, 1), (0,1)].
    nodes : list[str], optional
    points : arraylike, optional
        Additional points to plot.
    title : str, optional

    """
    ax = get_axes(**options)

    x, y = np.meshgrid(np.linspace(*bounds[0]), np.linspace(*bounds[1]))
    z = fn(np.c_[x.reshape(-1), y.reshape(-1)])

    if ax:
        plt.sca(ax)
    plt.cla()

    if title:
        plt.title(title)
    try:
        plt.contour(x, y, z.reshape(x.shape))
    except ValueError:
        logger.warning('Could not draw a contour plot')
    if points is not None:
        plt.scatter(points[:-1, 0], points[:-1, 1])
        if options.get('interactive'):
            plt.scatter(points[-1, 0], points[-1, 1], color='r')

    plt.xlim(bounds[0])
    plt.ylim(bounds[1])

    if nodes:
        plt.xlabel(nodes[0])
        plt.ylabel(nodes[1])
项目:elfi    作者:elfi-dev    | 项目源码 | 文件源码
def plot(self, logpdf=False):
        """Plot the posterior pdf.

        Currently only supports 1 and 2 dimensional cases.

        Parameters
        ----------
        logpdf : bool
            Whether to plot logpdf instead of pdf.

        """
        if logpdf:
            fun = self.logpdf
        else:
            fun = self.pdf

        with np.warnings.catch_warnings():
            np.warnings.filterwarnings('ignore')

            if len(self.model.bounds) == 1:
                mn = self.model.bounds[0][0]
                mx = self.model.bounds[0][1]
                dx = (mx - mn) / 200.0
                x = np.arange(mn, mx, dx)
                pd = np.zeros(len(x))
                for i in range(len(x)):
                    pd[i] = fun([x[i]])
                plt.figure()
                plt.plot(x, pd)
                plt.xlim(mn, mx)
                plt.ylim(min(pd) * 1.05, max(pd) * 1.05)
                plt.show()

            elif len(self.model.bounds) == 2:
                x, y = np.meshgrid(
                    np.linspace(*self.model.bounds[0]), np.linspace(*self.model.bounds[1]))
                z = (np.vectorize(lambda a, b: fun(np.array([a, b]))))(x, y)
                plt.contour(x, y, z)
                plt.show()

            else:
                raise NotImplementedError("Currently unsupported for dim > 2")
项目:CustomerSim    作者:sisl    | 项目源码 | 文件源码
def plot_validate_bivariate(data_true_a, data_true_b, data_predicted_a, data_predicted_b, 
                            n_bins, xlab, ylab, name, x_range, y_range, legend=False):

    H_true, xedges_true, yedges_true = np.histogram2d(data_true_a + np.random.normal(0,0.4,data_true_a.shape), 
                                       data_true_b + np.random.normal(0,0.4,data_true_b.shape), 
                                       range=[x_range, y_range], bins=n_bins)

    H_true = H_true/H_true.sum()

    H_predicted, xedges_predicted, yedges_predicted = np.histogram2d(data_predicted_a + np.random.normal(0,0.4,data_predicted_a.shape), 
                                       data_predicted_b + np.random.normal(0,0.4,data_predicted_b.shape), 
                                       range=[x_range, y_range], bins=n_bins)

    H_predicted = H_predicted/H_predicted.sum()

    extent_true = [yedges_true[0], yedges_true[-1], xedges_true[0], xedges_true[-1]]
    extent_predicted = [yedges_predicted[0], yedges_predicted[-1], xedges_predicted[0], xedges_predicted[-1]]

    plt.figure(num=None, figsize=(8, 6), dpi=150, facecolor='w', edgecolor='w')

    levels = (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.015, 0.02)
    plt.contour(H_true, levels, origin='lower', colors=['green'], 
                        linewidths=(1, 1, 1, 1, 1, 1, 1),linestyles=['solid'],extent=extent_true,label="Actual Data")
    plt.contour(H_predicted, levels, origin='lower', colors=['brown'],linestyles=['dashed'],
                    linewidths=(1, 1, 1, 1, 1, 1, 1),
                    extent=extent_predicted,label = "Simulated Data")

    leg1, = plt.plot([],[], label="Actual Data", color="green")
    leg2, = plt.plot([],[], label="Simulated Data", color="brown", linestyle='dashed')
    if legend:
        plt.legend(handles=[leg1,leg2], fontsize=28)

    plt.tick_params(axis='both', which='major', labelsize=20)
    plt.tick_params(axis='both', which='minor', labelsize=20)

    plt.xlabel(ylab,fontsize=28, labelpad=15)
    plt.ylabel(xlab,fontsize=28, labelpad=15)
    plt.xlim(y_range[0], y_range[1])
    plt.ylim(x_range[0], x_range[1])

    plt.savefig(name, bbox_inches='tight')
    plt.close()


# Compute ROC curve and ROC area for each class
项目:SCaIP    作者:simonsfoundation    | 项目源码 | 文件源码
def get_contours3d(A, dims, thr=0.9):
    """Gets contour of spatial components and returns their coordinates

     Parameters
     -----------
     A:   np.ndarray or sparse matrix
               Matrix of Spatial components (d x K)
     dims: tuple of ints
               Spatial dimensions of movie (x, y, z)
     thr: scalar between 0 and 1
               Energy threshold for computing contours (default 0.995)

     Returns
     --------
     Coor: list of coordinates with center of mass and
            contour plot coordinates (per layer) for each component
    """
    d, nr = np.shape(A)
    d1, d2, d3 = dims
    x, y = np.mgrid[0:d2:1, 0:d3:1]

    coordinates = []
    cm = np.asarray([center_of_mass(a.reshape(dims, order='F')) for a in A.T])
    for i in range(nr):
        pars = dict()
        indx = np.argsort(A[:, i], axis=None)[::-1]
        cumEn = np.cumsum(A[:, i].flatten()[indx]**2)
        cumEn /= cumEn[-1]
        Bvec = np.zeros(d)
        Bvec[indx] = cumEn
        Bmat = np.reshape(Bvec, dims, order='F')
        pars['coordinates'] = []
        for B in Bmat:
            cs = plt.contour(y, x, B, [thr])
            # this fix is necessary for having disjoint figures and borders plotted correctly
            p = cs.collections[0].get_paths()
            v = np.atleast_2d([np.nan, np.nan])
            for pths in p:
                vtx = pths.vertices
                num_close_coords = np.sum(np.isclose(vtx[0, :], vtx[-1, :]))
                if num_close_coords < 2:
                    if num_close_coords == 0:
                        # case angle
                        newpt = np.round(vtx[-1, :] / [d2, d1]) * [d2, d1]
                        vtx = np.concatenate((vtx, newpt[np.newaxis, :]), axis=0)

                    else:
                        # case one is border
                        vtx = np.concatenate((vtx, vtx[0, np.newaxis]), axis=0)

                v = np.concatenate((v, vtx, np.atleast_2d([np.nan, np.nan])), axis=0)

            pars['coordinates'] += [v]
        pars['CoM'] = np.squeeze(cm[i, :])
        pars['neuron_id'] = i + 1
        coordinates.append(pars)
    return coordinates
项目:pytorch-geometric-gan    作者:lim0606    | 项目源码 | 文件源码
def save_contour(netD, filename, cuda=False):
    #import warnings
    #warnings.filterwarnings("ignore", category=FutureWarning)
    #import numpy as np
    #import matplotlib
    #matplotlib.use('Agg')
    #import matplotlib.cm as cm
    #import matplotlib.mlab as mlab
    #import matplotlib.pyplot as plt

    matplotlib.rcParams['xtick.direction'] = 'out'
    matplotlib.rcParams['ytick.direction'] = 'out'
    matplotlib.rcParams['contour.negative_linestyle'] = 'solid' 

    # gen grid 
    delta = 0.1
    x = np.arange(-25.0, 25.0, delta)
    y = np.arange(-25.0, 25.0, delta)
    X, Y = np.meshgrid(x, y)

    # convert numpy array to to torch variable
    (h, w) = X.shape
    XY = np.concatenate((X.reshape((h*w, 1, 1, 1)), Y.reshape((h*w, 1, 1, 1))), axis=1)
    input = torch.Tensor(XY)
    input = Variable(input)
    if cuda:
        input = input.cuda()

    # forward
    output = netD(input)

    # convert torch variable to numpy array
    Z = output.data.cpu().view(-1).numpy().reshape(h, w)

    # plot and save 
    plt.figure()
    CS1 = plt.contourf(X, Y, Z)
    CS2 = plt.contour(X, Y, Z, alpha=.7, colors='k')
    plt.clabel(CS2, inline=1, fontsize=10, colors='k')
    plt.title('Simplest default with labels')
    plt.savefig(filename)
    plt.close()
项目:Music-Classification-MedleyDB    作者:DeepeshAgarawal    | 项目源码 | 文件源码
def plot_model(model, data):
    """

    :param model: the GMM model
    :param data: the data set 2D
    :return:
    """
    delta = 0.025
    x = np.arange(0.0, 4, delta)
    y = np.arange(0.0, 4, delta)
    X, Y = np.meshgrid(x, y)
    z = np.zeros((np.size(x), np.size(y)))
    # sum of Gaussian
    plt.figure()
    for i in range(np.size(model)):
        ztemp = mlab.bivariate_normal(X, Y, np.sqrt(model['cov'][i][0, 0]), np.sqrt(model['cov'][i][1, 1]), model['mu'][i][0], model['mu'][i][1], model['cov'][i][0,1])
        plt.contour(X, Y, model['w'][i]*ztemp)
        z = np.add(z, ztemp)
    plt.scatter(data[0, :], data[1, :], s=5)
    plt.figure()
    plt.contour(X, Y, z)
    plt.scatter(data[0, :], data[1, :], s=5)