Python matplotlib.pyplot 模块,errorbar() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.errorbar()

项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_mean_debye(sol, ax):
    x = np.log10(sol[0]["data"]["tau"])
    x = np.linspace(min(x), max(x),100)
    list_best_rtd = [100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0) for s in sol]
#    list_best_rtd = [s["fit"]["best"] for s in sol]
    y = np.mean(list_best_rtd, axis=0)
    y_min = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] - sol[0]["params"]["a_std"])], axis=0)
    y_max = 100*np.sum([a*(x**i) for (i, a) in enumerate(sol[0]["params"]["a"] + sol[0]["params"]["a_std"])], axis=0)
    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='blue',linewidth=2, label="Mean RTD", zorder=10)
    plt.plot(10**x[(x>-6)&(x<2)], y_min[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1, label="RTD range")
    plt.plot(10**x[(x>-6)&(x<2)], y_max[(x>-6)&(x<2)], color='lightgray', alpha=1, zorder=-1)
    plt.fill_between(sol[0]["data"]["tau"], 100*(sol[0]["params"]["m_"]-sol[0]["params"]["m__std"])  , 100*(sol[0]["params"]["m_"]+sol[0]["params"]["m__std"]), color='lightgray', alpha=1, zorder=-1, label="RTD SD")

    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
    ax.legend(loc=1, fontsize=12)
#    ax.set_title(title+" step method", fontsize=14)
项目:matplotlib-hep    作者:ibab    | 项目源码 | 文件源码
def poisson_limits(N, kind, confidence=0.6827):
    alpha = 1 - confidence
    upper = np.zeros(len(N))
    lower = np.zeros(len(N))
    if kind == 'gamma':
        lower = stats.gamma.ppf(alpha / 2, N)
        upper = stats.gamma.ppf(1 - alpha / 2, N + 1)
    elif kind == 'sqrt':
        err = np.sqrt(N)
        lower = N - err
        upper = N + err
    else:
        raise ValueError('Unknown errorbar kind: {}'.format(kind))
    # clip lower bars
    lower[N==0] = 0
    return N - lower, upper - N
项目:bmcmc    作者:sanjibs    | 项目源码 | 文件源码
def myplot(self):
        # Plot the results
        plt.clf()
        burn=1000
        x=np.arange(self.eargs['dsize'])+1
        stats=[[],[]]
        for i,y in enumerate(self.data['y']):
            stats[0].append(np.mean(y))
            stats[1].append(self.eargs['sigma']/np.sqrt(y.size))
        plt.errorbar(x,stats[0],yerr=stats[1],fmt='.b',lw=3,ms=12,alpha=0.8) 
        plt.errorbar(x,self.mu['alpha'],yerr=self.sigma['alpha'],fmt='.g',lw=3,ms=12,alpha=0.8)

        temp1=np.mean(self.chain['mu'][burn:])
        plt.plot([0,self.eargs['dsize']+1],[temp1,temp1],'k--')
        plt.xlim([0,self.eargs['dsize']+1])
        plt.ylabel(r'$\alpha_j$')
        plt.xlabel(r'Group $j$')
项目:2020plus    作者:KarchinLab    | 项目源码 | 文件源码
def errorbars(x, y, err,
              save_path='',
              title='',
              xlabel='',
              ylabel='',
              label=''):
    if label:
        plt.errorbar(x, y, yerr=err, label=label, fmt='-o')
        plt.legend(loc='best')
    else:
        plt.errorbar(x, y, yerr=err, fmt='-o')
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    if save_path:
        plt.savefig(save_path)
        plt.close()
项目:chainspace    作者:chainspace    | 项目源码 | 文件源码
def plot_shard_scaling(results, outfile):
    parsed_results = parse_shard_results(results)
    pyplot.xlabel('Number of shards')
    pyplot.ylabel('Average transactions / second')
    pyplot.grid(True)

    pyplot.errorbar(
        range(2, len(parsed_results)+2),
        [i[0] for i in parsed_results],
        [i[1] for i in parsed_results],
        marker='o',
        #color='black',
    )

    pyplot.savefig(outfile)
    pyplot.close()
项目:ImSimDeep    作者:jchiang87    | 项目源码 | 文件源码
def plot_instcat_magnitudes(df, visit_name, component, fontsize='x-small'):
    """
    Plot the measured - true magnitude vs true magnitude.

    Parameters
    ----------
    df : pandas.DataFrame
        Data frame containing the true and measured coordinates and
        magnitudes and position offsets.
    visit_name : str
        Visit name combining the visit number and filter, e.g., 'v230-fr'.
    component : str
        Name of the component, e.g., 'R2:2' (for the full center raft),
        'R:2,2 S:1,1' (for the central chip).
    fontsize : str or int, optional
        Font size to use in plots.  Default: 'x-small'
    """
    plt.errorbar(df['magnitude_true'], df['magnitude'] - df['magnitude_true'],
                 fmt='.', label='pointSource')
    axis_range = plt.axis()
    plt.plot(axis_range[:2], [0, 0], 'k:')
    plt.xlabel('true magnitude', fontsize=fontsize)
    plt.ylabel('measured - true magnitude', fontsize=fontsize)
    plt.title('%(visit_name)s, %(component)s' % locals(), fontsize=fontsize)
项目:glmnet_py    作者:hanfang    | 项目源码 | 文件源码
def cvglmnetPlot(cvobject, sign_lambda = 1.0, **options):

    sloglam = sign_lambda*scipy.log(cvobject['lambdau'])

    fig = plt.gcf()
    ax1 = plt.gca()
    #fig, ax1 = plt.subplots()    

    plt.errorbar(sloglam, cvobject['cvm'], cvobject['cvsd'], \
                 ecolor = (0.5, 0.5, 0.5), \
                 **options
                 )
    plt.hold(True)         
    plt.plot(sloglam, cvobject['cvm'], linestyle = 'dashed',\
             marker = 'o', markerfacecolor = 'r')             

    xlim1 = ax1.get_xlim()
    ylim1 = ax1.get_ylim()

    xval = sign_lambda*scipy.log(scipy.array([cvobject['lambda_min'], cvobject['lambda_min']]))
    plt.plot(xval, ylim1, color = 'b', linestyle = 'dashed', \
             linewidth = 1)

    if cvobject['lambda_min'] != cvobject['lambda_1se']:
        xval = sign_lambda*scipy.log([cvobject['lambda_1se'], cvobject['lambda_1se']])
        plt.plot(xval, ylim1, color = 'b', linestyle = 'dashed', \
             linewidth = 1)

    ax2 = ax1.twiny()
    ax2.xaxis.tick_top()

    atdf = ax1.get_xticks()
    indat = scipy.ones(atdf.shape, dtype = scipy.integer)
    if sloglam[-1] >= sloglam[1]:
        for j in range(len(sloglam)-1, -1, -1):
            indat[atdf <= sloglam[j]] = j
    else:
        for j in range(len(sloglam)):
            indat[atdf <= sloglam[j]] = j

    prettydf = cvobject['nzero'][indat]

    ax2.set(XLim=xlim1, XTicks = atdf, XTickLabels = prettydf)
    ax2.grid()
    ax1.yaxis.grid()

    ax2.set_xlabel('Degrees of Freedom')

  #  plt.plot(xlim1, [ylim1[1], ylim1[1]], 'b')
  #  plt.plot([xlim1[1], xlim1[1]], ylim1, 'b')

    if sign_lambda < 0:
        ax1.set_xlabel('-log(Lambda)')
    else:
        ax1.set_xlabel('log(Lambda)')

    ax1.set_ylabel(cvobject['name'])

    #plt.show()
项目:MicrolensingLCOGT    作者:dg7541    | 项目源码 | 文件源码
def plot_microlensing(time, mag, magerr):
    """Plots a simulated microlensing event from an inserted flat lightcurve.

    :param time: the time-varying data of the lightcurve. Must be an array.  
    :param mag: the time-varying intensity of the object. Must be an array.
    :param magerr: photometric error for the intensity. Must be an array.

    :return: the function will return a plot of the microlensing lightcurve.
    :rtype: plot
    """    

    intensity = simulate_microlensing(time, mag, magerr)[1]

    plt.errorbar(time, intensity, yerr = magerr, fmt='o')
    plt.gca().invert_yaxis
    plt.xlabel('Time')
    plt.ylabel('Intensity')
    plt.title('Simulated Microlensing')
    plt.show()
项目:FuzMusic    作者:m0re4u    | 项目源码 | 文件源码
def main(train, test, all_tags, mink, maxk, limit, use_k=False, method='dot'):
    means = []
    stds = []
    for i in range(mink, maxk):
        if use_k:
            res = ec.evaluate_kmeans(train, test, all_tags, limit, i, method)
        else:
            res = ec.evaluate_cmeans(train, test, all_tags, limit, i, method)
        mean = np.mean(np.array(res))
        std = np.std(np.array(res))
        means.append(mean)
        stds.append(std)
        print("Trained {}, mean:{}, std: {}".format(i, mean, std))

    plt.errorbar(np.r_[mink:maxk], means, stds, marker='^')
    plt.xlabel("Number of clusters")
    plt.ylabel("avg cosine_similarity")
    plt.show()
项目:chars2word2vec    作者:ilya-shenbin    | 项目源码 | 文件源码
def plot_it(x, arr_y, labels=None, fname=None, figtext='', loc=1):
    if labels is not None:
        assert len(arr_y) == len(labels)
    else:
        labels = [None] * len(arr_y)

    plt.figure()
    plt.gca().set_position((.1, .3, .8, .7)) # to make a bit of room for extra text

    for y,lab in zip(arr_y, labels):
        plt.errorbar(x, y[:,0], yerr=y[:,1], fmt='-o', label=lab)

    plt.legend(loc=loc)
    plt.xlim((-1, 30))
    #plt.figtext(0,0,figtext)
    #plt.plot(x, y[:,2], '-o', label='median')

    plt.figtext(.02, .02, figtext,fontsize=16)
    plt.xlabel("% skipped")

    if fname is not None:
        plt.savefig(fname, bbox_inches='tight')
        plt.clf()
    else:
        plt.show()
项目:LAS-SpeechRecognition    作者:PandaKiraLiu    | 项目源码 | 文件源码
def analyze(filename):
    """Analyze prediction output"""
    dt = np.load(filename)
    ps = dt["pred"].transpose((0, 2, 1))
    ls = dt["truevals"]
    print "[ANALYTIC] WER on file " + filename + " is:", compute_wer(ps, ls)
    sm, ttl = cmp_pos(ps, ls) # sm[i] is no. times the i-th char is predicted correctly
                              # ttl[i] is no. times the i-th char is ever predicted (i.e. before eos)
    ind = ttl.tolist().index(0)-10 if 0 in ttl else None
    err = 1 - sm[:ind] / ttl[:ind]
    var = err * (1 - err)
    leng = err.shape[0]
    for i in range(leng):
        if ttl[i] == 1: var[i] = 1
        else: var[i] /= (ttl[i]-1)
    # more to add here: error bar
    stddev = np.sqrt(var)
    plt.errorbar(range(leng), err, yerr = stddev, fmt = 'b-')
    set_plot("Error rates at different indices in the sentence", "Index", "Error rate")
    plt.axis([0, ind, 0, 1])
    plt.show()
    len_err(ps, ls)
    plot_correct(ps, ls)
项目:Wifi-Signal-Plotter    作者:s7jones    | 项目源码 | 文件源码
def update_plot(fig, ax, times, avg, err, interfaceDict):
    ax.clear()
    ax.set_title('Wifi Signal over Time')
    plt.xlabel('Time [s]')
    if platform.system() == 'Linux':
        plt.ylabel('Signal Level [dBm]')
    elif platform.system() == 'Windows':
        plt.ylabel('Signal Level [%]')
    else:
        raise Exception('reached else of if statement')
    for key, value in interfaceDict.items():
        plt.errorbar(times[:], avg[value, :], yerr=err[value, :], label=key)
    plt.legend()
    print('\n\n')
    plt.pause(0.0001)
    plt.show()
项目:kernel-gof    作者:wittawatj    | 项目源码 | 文件源码
def plot_runtime(ex, fname, func_xvalues, xlabel, func_title=None):
    results = glo.ex_load_result(ex, fname)
    value_accessor = lambda job_results: job_results['time_secs']
    vf_pval = np.vectorize(value_accessor)
    # results['job_results'] is a dictionary: 
    # {'test_result': (dict from running perform_test(te) '...':..., }
    times = vf_pval(results['job_results'])
    repeats, _, n_methods = results['job_results'].shape
    time_avg = np.mean(times, axis=0)
    time_std = np.std(times, axis=0)

    xvalues = func_xvalues(results)

    #ns = np.array(results[xkey])
    #te_proportion = 1.0 - results['tr_proportion']
    #test_sizes = ns*te_proportion
    line_styles = func_plot_fmt_map()
    method_labels = get_func2label_map()

    func_names = [f.__name__ for f in results['method_job_funcs'] ]
    for i in range(n_methods):    
        te_proportion = 1.0 - results['tr_proportion']
        fmt = line_styles[func_names[i]]
        #plt.errorbar(ns*te_proportion, mean_rejs[:, i], std_pvals[:, i])
        method_label = method_labels[func_names[i]]
        plt.errorbar(xvalues, time_avg[:, i], yerr=time_std[:,i], fmt=fmt,
                label=method_label)

    ylabel = 'Time (s)'
    plt.ylabel(ylabel)
    plt.xlabel(xlabel)
    plt.xlim([np.min(xvalues), np.max(xvalues)])
    plt.xticks( xvalues, xvalues )
    plt.legend(loc='best')
    plt.gca().set_yscale('log')
    title = '%s. %d trials. '%( results['prob_label'],
            repeats ) if func_title is None else func_title(results)
    plt.title(title)
    #plt.grid()
    return results
项目:Polymers    作者:FracturedRocketSpace    | 项目源码 | 文件源码
def plotEndtoendSq(weightedEndtoendSq,weightedEndtoendSqStd,fittedWeightedEndtoendSq,popSize):

    x = np.linspace(1,c.nBeads, c.nBeads);

    # Plot the end-to-end distance squared
    plt.figure(5)
    plt.xlabel('Number of beads')
    plt.xlim(0,c.nBeads)
    plt.ylabel('End-to-end distance squared')
    plt.errorbar(x,weightedEndtoendSq,yerr=weightedEndtoendSqStd, label='Data')
    plt.plot(x,fittedWeightedEndtoendSq,color = "r", label='Fit')
    plt.plot(popSize, color = "g", label='Population')
    plt.xscale('log')
    plt.yscale('log')
    plt.xlim([3,c.nBeads])
    plt.legend(loc='best')
项目:Polymers    作者:FracturedRocketSpace    | 项目源码 | 文件源码
def plotGyradiusSq(weightedGyradiusSq,weightedGyradiusSqStd,fittedGyradius,popSize):

    x = np.linspace(1,c.nBeads, c.nBeads);

    # Plot the gyradius
    plt.figure(6)
    plt.xlabel('Number of beads')
    plt.xlim(0,c.nBeads)
    plt.ylabel('Ensemble average $R_g^2$')
    plt.errorbar(x,weightedGyradiusSq,yerr=weightedGyradiusSqStd, label='Data')
    plt.plot(x,fittedGyradius,color = "r", label='Fit')
    plt.plot(popSize, color = "g", label='Population')
    plt.xscale('log')
    plt.yscale('log')
    plt.xlim([3,c.nBeads])
    plt.legend(loc='best')
项目:fgan_info_geometric    作者:qulizhen    | 项目源码 | 文件源码
def plot_results(main_dir, target_dir):
    mean_std_tuples = [read_files(join(main_dir, folder)) for folder in listdir(main_dir) if isdir(join(main_dir, folder))]
    mean, std_dev = zip(*mean_std_tuples)
    mus = range(0,11)
    plt.gca().set_color_cycle(['black', 'orange', 'deeppink', 'green', 'blue'])
    fmts = ['>-', 'o-', 'x-', 'D-', 'p-']
    exps = [folder for folder in listdir(main_dir) if isdir(join(main_dir, folder))]
    for i in range(len(mean)):
        plt.errorbar(mus, mean[i], yerr=std_dev[i], fmt=fmts[i])

    plt.legend(exps, loc='lower right')
    plt.xlim((-0.2,10.2))
    #plt.axis((0,11, 0.1, 0.8))
    plt.grid(True)

    x_ticks = ['0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6', '0.7', '0.8', '0.9','1']
    plt.xticks(mus, x_ticks)

    plt.xlabel('mu')
    plt.ylabel('Log Probability')
    #plt.show()
    plt.savefig(join(target_dir, "mu_relu.png"), bbox_inches='tight')
项目:deep_architect    作者:negrinho    | 项目源码 | 文件源码
def plot_performance_quantiles():
    folder_path = 'logs/searcher_comparison'
    searchers = ['rand', 'mcts', 'mcts_bi', 'smbo']
    search_space_type = 'deepconv'
    num_repeats = 5

    for searcher_type in searchers:
        # load all the pickles
        rs = []
        for i in xrange(num_repeats):
            file_name = '%s_%s_%d.pkl' % (search_space_type, searcher_type, i)
            file_path = os.path.join(folder_path, file_name)
            with open(file_path, 'rb') as f:
                r = pickle.load(f)
            rs.append(r)

        percents = np.linspace(0.0, 1.0, num=100)
        srch_scores = [compute_percentiles(r['scores'], percents) 
            for r in rs]
        mean = np.mean(srch_scores, axis=0) 
        std = np.std(srch_scores, axis=0)
        plt.errorbar(percents, mean, 
            yerr=std / np.sqrt(num_repeats), label=searcher_type)

    plt.legend(loc='best')
    plt.xlabel('Validation performance')
    plt.ylabel('Fraction of models better or equal')
    #plt.title('')
    # plt.axis([0, 64, 0.6, 1.0])
    # plt.show()  
    plt.savefig(figs_folderpath + 'quants.pdf', bbox_inches='tight')
    plt.close()
项目:BadParser    作者:stanojevic    | 项目源码 | 文件源码
def meanSwapsErrorBars(datafile):
    df = pd.read_csv(datafile, delimiter=" ")
    grouped = df.groupby("num_words", as_index=True)
    idx = grouped.groups.keys()
    plt.errorbar(idx, grouped.mean()["swap"], yerr=grouped.std(ddof=0)["swap"], fmt='o')
    plt.show()
    plt.close()
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_debye(s, ax):
    x = np.log10(s["data"]["tau"])
    x = np.linspace(min(x), max(x),100)


    y = 100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0)
#    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='lightgray',linewidth=1, label="RTD estimations (%d)"%len(sol))
    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_data(sol, ax):
    data = sol["data"]
    f = data["freq"]
    Zr0 = max(abs(data["Z"]))
    zn_dat = old_div(data["Z"],Zr0)
    zn_err = old_div(data["Z_err"],Zr0)
    # Real-Imag
    plt.axes(ax[1])
#    plt.errorbar(f, -zn_dat.imag, zn_err.imag, None, '.b', label='Synthetic data\n(%d mrad noise)'%noise,zorder=2)
    plt.errorbar(f, -zn_dat.imag, zn_err.imag, None, '.b', label='Laboratory data',zorder=2)
    plt.axes(ax[0])
    plt.errorbar(f, zn_dat.real, zn_err.real, None, '.b', label='Laboratory data',zorder=2)
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_debye(s, ax):
    x = np.log10(s["data"]["tau"])
    x = np.linspace(min(x), max(x),100)


    y = 100*np.sum([a*(x**i) for (i, a) in enumerate(s["params"]["a"])], axis=0)
#    ax.errorbar(10**x[(x>-6)&(x<2)], y[(x>-6)&(x<2)], None, None, "-", color='lightgray',linewidth=1, label="RTD estimations (%d)"%len(sol))
    ax.set_xlabel("Relaxation time (s)", fontsize=14)
    ax.set_ylabel("Chargeability (%)", fontsize=14)
    plt.yticks(fontsize=14), plt.xticks(fontsize=14)
    plt.xscale("log")
    ax.set_xlim([1e-6, 1e1])
    ax.set_ylim([0, 5.0])
项目:BISIP    作者:clberube    | 项目源码 | 文件源码
def plot_data(sol, ax):
    data = sol["data"]
    f = data["freq"]
    Zr0 = max(abs(data["Z"]))
    zn_dat = old_div(data["Z"],Zr0)
    zn_err = old_div(data["Z_err"],Zr0)
    # Real-Imag
    plt.axes(ax[1])
#    plt.errorbar(f, -zn_dat.imag, zn_err.imag, None, '.b', label='Synthetic data\n(%d mrad noise)'%noise,zorder=2)
    plt.errorbar(f, -zn_dat.imag, zn_err.imag, None, '.b', label='Laboratory data',zorder=2)
    plt.axes(ax[0])
    plt.errorbar(f, zn_dat.real, zn_err.real, None, '.b', label='Laboratory data',zorder=2)
项目:matplotlib-hep    作者:ibab    | 项目源码 | 文件源码
def plot_pull(data, func):

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator

    ax, bx = make_split(0.8)

    plt.sca(ax)

    x, y, norm = histpoints(data)

    lower, upper = ax.get_xlim()

    xs = np.linspace(lower, upper, 200)
    plt.plot(xs, norm * func(xs), 'b-')

    #plt.gca().yaxis.set_major_locator(MaxNLocator(prune='lower'))

    plt.sca(bx)

    resid = y[1] - norm * func(x)
    err = np.zeros_like(resid)
    err[resid >= 0] = y[0][resid >= 0]
    err[resid < 0] = y[2][resid < 0]

    pull = resid / err

    plt.errorbar(x, pull, yerr=1, color='k', fmt='o')
    plt.ylim(-5, 5)
    plt.axhline(0, color='b')

    plt.sca(ax)

    return ax, bx
项目:geco_data    作者:stefco    | 项目源码 | 文件源码
def stat_plots(self, start_time, end_time):
        """Make 3 plots with different levels of zoom and save them as PNG
        files."""
        t = np.arange(DUOTONE_START, DUOTONE_END, dtype=float) / FAST_BITRATE
        min_delta = self.stats['mean'] - self.stats['min']
        max_delta = self.stats['max']  - self.stats['mean']
        title = ('Mean DuoTone Signal, {}, near Zero Crossing\n'
                 'with Max/Min Values and Std. Dev.').format(self.channel)
        xlabel = r'Time since start of second ($\mu s$)'
        fname_fmt_fmt = '{}-DuoTone-Statistics-{}-from-{}-to-{}.png'
        fname_fmt = fname_fmt_fmt.format(self.channel.replace(':', '..'),
                                         '{}', start_time, end_time)
        # first figure, full view
        plt.close(1)
        plt.figure(1)
        plt.plot(t, self.stats['mean'], 'k')
        plt.errorbar(t*NS_PER_SEC, self.stats['mean'],
                     yerr=[min_delta, max_delta], fmt='k')
        plt.errorbar(t*NS_PER_SEC, self.stats['mean'],
                     yerr=self.stats['sigma'], fmt='go', linewidth=4)
        plt.title(title)
        plt.xlabel(xlabel)
        plt.grid(b=True, which='major', color='#262626', linestyle='--')
        plt.savefig(fname_fmt.format('full'))
        # second file, zoomed on zero-crossing best fit line
        plt.xlim(49.5, 52.)
        plt.ylim(-50, 50)
        plt.title(title + ' at zero crossing')
        plt.savefig(fname_fmt.format('zero-crossing-zoom'))
        # third file, zoomed on data point nearest zero-crossing
        plt.title(title + ', Error Bars Emphasized')
        plt.xlim(61, 61.1)
        plt.ylim(250, 260)
        plt.savefig(fname_fmt.format('super-zoom'))
项目:bmcmc    作者:sanjibs    | 项目源码 | 文件源码
def myplot(self,chain): 
       # optional for plotting
        plt.clf()
        x = np.linspace(0,10)
        burn=self.chain['m'].size/2
        vals=self.best_fit(burn=burn)
        plt.errorbar(self.args['x'], self.args['y'], yerr=self.args['sigma_y'], fmt=".k")
        plt.errorbar(self.args['x'][self.ind], self.args['y'][self.ind], yerr=self.args['sigma_y'][self.ind], fmt=".r")
        plt.plot(x,vals[0]*x+vals[1], color="g", lw=2, alpha=0.5)
        for i,key in enumerate(self.names0):
            print key
            plt.text(0.5,0.3-i*0.06,self.descr[key][3]+'='+bmcmc.stat_text(self.chain[key][burn:]),transform=plt.gca().transAxes)

        vals1=[]
        burn1=chain['m'].size/2
        for i,key in enumerate(['m','c']):
            print key
            plt.text(0.05,0.5-i*0.05,self.descr[key][3]+'='+bmcmc.stat_text(chain[key][burn1:]),transform=plt.gca().transAxes)
            vals1.append(np.mean(chain[key][burn1:]))
        plt.plot(x,vals1[0]*x+vals1[1], 'g--', lw=2, alpha=0.5)
        plt.xlabel(r'$x$')
        plt.ylabel(r'$y$')
        plt.axis([0,10,5,40,])



# Expected values are 
#('m','c','p_b','mu_b','sigma_b')=(2.0, 10.0, 0.2, 30, 5.0')
项目:actions-for-actions    作者:gsig    | 项目源码 | 文件源码
def main():
    # loop over the submission file names in sys.argv
    # for each file, plot the attributes in 'series'
    fig,ax = setup_plot(YNAME)
    fxticks,fxlabels,fxticks2,fxlabels2 = [],[],[],[]
    for i,submission_file in enumerate(sys.argv[1:]):
        print('processing submission: {}'.format(submission_file))
        color = COLORS[i]
        score = classAP(submission_file)
        baseline = np.mean([x[1] for x in score.iteritems()])
        xticks,xlabels,xticks2,xlabels2,count = [],[],[],[],1
        for j,serie in enumerate(series):
            print('  processing attribute: {}'.format(serie['title']))
            title,groups,attributetype,header = serie['title'],serie['groups'],serie['type'],serie['header']
            newdata = make_data(title,groups,attributetype,submission_file,baseline)
            pos,count = update_locs(groups,j,count,header)
            if newdata==[]: continue
            plt.plot([pos[0],pos[-1]],[baseline]*2,color=color,marker=None,linestyle=":",linewidth=1)
            error = [x[2] for x in newdata]
            if ERRORBARS=='none': error=None
            h=plt.errorbar(pos, [x[1] for x in newdata],color=color,marker=None, 
                         linestyle="-",linewidth=3,yerr=error,clip_on=False)
            xticks += [x for x in pos]
            xlabels += TICKNAMES[len(groups)]
            xticks2 += [(pos[0]+pos[-1])/2.]
            xlabels2 += [title]
        if i==0: fxticks,fxlabels,fxticks2,fxlabels2 = xticks,xlabels,xticks2,xlabels2
        handles.append(h)
    finalize_plot(ax,fxticks,fxlabels,fxticks2,fxlabels2)
    plt.savefig(plotname+'.pdf',bbox_inches='tight')
    plt.show()
项目:srnn    作者:marcofraccaro    | 项目源码 | 文件源码
def plot_results(self, plot_path=None, ylim=None):

        # Plotting parameters
        label_size = 18
        mpl.rcParams['xtick.labelsize'] = label_size
        mpl.rcParams['ytick.labelsize'] = label_size
        plot_params = dict()
        plot_params['ms'] = 10
        plot_params['linewidth'] = 3

        # Plot training bound on the perplexity
        f = plt.figure(figsize=[12, 12])
        plt.errorbar(self.epochs_eval, [self.lower_bound_train_all[i] for i in self.epochs_eval],
                     [self.lower_bound_train_all_std[i] for i in self.epochs_eval], marker='d', color='b',
                     label='Train', **plot_params)
        plt.plot(self.epochs_eval, self.lower_bound_valid_all, "-rh", label="Valid", **plot_params)
        plt.plot(self.epochs_eval, self.lower_bound_test_all, "-k^", label="Test", **plot_params)
        plt.xlabel('Epochs', fontsize=20)
        plt.grid('on')
        plt.title('ELBO', fontsize=24, y=1.01)
        plt.legend(loc="lower right", handlelength=3, fontsize=20)
        if ylim is not None:
            plt.ylim(ylim)
        if plot_path is not None:
            plt.savefig(plot_path + "_epochs.png", format='png', bbox_inches='tight', dpi=200)
        plt.close(f)

        # Plot norm of the updates
        f = plt.figure(figsize=[12, 12])
        plt.errorbar(self.epochs_eval, [self.mean_norm_all[i] for i in self.epochs_eval],
                     [self.std_norm_all[i] for i in self.epochs_eval], marker='d', color='m', **plot_params)
        plt.grid('on')
        plt.title('Norm of the updates', fontsize=24, y=1.01)
        if plot_path is not None:
            plt.savefig(plot_path + "_norm.png", format='png', bbox_inches='tight', dpi=200)
        plt.close(f)
项目:srnn    作者:marcofraccaro    | 项目源码 | 文件源码
def plot_results(self, plot_path=None, ylim=None):

        # Plotting parameters
        label_size = 18
        mpl.rcParams['xtick.labelsize'] = label_size
        mpl.rcParams['ytick.labelsize'] = label_size
        plot_params = dict()
        plot_params['ms'] = 10
        plot_params['linewidth'] = 3

        # Plot training bound on the perplexity
        f = plt.figure(figsize=[12, 12])
        plt.errorbar(self.epochs_eval, [self.elbo_seq_train_all[i] for i in self.epochs_eval],
                     [self.elbo_seq_train_all_std[i] for i in self.epochs_eval], marker='d', color='b',
                     label='Train', **plot_params)
        plt.plot(self.epochs_eval, self.elbo_seq_valid_all, "-rh", label="Valid", **plot_params)
        plt.plot(self.epochs_eval, self.elbo_seq_test_all, "-k^", label="Test", **plot_params)
        plt.xlabel('Epochs', fontsize=20)
        # plt.ylabel('log()', fontsize=20)
        plt.grid('on')
        plt.title('ELBO sequence', fontsize=24, y=1.01)
        plt.legend(loc="upper right", handlelength=3, fontsize=20)
        if ylim is not None:
            plt.ylim(ylim)
        if plot_path is not None:
            plt.savefig(plot_path + "_epochs.png", format='png', bbox_inches='tight', dpi=200)
        plt.close(f)

        # Plot norm of the updates
        f = plt.figure(figsize=[12, 12])
        plt.errorbar(self.epochs_eval, [self.mean_norm_all[i] for i in self.epochs_eval],
                     [self.std_norm_all[i] for i in self.epochs_eval], marker='d', color='m', **plot_params)
        plt.grid('on')
        plt.title('Norm of the updates', fontsize=24, y=1.01)
        if plot_path is not None:
            plt.savefig(plot_path + "_norm.png", format='png', bbox_inches='tight', dpi=200)
        plt.close(f)
项目:radwatch-analysis    作者:bearing    | 项目源码 | 文件源码
def plotter(self):
        """
        Plots the data and the fit.
        """
        plt.title('Efficiency Curve')
        plt.xlabel('Energy (keV)')
        plt.ylabel('Efficiency')
        plt.errorbar(self.energy, self.values, fmt=None, yerr=self.unc)
        plt.plot(self.energy, self.values, 'ro')
        plt.grid()
        plt.plot(self.space, self.new_fit)
        plt.legend(('Data Points', 'Fitted Curve'), loc='upper right')
        plt.ylim(0, 0.002)
        plt.show()
项目:chainspace    作者:chainspace    | 项目源码 | 文件源码
def plot_input_scaling(results, outfile):
    parsed_results = parse_shard_results(results)
    pyplot.xlabel('Number of inputs per transaction')
    pyplot.ylabel('Average transactions / second')
    pyplot.grid(True)

    pyplot.errorbar(
        range(1, len(parsed_results)+1),
        [i[0] for i in parsed_results],
        [i[1] for i in parsed_results],
        marker='o',
    )

    pyplot.savefig(outfile)
    pyplot.close()
项目:chainspace    作者:chainspace    | 项目源码 | 文件源码
def plot_node_scaling(results, outfile, step):
    parsed_results = parse_shard_results(results)
    pyplot.xlabel('Number of replicas per shard')
    pyplot.ylabel('Average transactions / second')
    pyplot.grid(True)

    pyplot.errorbar(
        range(4, 4+len(parsed_results)*step, step),
        [i[0] for i in parsed_results],
        [i[1] for i in parsed_results],
        marker='o',
    )

    pyplot.savefig(outfile)
    pyplot.close()
项目:qiskit-sdk-py    作者:QISKit    | 项目源码 | 文件源码
def plot_coherence(xdata, ydata, std_error, fit, fit_function, xunit, exp_str,
                   qubit_label):
    """Plot coherence data.

    Args:
        xdata
        ydata
        std_error
        fit
        fit_function
        xunit
        exp_str
        qubit_label
    """
    plt.errorbar(xdata, ydata, std_error, marker='.',
                 markersize=9, c='b', linestyle='')
    plt.plot(xdata, fit_function(xdata, *fit), c='r', linestyle='--',
             label=(exp_str + '= %s %s' % (str(round(fit[1])), xunit)))
    plt.xticks(fontsize=14, rotation=70)
    plt.yticks(fontsize=14)
    plt.xlabel('time [%s]' % (xunit), fontsize=16)
    plt.ylabel('P(1)', fontsize=16)
    plt.title(exp_str + ' measurement of Q$_{%s}$' % (str(qubit_label)), fontsize=18)
    plt.legend(fontsize=12)
    plt.grid(True)
    plt.show()
项目:qiskit-sdk-py    作者:QISKit    | 项目源码 | 文件源码
def plot_rb_data(xdata, ydatas, yavg, yerr, fit, survival_prob, ax=None, show_plt=1):
    """Plot randomized benchmarking data.

    xdata = list of subsequence lengths
    ydatas = list of lists of survival probabilities for each sequence
    yavg = mean of the survival probabilities at each sequence length
    yerr = error of the survival
    fit = fit parameters
    survival_prob = function that computes survival probability
    ax: plot axis (if passed in)
    """


    if ax is None:
        plt.figure()
        ax = plt.gca()

    # Plot the result for each sequence
    for ydata in ydatas:
        ax.plot(xdata, ydata, color='gray', linestyle='none', marker='x')
    # Plot the mean with error bars
    ax.errorbar(xdata, yavg, yerr=yerr, color='r', linestyle='--', linewidth=3)

    # Plot the fit
    ax.plot(xdata, survival_prob(xdata, *fit), color='blue', linestyle='-', linewidth=2)
    ax.tick_params(labelsize=14)
    #ax.tick_params(axis='x',labelrotation=70)

    ax.set_xlabel('Clifford Length', fontsize=16)
    ax.set_ylabel('Z', fontsize=16)
    ax.grid(True)

    if show_plt:
        plt.show()
项目:ImSimDeep    作者:jchiang87    | 项目源码 | 文件源码
def plot_instcat_overlay(df, visit_name, component, fontsize='x-small'):
    """
    Overlay the measured and instance catalog object sky positions.

    Parameters
    ----------
    df : pandas.DataFrame
        Data frame containing the true and measured coordinates and
        magnitudes and position offsets.
    visit_name : str
        Visit name combining the visit number and filter, e.g., 'v230-fr'.
    component : str
        Name of the component, e.g., 'R2:2' (for the full center raft),
        'R:2,2 S:1,1' (for the central chip).
    fontsize : str or int, optional
        Font size to use in plots.  Default: 'x-small'

    Returns
    -------
    (float, float, float, float)
        Axis (xmin, xmax, ymin, ymax) values in data coordinates.
    """
    plt.errorbar(df['coord_ra'], df['coord_dec'], fmt='.',
                 label='measured position')
    plt.scatter(df['coord_ra_true'], df['coord_dec_true'], s=60,
                label='true position', facecolors='none', edgecolors='r')
    plt.xlabel('RA (deg)', fontsize=fontsize)
    plt.ylabel('Dec (deg)', fontsize=fontsize)
    plt.legend(fontsize=fontsize)
    plt.title('%(visit_name)s, %(component)s' % locals(), fontsize=fontsize)
    return plt.axis()
项目:pyprocessmacro    作者:QuentinAndre    | 项目源码 | 文件源码
def plot_errorbars(x, y, yerrlow, yerrhigh, plot_kws=None, err_kws=None, *args, **kwargs):
    yerr = [yerrlow, yerrhigh]
    err_kws_final = kwargs.copy()
    err_kws_final.update(err_kws)
    err_kws_final.update({'marker': "", 'fmt':'none', 'label':'', "zorder":3})
    plot_kws_final = kwargs.copy()
    plot_kws_final.update(plot_kws)
    plt.plot(x, y, **plot_kws_final)
    plt.errorbar(x, y, yerr, **err_kws_final)
    return None
项目:nmt-repr-analysis    作者:boknilev    | 项目源码 | 文件源码
def plot_pair_by_relation_distance_wrt_layer(labels, diffs_2_1, diffs_3_1, diffs_4_1, diffs_2_1_std, diffs_3_1_std, diffs_4_1_std, 
                                             proportions, fignum, filename, title, plot_lines=False):

    xs = np.arange(1, len(labels)+1) 

    #matplotlib.rcParams.update({'font.family': 'sans-serif'})
    fig = plt.figure(fignum) 
    #default_size = fig.get_size_inches() 
    #fig.set_size_inches( (default_size[0]*1.3, default_size[1]*1.3) )

    if plot_lines:
        plt.errorbar(xs, diffs_2_1, yerr=diffs_2_1_std, label='Layer 2', alpha=0.7, marker='', color=plt.cm.Greens(.8))
        plt.errorbar(xs, diffs_3_1, yerr=diffs_3_1_std, label='Layer 3', alpha=0.7, marker='', color=plt.cm.Reds(.8))
        plt.errorbar(xs, diffs_4_1, yerr=diffs_4_1_std, label='Layer 4', alpha=0.7, marker='', color=plt.cm.Blues(.8))            
    else:
        plt.scatter(xs, diffs_2_1, c=proportions, s=100, cmap='Greens', edgecolors='black', linewidths=1, label='Layer 2', alpha=0.7)
        plt.scatter(xs, diffs_3_1, c=proportions, s=100, cmap='Reds', edgecolors='black', linewidths=1, label='Layer 3', alpha=0.7)
        plt.scatter(xs, diffs_4_1, c=proportions, s=100, cmap='Blues', edgecolors='black', linewidths=1, label='Layer 4', alpha=0.7)

    plt.xticks(xs, labels)
    plt.ylabel('Increase in accuracy w.r.t layer 1', fontsize='large')
    plt.xlabel('Relation distance', fontsize='large')

    plt.legend(loc='upper left', markerscale=1, fontsize='medium', frameon=True, title='Legend', edgecolor='black', labelspacing=1)
    ax = plt.gca()
    legend = ax.get_legend()
    legend.legendHandles[0].set_color(plt.cm.Greens(.8))
    legend.legendHandles[1].set_color(plt.cm.Reds(.8))
    legend.legendHandles[2].set_color(plt.cm.Blues(.8))
    if plot_lines:
        pass
        #legend.legendHandles[0]._legmarker.set_color(plt.cm.Greens(.8))
        #legend.legendHandles[1]._legmarker.set_color(plt.cm.Reds(.8))
        #legend.legendHandles[2]._legmarker.set_color(plt.cm.Blues(.8))    
    #legend.get_frame().set_alpha(0.5)

    plt.title(title, fontsize='large')

    plt.tight_layout()
    plt.savefig(filename, dpi=(200))
项目:icing    作者:slipguru    | 项目源码 | 文件源码
def plot_learning_function(xdata, ydata, yerr, order, aplot, poly):
    with sns.axes_style('whitegrid'):
        sns.set_context('paper')
        xp = np.linspace(np.min(xdata), np.max(xdata), 1000)[:, None]
        plt.figure()
        plt.errorbar(xdata, ydata, yerr,
                     label='Nearest similarity', marker='s')
        plt.plot(xp, poly(xp), '-',
                 label='Learning function (poly of order {})'.format(order))
        # plt.plot(xp, least_squares_mdl(res.x, xp), '-', label='least squares')
        plt.xlabel(r'Mutation level')
        plt.ylabel(r'Average similarity (not normalised)')
        plt.legend(loc='lower left')
        plt.savefig(aplot, transparent=True, bbox_inches='tight')
        plt.close()
项目:DeepPoseComparison    作者:ynaka81    | 项目源码 | 文件源码
def plot(self, samples, title):
        """ Plot core process time of chainer and pytorch. """
        batch_sizes = [2**m for m in range(self.max_batch_index + 1)]
        process_time = {'chainer': {'mean': [], 'std': []},
                        'pytorch': {'mean': [], 'std': []}}
        for batch_size in tqdm(batch_sizes, desc='batch size'):
            for name, process in tqdm(self.process.items(), desc='testers'):
                # set batch size.
                process.set_batch_size(batch_size)
                compute_time = []
                # get compute time.
                for index in trange(samples, desc='samples'):
                    start = time.time()
                    process.run(self.only_inference)
                    compute_time.append(time.time() - start)
                # calculate mean and std.
                process_time[name]['mean'].append(np.mean(compute_time))
                process_time[name]['std'].append(np.std(compute_time))
        # plot core process time of each batch size.
        for name, p_t in process_time.items():
            plt.errorbar(batch_sizes, p_t['mean'], yerr=p_t['std'], label=name)
        # plot settings.
        plt.title(title)
        plt.legend(loc='lower right')
        plt.xlabel('batch size')
        plt.ylabel('core process time [sec]')
        # save plot.
        if self.debug:
            plt.show()
        else:
            filename = '_'.join(title.split(' ')) + '.png'
            plt.savefig(os.path.join(self.output, filename))
项目:throttlebot    作者:mchang6137    | 项目源码 | 文件源码
def plot_interpolation(box_array, metric, resource, experiment_type='changeme!', service='changeme!', container_id='changeme!'):
    median_box = [numpy.median(increment_result) for increment_result in box_array]
    x = [0, 20, 40, 60, 80]
    # x = [0, 50] # TESTING
    std_dev = [numpy.std(increment_result) for increment_result in box_array]
    plt.xlim(-5, 85)
    font = {'family':'serif','serif':['Times']}
    if len(service) < 15:
        plt.title('Exp: \"{}\" Service: \"{}...\" Container: \"{}\"'.format(experiment_type, service, container_id), fontname="Times New Roman", size=18)
    else:
        plt.title('Exp: \"{}\" Service: \"{}...\" Container: \"{}\"'.format(experiment_type, service[:15], container_id), fontname="Times New Roman", size=18)
    plt.ylabel('{} (ms)'.format(metric), fontname="Times New Roman", size=16)
    plt.xlabel('Percentage Resource Stressed', fontname="Times New Roman", size=16)
    if resource == 'CPU':
        line_color = '#990000'
        error_length = 1
    elif resource == 'Disk':
        line_color = 'black'
        error_length = 1.5
    elif resource == 'Network':
        line_color = '#999999'
        error_length = 2
    line, = plt.plot(x, median_box, lw=3, label=resource, color=line_color)
    # plt.legend(handles=[line])
    plt.errorbar(x, median_box, std_dev, lw=error_length, color=line_color)
    return line
项目:GPfates    作者:Teichlab    | 项目源码 | 文件源码
def plot_psuedotime_uncertainty(self, **kwargs):
        yerr = 2 * np.sqrt(self.time_model.X.variance)
        plt.errorbar(self.s['pseudotime'], self.s['pseudotime'], yerr=yerr, fmt='none')
        plt.scatter(self.s['pseudotime'], self.s['pseudotime'], zorder=2, **kwargs)
项目:mlprojects-py    作者:srinathperera    | 项目源码 | 文件源码
def draw_error_bars(pltnum, x, mean, ulimit, llimit, x_label, y_label=None, do_log=True):
    ax = plt.subplot(pltnum)
    plt.xlabel(x_label, fontsize=18)
    if y_label is not None:
        plt.ylabel(y_label, fontsize=18)
    if do_log:
        ax.set_yscale('log')
    plt.errorbar(x, mean, yerr=[llimit, ulimit],
                 ms=5, mew=2, fmt='--o')
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def Display(curvelist):
    """
    Take a list of curve and plot it according to its type
    @type   curvelist:  list of curve
    @param  curvelist:  list of curve    for plotting

    @todo: improve the display with legend, color...
    """

    plt.figure(figsize=(12,8))  # sets figure size
    axes = plt.gca()
    # Something for astronomers only : we invert the y axis direction !
    axes.set_ylim(axes.get_ylim()[::-1])
    # Astronomers like minor tick marks :
    minorxLocator = MultipleLocator(100)

    for curve in curvelist:
        if curve.type=="purelightcurve":
            plt.plot(linspace(0,curve.length,curve.length*curve.res),curve.data)    

        if curve.type=="simlightcurve":
            if curve.name=="A": plt.plot(np.linspace(0,curve.originalcurve.length,curve.originalcurve.length*curve.originalcurve.res),curve.originalcurve.data+curve.dmag,color="black",label="Original curve") 
            plt.errorbar(curve.datatime,curve.datamagoff(),curve.dataerr,ls='None',marker='.',ecolor="#BBBBBB", color=curve.plotcolor,label=str(curve.name)+str(curve.shift))
            plt.plot(np.linspace(0,curve.originalcurve.length,curve.originalcurve.length*curve.originalcurve.res),curve.mlcurve.data+curve.dmag,color=curve.plotcolor)#,label="microlensing for "+str(curve.name))  
        plt.xlabel('time [j]')
        plt.ylabel('Magnitude ')
        plt.legend( numpoints = 1, prop = fm.FontProperties(size = 10))
    plt.show()
项目:CP244    作者:Unathi-Skosana    | 项目源码 | 文件源码
def plot_data(self):
        # Plot results
        fplot, = plt.plot(self.t, self.fit, 'ro-', label='y(t|B)')
        splot, = plt.plot(self.t, self.y, 'go-', label="y(t)")
        tplot  = plt.errorbar(self.t, self.yt, yerr=self.perts, fmt='bo-', label="data")
        plt.legend(handles = [fplot, splot, tplot])
        plt.ylabel('z')
        plt.xlabel('time(days)')
        plt.show()
项目:FaceAnalysis    作者:ElliotSalisbury    | 项目源码 | 文件源码
def ratingsOverAge(df):
    df = df[np.isfinite(df['Rating'])]
    df = df.loc[df['Submission Age'] <= 30]

    gendered = df.groupby(['Submission Gender'])
    for gender, group in gendered:
        ageRatings = collections.defaultdict(list)
        perSubmission = group.groupby(['Folder'])

        for submission, group in perSubmission:
            submissionMean = []
            for index, row in group.iterrows():
                submissionMean.append(int(row["Rating"]))
            ageRatings[int(row['Submission Age'])].append(np.mean(reject_outliers(np.array(submissionMean))))

        X = []
        Y = []
        std = []
        for age in ageRatings:
            X.append(age)
            Y.append(np.mean(ageRatings[age]))
            std.append(np.std(ageRatings[age]))

        title = genderName[gender] + " Attractiveness Over Age"
        plt.errorbar(X, Y, yerr=std, fmt='-', color=genderColor[gender])
        # plt.plot(X,Y)
        plt.title(title, fontproperties=titleFont)
        plt.ylim(0,10)
        plt.savefig(title)
        plt.clf()
项目:mplbplot    作者:pieterdavid    | 项目源码 | 文件源码
def errorbar(first, *args, **kwargs):
    """
    Wrapper around matplotlib.pyplot.errorbar that also takes TH1 and TGraph

    see TH1.__errorbar__, TGraph.__errorbar__, or matplotlib.pyplot.errorbar for details
    """
    if isinstance(first, gbl.TH1) or isinstance(first, gbl.TGraph):
        kwargs["axes"] = plt.gca()
        return first.__errorbar__(*args, **kwargs)
    else:
        return plt.errorbar(first, *args, **args)
项目:son-cli    作者:sonata-nfv    | 项目源码 | 文件源码
def display_graph(self, file=None):
        if file:
            self.results = read_yaml(file)

        plt.close("all")
        plt.ioff()
        logging.info("profile graphs:{}".format(self.profile_graphs))
        n = len(self.profile_graphs)
        plt.subplots(nrows=n, ncols=1)
        i = 1
        for profile in self.profile_graphs:
            plt.subplot(n, 1, i)
            x_metric_id = profile['input_metric']
            y_metric_id = profile['output_metric']

            x_metrics = self._find_metrics(x_metric_id, self.results)
            x_values = [m['average'] for m in x_metrics]
            x_err_high = [m['CI_high']-m['average'] for m in x_metrics]
            x_err_low = [abs(m['CI_low']-m['average']) for m in x_metrics]
            x_unit = x_metrics[0]['unit']

            y_metrics = self._find_metrics(y_metric_id, self.results)
            y_values = [m['average'] for m in y_metrics]
            y_err_high = [m['CI_high']-m['average'] for m in y_metrics]
            y_err_low = [abs(m['CI_low']-m['average']) for m in y_metrics]
            y_unit = y_metrics[0]['unit']

            plt.xlabel('{0}({1})'.format(x_metric_id,x_unit))
            plt.ylabel('{0}({1})'.format(y_metric_id, y_unit))
            plt.title(profile['name'])

            plt.grid(b=True, which='both', color='lightgrey', linestyle='--')
            plt.errorbar(x_values, y_values, xerr=[x_err_low, x_err_high], yerr=[y_err_low, y_err_high], fmt='--o', capsize=2)

            i += 1
        plt.tight_layout()
        plt.show()
项目:TikZ    作者:ellisk42    | 项目源码 | 文件源码
def plotAverages(d,f):
    global MAXIMUMY
    y = [average(d[x]) for x in xs ]
    e = [standardError(d[x]) for x in xs ]
    plot.errorbar(xs,y,fmt = f,yerr = e)
    MAXIMUMY = max(y + [MAXIMUMY])
项目:TikZ    作者:ellisk42    | 项目源码 | 文件源码
def plotBernoulli(d,f):
    global MAXIMUMY
    d = [ [ (1 if z == 1 else 0) for z in d[x] ]
          for x in xs ]

    y = [average(z) for z in d ]
    e = [ bernoulliStandardError(z) for z in d ]
    plot.errorbar(xs,y,fmt = f,yerr = e)
    MAXIMUMY = max(y + [MAXIMUMY])
项目:pymake    作者:dtrckd    | 项目源码 | 文件源码
def plot_degree_poly_l(Y):
    """ Same than plot_degree_poly, but for a list of random graph ie plot errorbar."""
    x, y, yerr = random_degree(Y)

    plt.xscale('log'); plt.yscale('log')

    fit = np.polyfit(np.log(x), np.log(y), deg=1)
    plt.plot(x,np.exp(fit[0] *np.log(x) + fit[1]), 'm:', label='model power %.2f' % fit[1])
    leg = plt.legend(loc='upper right',prop={'size':10})

    plt.errorbar(x, y, yerr=yerr, fmt='o')

    plt.xlim(left=1)
    plt.ylim((.9,1e3))
    plt.xlabel('Degree'); plt.ylabel('Counts')