Python matplotlib.pyplot 模块,axhline() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.axhline()

项目:probability_GAN    作者:MaureenZOU    | 项目源码 | 文件源码
def saveFig(realDtb, fakeDtb, discriminator, outDir):
        axes = plt.gca()
        axes.set_xlim([-1,10])
        axes.set_ylim([0,0.6])
        axes.set_autoscale_on(False)

        plt.axhline(y = discriminator)
        plt.plot()

        real_mean = np.mean(realDtb)
        real_std = np.std(realDtb)
        real_pdf = norm.pdf(realDtb, real_mean, real_std)
        plt.plot(realDtb, real_pdf)

        fake_mean = np.mean(fakeDtb)
        fake_std = np.std(fakeDtb)
        fake_pdf = norm.pdf(fakeDtb, fake_mean, fake_std)
        plt.plot(fakeDtb, fake_pdf)

        plt.savefig(outDir)
项目:probability_GAN    作者:MaureenZOU    | 项目源码 | 文件源码
def view(realDtb, fakeDtb, discriminator, outDir):
        plt.clf()

        axes = plt.gca()
        axes.set_xlim([-1,10])
        axes.set_ylim([0,0.6])
        axes.set_autoscale_on(False)

        plt.axhline(y = discriminator)
        plt.plot()

        real_mean = np.mean(realDtb)
        real_std = np.std(realDtb)
        real_pdf = norm.pdf(realDtb, real_mean, real_std)
        plt.plot(realDtb, real_pdf)

        fake_mean = np.mean(fakeDtb)
        fake_std = np.std(fakeDtb)
        fake_pdf = norm.pdf(fakeDtb, fake_mean, fake_std)
        plt.plot(fakeDtb, fake_pdf)

        plt.pause(0.00001)
项目:SciData_08-17-2017    作者:kitestring    | 项目源码 | 文件源码
def SimilarityPlot(self, SpectralDict):
        fig = plt.figure(figsize=(18,9))

        # Add each data set to the Spectral Qualithy Plot
        for n, data_set in enumerate(SpectralDict['data_sets']):
            plt.scatter(SpectralDict['x_data'][n], SpectralDict['y_data'][n], color=self.color_codes[n], label=data_set)

        # Horizontal 800 Similarity line
        plt.axhline(y=800, xmin=0, xmax=1, hold=None, color=self.red_hex_code, label='800 Similarity')

        # Make your plot pretty
        plt.legend(loc='upper left')
        plt.ylabel('Similarity vs. Main NIST Hit')
        plt.xlabel('Concentration (pg)')
        plt.title('%s - Spectral Quality' % SpectralDict['analyte_name'])
        plt.xscale('log')
        plt.xlim(SpectralDict['x_axis_min'], SpectralDict['x_axis_max'])
        plt.savefig(SpectralDict['file_name'], bbox_inches='tight')
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def plot_MNIST_results():
    matplotlib.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(6,4), dpi=100)    
    ll_1hl = [-92.17,-90.69,-89.86,-89.16,-88.61,-88.25,-87.95,-87.71]
    ll_2hl = [-89.17, -87.96, -87.10, -86.41, -85.96, -85.60, -85.28, -85.10] 
    x = np.arange(len(ll_1hl))    
    plt.axhline(y=-84.55, color="black", linestyle="--", label="2hl-DBN")
    plt.axhline(y=-86.34, color="black", linestyle="-.", label="RBM")
    plt.axhline(y=-88.33, color="black", linestyle=":", label="NADE (fixed order)")
    plt.plot(ll_1hl, "r^-", label="1hl-NADE")
    plt.plot(ll_2hl, "go-", label="2hl-NADE")
    plt.xticks(x, 2**x)    
    plt.xlabel("Models averaged")
    plt.ylabel("Test loglikelihood (nats)")
    plt.legend(loc=4, prop = {"size":10})
    plt.subplots_adjust(left=0.12, right=0.95, top=0.97, bottom=0.10)
    plt.savefig(os.path.join(DESTINATION_PATH, "likelihoodvsorderings.pdf"))
项目:nmt-repr-analysis    作者:boknilev    | 项目源码 | 文件源码
def plot_bars_two_groups(group1, group2, groups, labels, title, fignum, filename):

    assert len(group1) == len(group2) and len(group2) == len(labels), 'incompatible arguments in plot_bars_two_groups'

    plt.figure(fignum)
    ind = np.arange(len(labels))
    width = 1.0

    rects1 = plt.bar(ind, group1, width, color='r', hatch='/', label=groups[0])
    rects2 = plt.bar(ind+len(labels)+width, group2, width, color='y', hatch='\\', label=groups[1])

    plt.ylabel('Change in Accuracy or BLEU', size='large', fontweight='demibold')
    plt.title(title, fontweight='demibold')
    ticks = np.concatenate((ind + width/2, len(labels) + ind + width + width/2))
    #print ticks
    plt.xticks(ticks, labels + labels, size='large')
    plt.axhline(color='black')
    plt.legend()
    plt.tight_layout()
    #plt.show()
    plt.savefig(filename)

#plot_bars_two_groups(word_diffs, char_diffs, ['Word', 'Char'], ['POS', 'Morph', 'BLEU'], 'Effect of Representation Layer', 3, 'layer-effect.png')
项目:Sisyphus    作者:davidbrandfonbrener    | 项目源码 | 文件源码
def plot_fps_vs_activity(s,W,brec):

    fig = plt.figure(figsize=(4,8))

    for ii in range(5):
        plt.subplot(5,1,ii+1)
        Weff = W*(s[-1,ii,:]>0)
        fp = np.linalg.inv(np.eye(s.shape[2])-Weff).dot(brec)
        max_real = np.max(np.linalg.eig(Weff-np.eye(s.shape[2]))[0].real)
        plt.plot(s[60:,ii,:].T,c='c',alpha=.05)
        if max_real<0:
            plt.plot(fp,'k--')
        else:
            plt.plot(fp,'r--')
        plt.axhline(0,c='k')

    return fig
项目:rldurak    作者:janEbert    | 项目源码 | 文件源码
def main(win_stats, epsilon_start, min_epsilon, epsilon_episodes, count):
    epsilons = np.linspace(epsilon_start, min_epsilon, epsilon_episodes + 1)
    win_stat_count = win_stats.shape[0]
    epsilon_count = epsilons.shape[0]
    if epsilon_count < win_stat_count:
        epsilons = np.append(epsilons, np.full(win_stat_count - epsilon_count,
                min_epsilon))
    win_stat_means = np.mean(win_stats.reshape(-1, count), axis=1)
    epsilon_means = np.mean(epsilons.reshape(-1, count), axis=1)
    episodes = np.arange(count, win_stat_count + 1, count)
    plt.plot(episodes, win_stat_means)
    plt.plot(episodes, epsilon_means)
    plt.axhline(0.5, alpha=0.7, linestyle='dotted', color='grey')
    plt.legend(['Win rate', r'$\epsilon$', '50 %'])
    plt.xlabel('Episodes')
    plt.ylabel('Means of wins over ' + str(count)
            + r' episodes each and $\epsilon$ values')
    plt.title('Win rate during learning')
    plt.savefig(file_name + '.png', bbox_inches='tight')
    plt.savefig(file_name + '.pdf', bbox_inches='tight')
    # plt.show()
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_2D_contour(states,p,labels,inter=False):
    import pylab as pl

    from pyme.statistics import expectation as EXP
    exp = EXP((states,p)) 
    X = np.unique(states[0,:])
    Y = np.unique(states[1,:])
    X_len = len(X)
    Y_len = len(Y)
    Z = np.zeros((X.max()+1,Y.max()+1))
    for i in range(len(p)):
        Z[states[0,i],states[1,i]] = p[i]

    Z = np.where(Z < 1e-8,0.0,Z)
    pl.clf()
    XX, YY = np.meshgrid(X,Y)   
    pl.contour(range(X.max()+1),range(Y.max()+1),Z.T)
    pl.axhline(y=exp[1])
    pl.axvline(x=exp[0])
    pl.xlabel(labels[0])
    pl.ylabel(labels[1])
    if inter == True:
        pl.draw()
    else:
        pl.show()
项目:lstmprovisor-python    作者:Impro-Visor    | 项目源码 | 文件源码
def plot_note_dist(mat, name="", show_octaves=True):
    f = plt.figure(figsize=(20,5))
    f.canvas.set_window_title(name)
    plt.imshow(mat.T, origin="lower", interpolation="nearest", cmap=my_cmap)
    plt.xticks( np.arange(0,4*(constants.WHOLE//constants.RESOLUTION_SCALAR),(constants.QUARTER//constants.RESOLUTION_SCALAR)) )
    plt.xlabel('Time (beat/12)')
    plt.ylabel('Note')
    plt.colorbar()
    if show_octaves:
        for y in range(0,36,12):
            plt.axhline(y + 1.5, color='c')
    for x in range(0,4*(constants.WHOLE//constants.RESOLUTION_SCALAR),(constants.QUARTER//constants.RESOLUTION_SCALAR)):
        plt.axvline(x-0.5, color='k')
    for x in range(0,4*(constants.WHOLE//constants.RESOLUTION_SCALAR),(constants.WHOLE//constants.RESOLUTION_SCALAR)):
        plt.axvline(x-0.5, color='c')
    plt.show()
项目:artemis    作者:QUVA-Lab    | 项目源码 | 文件源码
def axvlines(xs, **plot_kwargs):
    """
    Draw vertical lines on plot
    :param xs: A scalar, list, or 1D array of horizontal offsets
    :param plot_kwargs: Keyword arguments to be passed to plot
    :return: The plot object corresponding to the lines.
    """
    xs = np.array((xs, ) if np.isscalar(xs) else xs, copy=False)
    lims = plt.gca().get_ylim()
    x_points = np.repeat(xs[:, None], repeats=3, axis=1).flatten()
    y_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(xs), axis=0).flatten()
    plot = plt.plot(x_points, y_points, scaley = False, **plot_kwargs)
    return plot

    # return [plt.axhline(y, **specs) for y in ys]
    # return [plt.axvline(x, **specs) for x in xs]
项目:leela-analysis    作者:lightvector    | 项目源码 | 文件源码
def graph_winrates(winrates, color, outp_fn):
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt

    X = []
    Y = []
    for move_num in sorted(winrates.keys()):
        pl, wr = winrates[move_num]

        if pl != color:
            wr = 1. - wr
        X.append(move_num)
        Y.append(wr)

    plt.figure(1)
    plt.axhline(0.5, 0, max(winrates.keys()), linestyle='--', color='0.7')
    plt.plot(X, Y, color='k', marker='+')
    plt.xlim(0, max(winrates.keys()))
    plt.ylim(0, 1)
    plt.xlabel("Move Number", fontsize=28)
    plt.ylabel("Win Rate", fontsize=28)
    plt.savefig(outp_fn, dpi=200, format='pdf', bbox_inches='tight')

#Also returns the move played, if any, else None
项目:skoleni-python-knihovny    作者:tomasbedrich    | 项目源码 | 文件源码
def vykresli_spojnice(hodnoty, nadpis, jednotky):
    fig, ax = pyplot.subplots()

    pyplot.title(nadpis)
    pyplot.xlabel('datum')
    pyplot.ylabel(jednotky)

    x_hodnoty = [polozka[0] for polozka in hodnoty]
    y_hodnoty = [polozka[1] for polozka in hodnoty]

    pyplot.plot_date(x_hodnoty, y_hodnoty, 'b-', linewidth=0.5)
    pyplot.axhline(0, linewidth=0.2)

    # v jakých intervalech a jak mají vypadat popisky na ose X
    ax.xaxis.set_major_locator(YearLocator())

    pyplot.show()
项目:tf-sparql    作者:derdav3    | 项目源码 | 文件源码
def plot_res(test_err, train_batch_loss, benchmark_err, epoch):
    flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]

    test_x_val = np.array(list(x * 3 for x in range(0, len(test_err))))

    plt.plot(train_batch_loss[0],train_batch_loss[1], label="Training error", c=flatui[1], alpha=0.5)
    plt.plot(test_x_val, np.array(test_err), label="Test error", c=flatui[0])
    plt.axhline(y=benchmark_err[1], linestyle='dashed', label="No-modell error", c=flatui[2])
    plt.axhline(y=0.098, linestyle='dashed', label="State of the art error", c=flatui[3])

    plt.suptitle("Model error - cold queries")
    plt.yscale('log', nonposy='clip')
    plt.xlim([0,epoch+1])
    # second_axes = plt.twinx() # create the second axes, sharing x-axis
    # second_axes.set_yticks([0.2,0.4]) # list of your y values
    plt.xlabel('epoch')
    plt.ylabel('error')
    plt.legend(loc='upper right')
    plt.show()
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def display_convw2(w, s, r, c, fig, title='conv_filters'):
  """w: num_filters X sizeX**2 * num_colors."""
  num_f, num_d = w.shape
  assert s**2 * 3 == num_d
  pvh = np.zeros((s*r, s*c, 3))
  for i in range(r):
    for j in range(c):
      pvh[i*s:(i+1)*s, j*s:(j+1)*s, :] = w[i*c + j, :].reshape(3, s, s).T
  mx = pvh.max()
  mn = pvh.min()
  pvh = 255*(pvh - mn) / (mx-mn)
  pvh = pvh.astype('uint8')
  plt.figure(fig)
  plt.suptitle(title)
  plt.imshow(pvh, interpolation="nearest")
  scale = 1
  xmax = s * c
  ymax = s * r
  color = 'k'
  for x in range(0, c):
    plt.axvline(x=x*s/scale, ymin=0, ymax=ymax/scale, color=color)
  for y in range(0, r):
    plt.axhline(y=y*s/scale, xmin=0, xmax=xmax/scale, color=color)
  plt.draw()
  return pvh
项目:dexpy    作者:statease    | 项目源码 | 文件源码
def plot_pareto(coefficients, standard_errors, residual_df, alpha = 0.05):
    """Draws a pareto plot to the current pyplot figure."""
    effects = []
    for i, _ in enumerate(coefficients):
        effects.append(coefficients[i] / standard_errors[i])

    pp.title("Pareto Chart")
    pp.xlabel("Rank")
    pp.ylabel("t-Value of |Effect|")

    bonferroni_limit = t.ppf(1 - ((alpha / 2) / 7), residual_df)
    t_limit = t.ppf(1 - (alpha / 2), residual_df)

    pp.axhline(y=t_limit, color='b', label="t-Value limit {:0.4f}".format(t_limit))
    pp.axhline(y=bonferroni_limit, color='r', label="Bonferroni Limit {:0.4f}".format(bonferroni_limit))

    heights = []
    bar_colors = []
    for t_value in effects:
        heights.append(abs(t_value))
        if t_value >= 0:
            bar_colors.append('orange')
        else:
            bar_colors.append('b')

    # sort on |t-value|
    heights, bar_colors = (list(x) for x in zip(*sorted(zip(heights, bar_colors), key=lambda pair: pair[0], reverse=True)))
    # alternatively, could use numpy.argsort to get list of indices
    # indices = np.argsort(heights)[::-1]

    x_rank = np.arange(len(heights))
    width = 0.35
    bars = pp.bar(x_rank + width, heights, width, color=bar_colors)
    pp.gca().set_xticks(x_rank + (width * 1.5))
    pp.gca().set_xticklabels([str(i + 1) for i in x_rank])
    pp.gca().set_ylim([0, pp.gca().get_ylim()[1] * 1.1]) # expand the y max a bit so you can see the bonferroni line
    pp.legend()
    return bars
项目:matplotlib-hep    作者:ibab    | 项目源码 | 文件源码
def plot_pull(data, func):

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator

    ax, bx = make_split(0.8)

    plt.sca(ax)

    x, y, norm = histpoints(data)

    lower, upper = ax.get_xlim()

    xs = np.linspace(lower, upper, 200)
    plt.plot(xs, norm * func(xs), 'b-')

    #plt.gca().yaxis.set_major_locator(MaxNLocator(prune='lower'))

    plt.sca(bx)

    resid = y[1] - norm * func(x)
    err = np.zeros_like(resid)
    err[resid >= 0] = y[0][resid >= 0]
    err[resid < 0] = y[2][resid < 0]

    pull = resid / err

    plt.errorbar(x, pull, yerr=1, color='k', fmt='o')
    plt.ylim(-5, 5)
    plt.axhline(0, color='b')

    plt.sca(ax)

    return ax, bx
项目:quoll    作者:LanguageMachines    | 项目源码 | 文件源码
def visualize_document_topics_heatmap(self, outfile, set_topics=False):
        self.sort_doctopics_groups()
        doctopics_raw_hm = numpy.rot90(self.document_topics_raw)
        rows, columns = doctopics_raw_hm.shape
        rownames = self.topic_labels
        columnnames = self.document_names
        pyplot.pcolor(doctopics_raw_hm, norm=None, cmap='Blues')
        pyplot.gca().invert_yaxis()
        if self.group_names:
            ticks_groups = []
            bounds = []
            current_group = False
            start = 0
            for i,doc in enumerate(self.document_names):
                group = self.document_group_dict[doc]
                if group != current_group:
                    if i != 0:
                        bounds.append(i-1)
                        ticks_groups[start+int((i-start)/2)] = current_group
                    current_group = group
                    start=i
                ticks_groups.append('')
            ticks_groups[start+int((i-start)/2)] = current_group
            pyplot.xticks(numpy.arange(columns)+0.5,ticks_groups, fontsize=11)
            if set_topics:
                for index in set_topics:
                    pyplot.axhline(y=index)
                topic_names = self.return_topic_names(set_topics)
                pyplot.yticks(set_topics,topic_names,fontsize=8)
            else:
                pyplot.yticks(numpy.arange(rows)+0.5, rownames, fontsize=8)
            for bound in bounds:
                pyplot.axvline(x=bound)
        pyplot.colorbar(cmap='Blues')
        pyplot.savefig(outfile)
        pyplot.clf()
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def plot_grid():
    plt.axvline(x=0, color="#999999", linestyle="-")
    plt.axhline(y=0, color="#999999", linestyle="-")
项目:nanopores    作者:mitschabaude    | 项目源码 | 文件源码
def plot_1Dgrid(z, grids):
    totalgrid = list(set(reduce(lambda a, b: a+b, grids)) - set(z))
    fig = plt.figure("line")
    fig.set_size_inches(8, 1)
    plt.axhline(y=0, color="black", zorder=-10)
    plt.scatter(totalgrid, [0.]*len(totalgrid), color="black")
    plt.scatter(z, [0.]*len(z), color="red")
    plt.xlim(z[0]-1, z[-1]+1)
    plt.axis('off')
项目:pyflux    作者:RJT1990    | 项目源码 | 文件源码
def acf_plot(data, max_lag=10):
    import matplotlib.pyplot as plt
    import seaborn as sns

    plt.figure(figsize=(15,5)) 
    ax = plt.subplot(111)
    plt.bar(range(1,10), [acf(data,lag) for lag in range(1,10)])
    plt.xlabel("Lag")
    plt.ylabel("Autocorrelation")
    plt.title("ACF Plot")
    plt.axhline(0+2/np.sqrt(len(data)), linestyle="-", color="black")
    plt.axhline(0-2/np.sqrt(len(data)), linestyle="-", color="black") 
    plt.show()
项目:wtte-rnn    作者:ragulpr    | 项目源码 | 文件源码
def weibull_contour(Y, U, is_discrete, true_alpha, true_beta, logx=True, samples=200, lines=True):

    xlist = np.linspace(true_alpha / np.e, true_alpha * np.e, samples)
    ylist = np.linspace(true_beta / np.e, true_beta * np.e, samples)
    x_grid, y_grid = np.meshgrid(xlist, ylist)

    loglik = x_grid * 0

    if is_discrete:
        fun = weibull.discrete_loglik
    else:
        fun = weibull.continuous_loglik

    for i in xrange(len(Y)):
        loglik = loglik + \
            fun(Y[i], x_grid, y_grid, U[i])

    z_grid = loglik / len(Y)

    plt.figure()
    if logx:
        x_grid = np.log(x_grid)
        true_alpha = np.log(true_alpha)
        xlab = r'$\log(\alpha)$'
    else:
        xlab = r'$\alpha$'

    cp = plt.contourf(x_grid, y_grid, z_grid, 100, cmap='jet')
    plt.colorbar(cp)
    if lines:
        plt.axvline(true_alpha, linestyle='dashed', c='black')
        plt.axhline(true_beta, linestyle='dashed', c='black')
    plt.xlabel(xlab)
    plt.ylabel(r'$\beta$')
项目:BayesVP    作者:cameronliang    | 项目源码 | 文件源码
def plot_model_comparison(self,redshift,dv,central_wave=None):
        """
        Plot best fit model onto spectrum for visual inspection 
        """
        c = 299792.485 # [km/s]

        if central_wave == None:
            # Use the first transition as the central wavelength
            central_wave = self.config_param.transitions_params_array[0][0][0][1]
        else:
            central_wave = float(central_wave)

        obs_spec_wave = self.config_param.wave / (1+redshift) 
        obs_spec_dv = c*(obs_spec_wave - central_wave) / central_wave
        plt.rc('text', usetex=True)

        plt.figure(1)
        plt.step(obs_spec_dv,self.config_param.flux,'k',label=r'$\rm Data$')
        plt.step(obs_spec_dv,self.model_flux,'b',lw=2,label=r'$\rm Best\,Fit$')
        plt.step(obs_spec_dv,self.config_param.dflux,'r')
        plt.axhline(1,ls='--',c='g',lw=1.2)
        plt.axhline(0,ls='--',c='g',lw=1.2)
        plt.ylim([-0.1,1.4])
        plt.xlim([-dv,dv])
        plt.xlabel(r'$dv\,[\rm km/s]$')
        plt.ylabel(r'$\rm Normalized\,Flux$')
        plt.legend(loc=3)

        output_name = self.config_param.processed_product_path + '/modelspec_' + self.config_param.chain_short_fname + '.pdf' 
        plt.savefig(output_name,bbox_inches='tight',dpi=100)
        plt.clf()
        print('Written %s' % output_name)
项目:strategy    作者:kanghua309    | 项目源码 | 文件源码
def model_fit_and_test(TrainX,TrainY,TestX,TestY):
    def bulid_model(model_name):
        model = model_name()
        return model
    #for model_name in [LinearRegression, Ridge, Lasso, ElasticNet, KNeighborsRegressor, DecisionTreeRegressor, SVR,RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor]:
    for model_name in [LinearRegression, ElasticNet]:
        model = bulid_model(model_name)
        model.fit(TrainX,TrainY)
        print(model_name)
        resid = model.predict(TestX) - TestY
        #print resid
        print("Residual sum of squares: %f"% np.mean(resid ** 2))
        #print model.predict(TestX)
        #print TestY
        # Explained variance score: 1 is perfect prediction
        plt.scatter(model.predict(TestX), resid);
        plt.axhline(0, color='red')
        plt.xlabel('Predicted Values')
        plt.ylabel('Residuals')
        #plt.xlim([1, 50])
        plt.show()

        print('Variance score: %.2f' % model.score(TestX, TestY))

        from statsmodels.stats.stattools import jarque_bera
        _, pvalue, _, _ = jarque_bera(resid)
        print ("Test Residuals Normal", pvalue)

        from statsmodels import regression, stats
        import statsmodels.api as sms
        import statsmodels.stats.diagnostic as smd
        # xs_with_constant = sms.add_constant(np.column_stack((X1,X2,X3,X4)))
        xs_with_constant = sms.add_constant(TestX)
        _, pvalue1, _, _ = stats.diagnostic.het_breushpagan(resid, xs_with_constant)
        print ("Test Heteroskedasticity", pvalue1)
        ljung_box = smd.acorr_ljungbox(resid, lags=10)

        #print "Lagrange Multiplier Statistics:", ljung_box[0]
        print "Test Autocorrelation P-values:", ljung_box[1]
        if any(ljung_box[1] < 0.05):
            print "The residuals are autocorrelated."
        else:
            print "The residuals are not autocorrelated."
项目:adaboost-implementation    作者:jaimeps    | 项目源码 | 文件源码
def plot_error_rate(er_train, er_test):
    df_error = pd.DataFrame([er_train, er_test]).T
    df_error.columns = ['Training', 'Test']
    plot1 = df_error.plot(linewidth = 3, figsize = (8,6),
            color = ['lightblue', 'darkblue'], grid = True)
    plot1.set_xlabel('Number of iterations', fontsize = 12)
    plot1.set_xticklabels(range(0,450,50))
    plot1.set_ylabel('Error rate', fontsize = 12)
    plot1.set_title('Error rate vs number of iterations', fontsize = 16)
    plt.axhline(y=er_test[0], linewidth=1, color = 'red', ls = 'dashed')
项目:rldurak    作者:janEbert    | 项目源码 | 文件源码
def main(durak_stats, epsilon_start, min_epsilon, epsilon_episodes, count):
    epsilons = np.linspace(epsilon_start, min_epsilon, epsilon_episodes + 1)
    durak_stat_count = durak_stats.shape[0]
    epsilon_count = epsilons.shape[0]
    if epsilon_count < durak_stat_count:
        epsilons = np.append(epsilons, np.full(durak_stat_count
                - epsilon_count, min_epsilon))
    ix_count = max(durak_stats) + 1
    durak_stat_means_list = []
    for ix in range(ix_count):
        durak_stat_means = np.ones(durak_stat_count, dtype=np.float)
        durak_stat_means[np.where(durak_stats == ix)] = 0
        durak_stat_means_list.append(
                np.mean(durak_stat_means.reshape(-1, count), axis=1))
    epsilon_means = np.mean(epsilons.reshape(-1, count), axis=1)
    episodes = np.arange(count, durak_stat_count + 1, count)
    win_rate_strings = []
    for ix in range(ix_count):
        plt.plot(episodes, durak_stat_means_list[ix])
        win_rate_strings.append('Win rate for player {0}'.format(ix))
    plt.plot(episodes, epsilon_means)
    plt.axhline(0.5, alpha=0.7, linestyle='dotted', color='grey')
    plt.legend(win_rate_strings + [r'$\epsilon$', '50 %'])
    plt.xlabel('Episodes')
    plt.ylabel('Means of wins over ' + str(count)
            + r' episodes each and $\epsilon$ values')
    plt.title('Win rate during learning')
    plt.savefig(file_name + '.png', bbox_inches='tight')
    plt.savefig(file_name + '.pdf', bbox_inches='tight')
    # plt.show()
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def runsimplot(self):
        """
        Viz of the MC results
        """

        tdmin = self.iniest.td - 3.0*self.iniest.tderr
        tdmax = self.iniest.td + 3.0*self.iniest.tderr

        fig = plt.figure(figsize=(6, 3))
        fig.subplots_adjust(top=0.95, bottom=0.2)
        plt.scatter(self.simtruedelays, self.simmesdelays - self.simtruedelays)
        plt.xlim(tdmin, tdmax)
        plt.xlabel("True delay [day]")
        plt.ylabel("Measurement error [day]")
        plt.axvline(self.iniest.td - self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axvline(self.iniest.td + self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axhline(0, color="black", linestyle="-", zorder=20)
        plt.axhline(- self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axhline(+ self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        plt.axhspan(-self.outest.tderr, self.outest.tderr, xmin=0, xmax=1, lw=0, color="red", alpha=0.2)
        #plt.ylim(- 2.0*self.iniest.tderr, + 2.0*self.iniest.tderr)


        plt.figtext(0.15, 0.8, "Total/initial error ratio: %.2f" % self.totalratio)

        #ax = plt.gca()
        #plt.figtext(0.15, 0.8, "Intrinsic/initial error ratio: %.2f" % self.intrinsicratio)
        #plt.axvline(self.iniest.td - self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        #plt.axvline(self.iniest.td + self.iniest.tderr, color="gray", linestyle="-", zorder=20)
        #plt.axvline(self.outest.td, color="red", linestyle="-", zorder=20)

        plt.savefig(os.path.join(self.plotdir, "measvstrue.png"))
        plt.close()
项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码
def maxPplot(estslist, N, filepath=None):
    """
    Give me a list of estimate-lists, I plot P as a function of f
    N is the total number of curves (e.g. 56 for tdc0) (defines f=1)
    """

    for ests in estslist:
        estscp = ests[:] # Important, we work on a copy, do not modify the original !
        for e in estscp:
            if e.td == 0.0: # We want to avoid that...
                #print e
                e.td = 0.1
        ests = sortbyP(estscp)
        fs = []
        Ps = []
        for n in range(len(ests)):
            subests = ests[n:]
            fs.append(f(subests, N))
            Ps.append(P(subests))
        plt.plot(fs, Ps, ".-", label=ests[0].method)
    plt.xlabel("f")
    plt.ylabel("Approximation of P")
    plt.xlim(0.0, 0.8)
    plt.ylim(0.0, 0.8)
    plt.axvline(0.3, color="black")
    plt.axhline(0.15, color="black")
    if len(estslist) > 1:
        plt.legend()
    plt.grid()
    if filepath:
        plt.savefig(filepath)
    else:
        plt.show()



############## Here, we work with the database from analyse_results ##############
项目:XQuant    作者:X0Leon    | 项目源码 | 文件源码
def _plot_tracks(tracks):
    colors = ['r', 'b']
    n_tracks = min({len(tracks.columns), len(colors)})
    for i in range(n_tracks):
        ob = tracks.iloc[:, i].values
        plt.plot(tracks.index, ob, colors[i], lw=0.5)
        plt.ylim(((1.1 if min(ob) < 0 else -1.1) * min(ob), 1.1 * max(ob)))
        if min(ob) < 0 < max(ob):
            plt.axhline(y=0.0, color='k', lw=0.5)
项目:astetik    作者:mikkokotila    | 项目源码 | 文件源码
def bubble(data,x,y,hue,bsize,palette='Reds',xscale='linear',yscale='linear',title='',suptitle=0):

    if suptitle == 0:
        suptitle = bsize

    sns.set(style="whitegrid")
    sns.set_context("notebook", font_scale=3, rc={"lines.linewidth": 0.3})

    sns.set_color_codes("bright")

    size = (1500 / float(data[bsize].max()))
    size = data[bsize] * size

    g = sns.PairGrid(data, hue=hue, palette=palette, y_vars=y, x_vars=x, size=12, aspect=3)

    g.map(plt.scatter, s=size);

    g.set(xscale=xscale)
    g.set(yscale=yscale)

    g.add_legend(title=hue, bbox_to_anchor=(0.9, 0.6))

    plt.title(title, fontsize=48, y=1.12, color="gray");

    plt.suptitle("size = " + suptitle, verticalalignment='top', fontsize=35, y=1.01, x=0.48, color="gray")
    plt.xlabel(x, fontsize=38, labelpad=30, color="gray");
    plt.ylabel(y, fontsize=38, labelpad=30, color="gray");

    plt.tick_params(axis='both', which='major', pad=25)

    plt.axhline(linewidth=2.5, color="black");
    plt.axvline(linewidth=2.5, color="black");
    plt.ylim(0,);
    plt.xlim(0,);
项目:python-machine-learning-book    作者:jeremyn    | 项目源码 | 文件源码
def work_with_activation_functions():
    X = np.array([[1, 1.4, 1.5]])
    w = np.array([0.0, 0.2, 0.4])
    print("P(y=1|x) = %.3f\n" % logistic_activation(X, w)[0])

    W = np.array([[1.1, 1.2, 1.3, 0.5],
                  [0.1, 0.2, 0.4, 0.1],
                  [0.2, 0.5, 2.1, 1.9]])
    A = np.array([[1.0], [0.1], [0.3], [0.7]])
    Z = W.dot(A)

    y_probas = logistic(Z)
    print('Probabilities:\n', y_probas)
    y_class = np.argmax(Z, axis=0)
    print("Predicted class label: %d\n" % y_class[0])

    y_probas = softmax(Z)
    print('Probabilities:\n', y_probas)
    print("Sum: %s" % y_probas.sum())
    y_class = np.argmax(Z, axis=0)
    print("Predicted class label: %d" % y_class[0])

    z = np.arange(-5, 5, 0.005)
    log_act = logistic(z)  # scipy.special.expit(z)
    tanh_act = tanh(z)  # numpy.tanh(z)

    plt.ylim([-1.5, 1.5])
    plt.xlabel('net input $z$')
    plt.ylabel('activation $\phi(z)$')
    plt.axhline(1, color='black', linestyle='--')
    plt.axhline(0.5, color='black', linestyle='--')
    plt.axhline(0, color='black', linestyle='--')
    plt.axhline(-1, color='black', linestyle='--')
    plt.plot(z, tanh_act, linewidth=2, color='black', label='tanh')
    plt.plot(z, log_act, linewidth=2, color='lightgreen', label='logistic')
    plt.legend(loc='lower right')

    plt.show()
项目:python-machine-learning-book    作者:jeremyn    | 项目源码 | 文件源码
def plot_regularization_path(columns, X, y):
    fig = plt.figure()
    ax = plt.subplot(111)

    colors = [
        'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'pink',
        'lightgreen', 'lightblue', 'gray', 'indigo', 'orange',
    ]

    weights = []
    params = []
    for c in np.arange(-4, 6):
        lr = LogisticRegression(penalty='l1', C=10**c, random_state=0)
        lr.fit(X, y)
        weights.append(lr.coef_[1])
        params.append(10**c)

    weights = np.array(weights)

    for column, color in zip(range(weights.shape[1]), colors):
        plt.plot(
            params,
            weights[:, column],
            label=columns[column+1],
            color=color,
        )

    plt.axhline(0, color='black', linestyle='--', linewidth=3)
    plt.xlim([10**-5, 10**5])
    plt.ylabel('weight coefficient')
    plt.xlabel('C')
    plt.xscale('log')
    plt.legend(loc='upper left')
    ax.legend(
        loc='upper center',
        bbox_to_anchor=(1.38, 1.03),
        ncol=1,
        fancybox=True,
    )
    plt.show()
项目:Machine-Learning-Projects    作者:poke19962008    | 项目源码 | 文件源码
def survivalFreq(X='Age',diff=False):
    groupS = df.groupby(['Survived']).get_group(1)
    groupS = groupS.groupby([X])[X].aggregate(len)
    groupS = pd.DataFrame({X: groupS.index, 'Frequency': groupS.values})

    groupD = df.groupby(['Survived']).get_group(0)
    groupD = groupD.groupby([X])[X].aggregate(len)
    groupD = pd.DataFrame({X: groupD.index, 'Frequency': groupD.values})

    group = pd.merge(groupD, groupS, how='inner', on=X, suffixes=('Dead', 'Survived'))
    if not diff:
        group[['FrequencyDead', 'FrequencySurvived']].plot.bar(x=group[X], title='%s And Survival Frequency'%X, stacked=True)
    else:
        group['diff'] = group.FrequencySurvived - group.FrequencyDead
        group[['diff']].plot.bar(x=group[X], title='%s And Survival Frequency'%X, stacked=True); plt.axhline(0, color='k')
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def _plot_timeseries(ax, ch_idx, tmin, tmax, vmin, vmax, ylim, data, color,
                     times, vline=None, x_label=None, y_label=None,
                     colorbar=False, hline=None):
    """Aux function to show time series on topo split across multiple axes"""
    import matplotlib.pyplot as plt
    picker_flag = False
    for data_, color_ in zip(data, color):
        if not picker_flag:
            # use large tol for picker so we can click anywhere in the axes
            ax.plot(times, data_[ch_idx], color_, picker=1e9)
            picker_flag = True
        else:
            ax.plot(times, data_[ch_idx], color_)
    if vline:
        for x in vline:
            plt.axvline(x, color='w', linewidth=0.5)
    if hline:
        for y in hline:
            plt.axhline(y, color='w', linewidth=0.5)
    if x_label is not None:
        plt.xlabel(x_label)
    if y_label is not None:
        if isinstance(y_label, list):
            plt.ylabel(y_label[ch_idx])
        else:
            plt.ylabel(y_label)
    if colorbar:
        plt.colorbar()
项目:neurotools    作者:michaelerule    | 项目源码 | 文件源码
def plot_spatiotemporal(B,Bs,Bh,ch_map):
    '''
    Q = plot_spatiotemporal(B,Bs,Bh,ch_map)
    Decompress and visualize spatiotemporal stimulus model

    Parameters
    ----------
    B  : nspace * nhist    spatiotemporal parameter vector, compressed
    Bs : nspace × channels spatial compression basis
    Bh : nhist  × hframes  history compression basis
    ch_map : 2d array showing how to map stimulus indecies into a space

    Returns
    -------
    Q : the ch_map.shape × hframes decompressed spatiotemporal history filter
    '''
    nspace,nchannels = Bs.shape
    nhist ,hframes   = Bh.shape
    assert(nspace<=nchannels)
    assert(nhist<=hframes)
    assert(B.shape==(nspace*nhist,))

    # decompress stimulus and place into channel map
    Q = np.linalg.pinv(Bs).real.dot(B.reshape((nspace,nhist))).dot(np.linalg.pinv(Bh).real.T)[ch_map,:]
    # plot
    # Truncate time history to a perfect square, and reshape data
    K = int(np.sqrt(Q.shape[-1]))
    Q2 = Q.transpose((2,0,1))[:K*K,...].reshape((K,K)+(ch_map.shape))
    # Form grid depiction of spatiotmeporal history
    Q2 = np.concatenate(np.concatenate(Q2,axis=1),axis=1)
    # plot z-scores
    zscores = (Q2-np.mean(Q2))/np.std(Q2)
    plt.imshow(zscores,vmin=-8,vmax=8)
    # draw a better grid
    plt.gca().grid(False)
    for i in range(K):
        plt.axvline(i*ch_map.shape[0],color=(0.1,)*3)
        plt.axhline(i*ch_map.shape[1],color=(0.1,)*3)
    return Q
项目:tensorflowbook    作者:thewintersun    | 项目源码 | 文件源码
def draw_correct_line():
  '''
  ?????sin???
  '''
  x = np.arange(0, 2 * np.pi, 0.01)
  x = x.reshape((len(x), 1))
  y = np.sin(x)

  pylab.plot(x,y, label = '??sin??')
  plt.axhline(linewidth=1, color='r')
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def plot_speedup_acc(speedup_acc, score1):
    num_procs = speedup_acc[0].shape[0]

    plt.figure(figsize=(15, 3))

    plt.subplot(1, 3, 1)
    plt.plot(range(1,num_procs+1), speedup_acc[0])
    plt.axhline(1, c='r')
    plt.xlabel("Processors")
    plt.xticks(range(1,num_procs+1))
    plt.ylabel("Speed-up")
    plt.yticks(np.arange(0,num_procs+1, 0.5))

    plt.subplot(1, 3, 2)
    plt.plot(range(1,num_procs+1), speedup_acc[1])
    plt.axhline(y=score1, c='r')
    plt.xlabel("Processors")
    plt.xticks(range(1,num_procs+1))
    plt.ylabel("Accuracy")
    plt.yticks(np.arange(0,1.25, 0.25))

    plt.subplot(1, 3, 3)
    plt.scatter(speedup_acc[0], speedup_acc[1])
    plt.xlabel("Speed-up")
    plt.xticks(np.arange(0,num_procs+1, 0.5))
    plt.ylabel("Accuracy")
    plt.yticks(np.arange(0,1.25, 0.25))
项目:tf-sparql    作者:derdav3    | 项目源码 | 文件源码
def plot_res(test_err, train_batch_loss, benchmark_err, epoch):
    '''Plot result of model

    Args:
        test_err: 'float', test error of model
        train_batch_loss: 'tuple', tuple of train error of model x & y
        benchmark_err: 'tuple', error of using no model
        epoch: 'int', current epoch

    '''
    flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]

    test_x_val = np.array(list(x * 3 for x in range(0, len(test_err))))

    plt.plot(train_batch_loss[0],train_batch_loss[1], label="Training error", c=flatui[1], alpha=0.5)
    plt.plot(test_x_val, np.array(test_err), label="Test error", c=flatui[0])
    plt.axhline(y=benchmark_err[1], linestyle='dashed', label="No-modell error", c=flatui[2])
    plt.axhline(y=0.098, linestyle='dashed', label="State of the art error", c=flatui[3])

    plt.suptitle("Model error - cold queries")
    plt.yscale('log', nonposy='clip')
    plt.xlim([0,epoch+1])
    plt.xlabel('epoch')
    plt.ylabel('error')
    plt.legend(loc='upper right')
    plt.show()
项目:sparselab    作者:eht-jp    | 项目源码 | 文件源码
def plot(self,axs=None,ls="-",marker="None",xlim=[None,None],label="",**plotargs):
        if axs is None:
            fig, axs = plt.subplots(nrows=4,ncols=1,sharex=True)

        ax = axs[0]
        plt.sca(ax)
        plt.plot(self["RM"],self["P"],ls=ls,marker=marker,**plotargs)
        plt.ylabel("$P$ (Jy rad$^{-1}$ m$^{2}$)")
        plt.xlim(xlim)
        plt.ylim(0,)
        ymax = np.max(ax.get_ylim())

        ax = axs[1]
        plt.sca(ax)
        chi = self["chi"]
        chi[self["P"] < np.max(self["P"]) * 0.01]=0
        plt.plot(self["RM"],chi,ls=ls,marker=marker,**plotargs)
        plt.ylabel("$\chi$ (deg)")
        plt.xlim(xlim)
        plt.ylim(-90,90)
        ax.set_yticks(np.arange(-90,91,10), minor=True)
        ax.set_yticks(np.arange(-90,91,30), minor=False)

        ax = axs[2]
        plt.sca(ax)
        plt.plot(self["RM"],self["Q"],ls=ls,marker=marker,**plotargs)
        plt.axhline(0, ls="--", color="black")
        plt.ylabel("$Q$ (Jy rad$^{-1}$ m$^{2}$)")
        plt.xlim(xlim)
        plt.ylim(-ymax,ymax)
        #
        ax = axs[3]
        plt.sca(ax)
        plt.plot(self["RM"],self["U"],ls=ls,marker=marker,**plotargs)
        plt.axhline(0, ls="--", color="black")
        plt.ylabel("$U$ (Jy rad$^{-1}$ m$^{2}$)")
        plt.xlabel("$\phi$ (rad m$^{-2}$)")
        plt.xlim(xlim)
        plt.ylim(-ymax,ymax)
        return axs
项目:verb-attributes    作者:uwnlp    | 项目源码 | 文件源码
def att_plot(top_labels, gt_ind, probs, fn):
    # plt.figure(figsize=(5, 5))
    #
    # color_dict = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
    # colors = [color_dict[c] for c in
    #           ['lightcoral', 'steelblue', 'forestgreen', 'darkviolet', 'sienna', 'dimgrey',
    #            'darkorange', 'gold']]
    # colors[gt_ind] = color_dict['crimson']
    # w = 0.9
    # plt.bar(np.arange(len(top_labels)), probs, w, color=colors, alpha=.9, label='data')
    # plt.axhline(0, color='black')
    # plt.ylim([0, 1])
    # plt.xticks(np.arange(len(top_labels)), top_labels, fontsize=6)
    # plt.subplots_adjust(bottom=.15)
    # plt.tight_layout()
    # plt.savefig(fn)
    lab = deepcopy(top_labels)
    lab[gt_ind] += ' (gt)'
    d = pd.DataFrame(data={'probs': probs, 'labels':lab})
    fig, ax = plt.subplots(figsize=(4,5))
    ax.tick_params(labelsize=15)

    sns.barplot(y='labels', x='probs', ax=ax, data=d, orient='h', ci=None)
    ax.set(xlim=(0,1))

    for rect, label in zip(ax.patches,lab):
        w = rect.get_width()
        ax.text(w+.02, rect.get_y() + rect.get_height()*4/5, label, ha='left', va='bottom',
                fontsize=25)

    # ax.yaxis.set_label_coords(0.5, 0.5)
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.get_yaxis().set_visible(False)
    ax.get_xaxis().label.set_visible(False)
    fig.savefig(fn, bbox_inches='tight', transparent=True)
    plt.close('all')
项目:pastas    作者:pastas    | 项目源码 | 文件源码
def diagnostics(self, tmin=None, tmax=None, show=True):
        innovations = self.ml.innovations(tmin, tmax)

        fig = self._get_figure()
        gs = plt.GridSpec(2, 3, wspace=0.2)

        plt.subplot(gs[0, :2])
        plt.title('Autocorrelation')
        # plt.axhline(0.2, '--')
        r = ps.stats.acf(innovations)
        plt.stem(r)

        plt.subplot(gs[1, :2])
        plt.title('Partial Autocorrelation')
        # plt.axhline(0.2, '--')
        # plt.stem(self.ml.stats.pacf())

        plt.subplot(gs[0, 2])
        innovations.hist(bins=20)

        plt.subplot(gs[1, 2])
        probplot(innovations, plot=plt)

        if show:
            plt.show()

        return fig.axes
项目:Twitter100k    作者:huyt16    | 项目源码 | 文件源码
def display_w(w, s, r, c, fig, vmax=None, vmin=None, dataset='mnist', title='weights'):

  if dataset == 'norb':
    numvis = 4096
  else:
    numvis = w.shape[0]
  numhid = w.shape[1]
  sc = s
  sr = numvis/s
  if isinstance(w, np.ndarray):
    vh = w.T[:,:sr*sc].reshape(sr*numhid, sc)
  else:
    vh = w.asarray().T[:,:sr*sc].reshape(sr*numhid, sc)
  pvh = np.zeros((sr*r, sc*c))
  for i in range(r):
    for j in range(c):
      pvh[i*sr:(i+1)*sr , j*sc:(j+1)*sc] = vh[ (i*c+j)*sr : (i*c+j+1)*sr ,:]
  plt.figure(fig)
  plt.clf()
  plt.title(title)
  plt.imshow(pvh, cmap = plt.cm.gray, interpolation = 'nearest', vmax=vmax, vmin=vmin)
  scale = 1
  xmax = sc*c
  ymax = sr*r
  color = 'k'
  if r > 1:
    for x in range(0,c):
      plt.axvline(x=x*sc/scale, ymin=0,ymax=ymax/scale, color = color)
  if c > 1:
    for y in range(0,r):
      plt.axhline(y=y*sr/scale, xmin=0,xmax=xmax/scale, color = color)
  plt.draw()

  return pvh
项目:probability_GAN    作者:MaureenZOU    | 项目源码 | 文件源码
def save_fig(self, epoch):

        plt.clf()

        real_A = Variable(torch.Tensor(np.reshape(self.data_A, (sample_size, 1)))) #100*1 matrix
        real_B = Variable(torch.Tensor(np.reshape(self.data_B, (sample_size, 1)))) #100*1 matrix
        fake_B = self.netG_A.forward(real_A)
        D_B_score = self.netD_A.forward(self.fake_B)

        lm = sns.distplot(np.array(self.extract(real_A)), hist=False, color="g", kde_kws={"shade": True})
        lm = sns.distplot(np.array(self.extract(fake_B)), hist=False, color="m", kde_kws={"shade": True})
        lm = sns.distplot(np.array(self.extract(real_B)), hist=False, color="b", kde_kws={"shade": True})
        plt.axhline(np.average(np.array(self.extract(D_B_score))))

        axes = lm.axes
        axes.set_xlim([-2,4])
        axes.set_ylim([0,3])

        outDir = "/Users/maureen/Documents/Python/simpleGAN/DomainB/shift/" + str(epoch) +".png"
        plt.savefig(outDir)


        plt.clf()

        real_A = Variable(torch.Tensor(np.reshape(self.data_A, (sample_size, 1)))) #100*1 matrix
        real_B = Variable(torch.Tensor(np.reshape(self.data_B, (sample_size, 1)))) #100*1 matrix
        fake_A = self.netG_B.forward(real_B)
        D_A_score = self.netD_B.forward(self.fake_A)

        lm = sns.distplot(np.array(self.extract(real_B)), hist=False, color="g", kde_kws={"shade": True})
        lm = sns.distplot(np.array(self.extract(fake_A)), hist=False, color="m", kde_kws={"shade": True})
        lm = sns.distplot(np.array(self.extract(real_A)), hist=False, color="b", kde_kws={"shade": True})
        plt.axhline(np.average(np.array(self.extract(D_A_score))))

        axes = lm.axes
        axes.set_xlim([-2, 4])
        axes.set_ylim([0,3])

        outDir = "/Users/maureen/Documents/Python/simpleGAN/DomainA/shift/" + str(epoch) +".png"
        plt.savefig(outDir)


        # real_B = Variable(b_sampler(data_size, 1)) #100*1 matrix
        # fake_A = self.netG_B.forward(real_B)
        # rec_B = self.netG_A.forward(fake_A)



####start to train cycle-GAN####
项目:bmcmc    作者:sanjibs    | 项目源码 | 文件源码
def plot(self,keys=None,burn=1000):
        if keys is None:
            keys=self.names0
        k=0
        #plm=putil.Plm1(rows=2,cols=2,xmulti=True,ymulti=True,slabel=False)
        for i in range(len(keys)):
            for j in range(len(keys)):
                k=k+1
                if i==j:
                    x=self.chain[keys[i]][burn:]
                    plt.subplot(len(keys),len(keys),k)
                    #sig=np.std(self.chain[keys[i]][burn:])
                    xmean=np.mean(x)
                    nbins=np.max([20,x.size/1000])
                    plt.hist(x,bins=nbins,normed=True,histtype='step')
                    plt.axvline(np.mean(self.chain[keys[i]][burn:]),lw=2.0,color='g')
                    if i == (len(keys)-1):
                        plt.xlabel(self.descr[keys[i]][3])
                    plt.text(0.05,0.7,stat_text(self.chain[keys[i]][burn:]),transform=plt.gca().transAxes)
                    plt.gca().xaxis.set_major_locator(MaxNLocator(3, prune="both"))
                    plt.gca().yaxis.set_major_locator(MaxNLocator(3, prune="both"))
                    plt.gca().set_yticklabels([])
                else:
                    if i > j:
                        plt.subplot(len(keys),len(keys),k)
                        x=self.chain[keys[j]][burn:]
                        y=self.chain[keys[i]][burn:]
                        nbins=np.max([32,x.size/1000])
                        plt.hist2d(x,y,bins=[nbins,nbins],norm=LogNorm())
                        plt.axvline(np.mean(self.chain[keys[j]][burn:]),lw=2.0)
                        plt.axhline(np.mean(self.chain[keys[i]][burn:]),lw=2.0)
                        if j == 0:
                            plt.ylabel(self.descr[keys[i]][3])
                        else:
                            plt.gca().set_yticklabels([])
                        if i == (len(keys)-1):
                            plt.xlabel(self.descr[keys[j]][3])
                        else:
                            plt.gca().set_xticklabels([])

                        plt.gca().xaxis.set_major_locator(MaxNLocator(3, prune="both"))
                        plt.gca().yaxis.set_major_locator(MaxNLocator(3, prune="both"))
                        #plt.colorbar(pad=0.0,fraction=0.1)
        plt.subplots_adjust(hspace=0.15,wspace=0.1)
项目:data-stream-visualization    作者:hmgomes    | 项目源码 | 文件源码
def plotline(dataset_name,
              yvalues,
              loc_legend=3,
              figure_name=None,
              axis=[0, 1010, 40, 100],
              classifiers=['HoeffdingTree'],
              drifts=None,
              gradual_drift=None,
              xvalues=[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
              xlabel='# instances (thousands)',
              ylabel='accuracy'):

    plt.title(dataset_name + ' - ' + ylabel)
    plt.axis(axis)

    line_style = ['-o', '-x', '-p', '-1', '-s', '-v', '-d']
    idx = 0
    stream_classifier = []
    for classifier in classifiers:
        plotted, = plt.plot(xvalues, yvalues[classifier], line_style[idx % len(line_style)], label=classifier)
        stream_classifier.append(plotted)
        idx+=1

    plt.axhline(y=0, xmax=1, color='black', ls='--')

    if drifts is not None:
        for drift in drifts:
            if gradual_drift is not None:
                if isinstance(gradual_drift, types.ListType) is False:
                    plt.axvline(x=drift-gradual_drift, ymax=1, color='r', ls='--')
                    plt.axvline(x=drift+gradual_drift, ymax=1, color='r', ls='--')
            plt.axvline(x=drift, ymax=1, color='r')

    if isinstance(gradual_drift, types.ListType):
        for i in range(0,len(gradual_drift)):
            if gradual_drift[i] > 0:
                plt.axvline(x=drifts[i]-gradual_drift[i], ymax=1, color='r', ls='--')
                plt.axvline(x=drifts[i]+gradual_drift[i], ymax=1, color='r', ls='--')

    plt.legend(stream_classifier, classifiers, loc=loc_legend, ncol=2, bbox_to_anchor=(0., 0, 1, 0))
    plt.ylabel(ylabel)
    plt.xlabel(xlabel)

    if figure_name is None:
        figure_name = 'plot.pdf'

    plt.savefig(figure_name)
    plt.clf()
项目:Quantrade    作者:quant-trade    | 项目源码 | 文件源码
def make_strat_image(info, data):
    mdpi = 300
    try:
        title = "{0} on {1} {2} [{3}]".format(info["system"], info["symbol"], \
            info["period"], info["broker"])

        if len(data) > 0:
            data.rename(columns={'LONG_PL_CUMSUM': 'Strategy, longs', \
                'SHORT_PL_CUMSUM': 'Strategy, shorts', 'LONG_DIFF_CUMSUM': \
                'Buy & hold', 'SHORT_DIFF_CUMSUM': 'Short & hold'}, inplace=True)

            plt.figure(figsize=(3840/mdpi, 2160/mdpi), dpi=mdpi)
            data['Strategy, longs'].plot(x='Date', y='Value, $', legend=True, \
                style='r', lw=3).scatter(x=data.index, \
                y=data.LONG_MAE, label='MAE', color='DarkGreen')
            data['Buy & hold'].plot(legend=True, style='g').set_title(title+', Longs')
            plt.axhline(y=0.0)
            info["direction"] = "longs"
            plt.savefig(filename_constructor(info=info, folder="meta"))
            plt.close()

            plt.figure(figsize=(3840/mdpi, 2160/mdpi), dpi=mdpi)
            data['Strategy, shorts'].plot(x='Date', y='Value, $', legend=True, \
                style='r', lw=3).scatter(x=data.index, \
                y=data.SHORT_MAE, label='MAE', color='DarkGreen')
            data['Short & hold'].plot(legend=True, style='g').set_title(title+', Shorts')
            plt.axhline(y=0.0)
            info["direction"] = "shorts"
            plt.savefig(filename_constructor(info=info, folder="meta"))
            plt.close()

            plt.figure(figsize=(3840/mdpi, 2160/mdpi), dpi=mdpi)
            data['Strategy, longs & shorts'] = data['Strategy, shorts'] + \
                data['Strategy, longs']
            data['Strategy, longs & shorts'].plot(x='Date', \
                y='Value, $', legend=True, style='r', \
                lw=3).scatter(x=data.index, y=(data.SHORT_MAE+data.LONG_MAE), \
                label='MAE', color='DarkGreen')
            data['Buy & hold'].plot(legend=True, style='g'\
                ).set_title(title+', Longs & shorts')
            plt.axhline(y=0.0)
            info["direction"] = "longs_shorts"
            plt.savefig(filename_constructor(info=info, folder="meta"))
            plt.close()
            if settings.SHOW_DEBUG:
                print(colored.green("Made images"))
    except Exception as err:
        print(colored.red("At make_strat_image {}".format(err)))
项目:Python-Scripts    作者:Logan1x    | 项目源码 | 文件源码
def graph(self, order, coefficients, low, high, interval, ans):
        fig=plt.figure()
        plt.axes(xlim=(low-5, high+5))
        lines = [plt.plot([], [], color='r')[0] for i in range(30)]
        plt.title('Trapezoid Method\nRequired area is %0.2f units' %(ans))
        plt.xlabel('X-axis')
        plt.ylabel('Y-axis')
        plt.axhline(y=0, color='k')
        plt.axvline(x=0, color='k')
        x=np.linspace(low, high, 500)
        y=f(order, coefficients, x)
        s=''
        for i in range(order+1):
            if coefficients[i]>=0:
                s=s+(' +'+str(coefficients[i])+'x^'+str(order-i))
            else:
                s=s+(' '+str(coefficients[i])+'x^'+str(order-i))
        s=s+' = 0'
        plt.plot(x, y, 'darkslateblue', label=s)

        def init():
            for line in lines:
                line.set_data([], [])
            return lines

        def animate(i):
            if i<2:
                for j in range(30):
                    lines[j].set_data([], [])
            else:
                x = np.linspace(low, high, i)
                y = f(order, coefficients, x)
                lines[29].set_data(x, y)
                for j in range(i):
                    lines[j].set_data([x[j], x[j]], [y[j], 0])
                for j in range(i, 29):
                    lines[j].set_data([], [])
            return lines

        animation.FuncAnimation(fig, animate, init_func=init, frames=30, interval=500, blit=True)
        plt.legend(loc='upper right', numpoints=1)
        plt.show()
项目:seis_tools    作者:romaguir    | 项目源码 | 文件源码
def filter_freqs(lowcut, highcut, fs, plot=False, corners=4):
   '''
   The frequency band information should technically be the amplitude spectrum
   of the filtered seismograms, but the amplitude spectrum of the bandpass
   filter is sufficient. Here we use a bandpass butterworth filter.

   The function freq band takes 3 arguments:
           lowcut = low end of bandpass (in Hz)
           highcut = high end of bandpass (in Hz)
           fs      = sample rate (1.0/dt)

   It returns two vectors:
           omega = frequency axis (in rad/s)
           amp   = frequency response of the filter
   '''
   #Define bandpass parameters
   nyquist = 0.5 * fs
   fmin    = lowcut/nyquist
   fmax    = highcut/nyquist

   #Make filter shape
   b, a = iirfilter(corners, [fmin,fmax], btype='band', ftype='butter')

   #Determine freqency response
   freq_range = np.linspace(0,0.15,200)
   w, h = freqz(b,a,worN=freq_range)

   omega    = fs * w                # in rad/s
   omega_hz = (fs * w) / (2*np.pi)  # in hz
   amp   = abs(h)

   if(plot == True):
      #Checks----------------
      #plt.semilogx(omega,amp)
      #plt.axvline(1/10.0)
      #plt.axvline(1/25.0)
      #plt.axhline(np.sqrt(0.5))

      plt.plot(omega,amp)
      plt.xlabel('frequency (rad/s)')
      plt.ylabel('amplitude')
      plt.show()

   return  omega, amp
项目:mriqc    作者:poldracklab    | 项目源码 | 文件源码
def plot_batches(fulldata, cols=None, out_file=None, site_labels='left'):
    fulldata = fulldata.sort_values(by=['database', 'site']).copy()
    sites = fulldata.site.values.ravel().tolist()
    if cols is None:
        numdata = fulldata.select_dtypes([np.number])
    else:
        numdata = fulldata[cols]

    numdata = numdata[cols]
    colmin = numdata.min()
    numdata = (numdata - colmin)
    colmax = numdata.max()
    numdata = numdata / colmax

    fig, ax = plt.subplots(figsize=(20, 10))
    ax.imshow(numdata.values, cmap=plt.cm.viridis, interpolation='nearest', aspect='auto')

    locations = []
    spines = []
    fulldata['index'] = range(len(fulldata))
    for site in list(set(sites)):
        indices = fulldata.loc[fulldata.site == site, 'index'].values.ravel().tolist()
        locations.append(int(np.average(indices)))
        spines.append(indices[0])

    if site_labels == 'right':
        ax.yaxis.tick_right()
        ax.yaxis.set_label_position("right")

    plt.xticks(range(numdata.shape[1]), numdata.columns.ravel().tolist(), rotation='vertical')
    plt.yticks(locations, list(set(sites)))
    for line in spines[1:]:
        plt.axhline(y=line, color='w', linestyle='-')
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    # ax.spines['left'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.grid(False)

    ticks_font = FontProperties(
        family='FreeSans', style='normal', size=14,
        weight='normal', stretch='normal')
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    ticks_font = FontProperties(
        family='FreeSans', style='normal', size=12,
        weight='normal', stretch='normal')
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)

    if out_file is not None:
        fig.savefig(out_file, bbox_inches='tight', pad_inches=0, dpi=300)
    return fig
项目:-Python-Analysis_of_wine_quality    作者:ekolik    | 项目源码 | 文件源码
def mult_regression(wine_set):
    # center quantitative IVs for regression analysis
    w = wine_set['quality']
    wine_set = wine_set - wine_set.mean()
    wine_set['quality'] = w

    print ("OLS multivariate regression model")
    # first i have run with all columns; than chose the most significant for each wine set and rerun:

    if len(wine_set) < 2000:
        # for red
        model1 = smf.ols(
            formula="quality ~ volatile_acidity + chlorides + pH + sulphates + alcohol",
            data=wine_set)
    else:
        # for white
        model1 = smf.ols(
            formula="quality ~ volatile_acidity + density + pH + sulphates + alcohol",
            data=wine_set)

    results1 = model1.fit()
    print(results1.summary())

    # q-q plot for normality
    qq = sm.qqplot(results1.resid, line = 'r')
    plt.show()

    # plot of residuals
    stdres = pd.DataFrame(results1.resid_pearson)
    plt.plot(stdres, 'o', ls = 'None')
    l = plt.axhline(y=0, color = 'r')
    plt.ylabel('Standardized redisual')
    plt.xlabel('Observation number')
    plt.show()

    # # diagnostic plots
    # figure1 = plt.figure(figsize=(12, 8))
    # figure1 = sm.graphics.plot_regress_exog(results1, "alcohol", fig = figure1)
    # plt.show()
    #
    # figure1 = plt.figure(figsize=(12, 8))
    # figure1 = sm.graphics.plot_regress_exog(results1, "sulphates", fig = figure1)
    # plt.show()

    # leverage plot
    figure1 = sm.graphics.influence_plot(results1, size=8)
    plt.show()

# call(mult_regression)


# ____________________________ Logistic Regression _____________________
项目:TTClust    作者:tubiana    | 项目源码 | 文件源码
def plot_dendro(linkage, logname, cutoff, color_list,clusters_list):
    """
    DESCRIPTION
    This function will create the dendrogram graph with the corresponding
    cluster color.
    Args:
        linkage (numpy array) : linkage matrix
        output (str) : output logfile name
        cutoff (float) : cutoff used for clustering
        color_list (list) : HEX code color for each cluster
        cluster_list (list) : list of all cluster (Cluster object)
    Returns:
        None
    """
    if mpl.__version__[0] == "2":
        STYLE = "classic"
        if STYLE in plt.style.available:
            plt.style.use(STYLE)
    fig = plt.figure()
    #Convert RGB color to HEX color
    color_hex = [mpl.colors.rgb2hex(x) for x in color_list]
    sch.set_link_color_palette(color_hex)
    #clusters_list
    color_member = {}
    for cl in clusters_list:
        for frm in cl.frames:
            color_member[frm] = mpl.colors.rgb2hex(color_list[cl.id-1])

    #Attribute the correct color for each branch.
    #adapte from Ulrich Stern code in StackOverflow http://stackoverflow.com/a/38208611
    link_cols = {}
    for i, i12 in enumerate(linkage[:,:2].astype(int)):
        c1, c2 = (link_cols[x] if x > len(linkage) else color_member[x] for x in i12)
        link_cols[i+1+len(linkage)] = c1 if c1 == c2 else "#808080"

    #Dendrogram creation
    # Override the default linewidth.
    den = sch.dendrogram(linkage, color_threshold=float(cutoff), above_threshold_color="#808080", link_color_func=lambda x: link_cols[x])

    #Graph parameters
    plt.title("Clustering Dendrogram")
    ax = plt.axes()
    ax.set_xticklabels([])
    plt.axhline(y=float(cutoff), color = "grey") # cutoff value vertical line
    ax.set_ylabel("Distance (AU)")
    ax.set_xlabel("Frames")

    plt.savefig("{0}/{0}-den.png".format(logname), format="png", dpi=DPI, transparent=True)
    plt.close()