Python matplotlib.pyplot 模块,hold() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.hold()

项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        from matplotlib import pyplot
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        if np.max(dat.D[:, 5:]) == np.min(dat.D[:, 5:]):
            pyplot.text(0, dat.D[-1, 5],
                        'all axes scaling values equal to %s'
                        % str(dat.D[-1, 5]),
                        verticalalignment='center')
            return self  # nothing interesting to plot
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        # pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def plotDGM(dgm, color = 'b', sz = 20, label = 'dgm', axcolor = np.array([0.0, 0.0, 0.0]), marker = None):
    if dgm.size == 0:
        return
    # Create Lists
    # set axis values
    axMin = np.min(dgm)
    axMax = np.max(dgm)
    axRange = axMax-axMin
    a = max(axMin - axRange/5, 0)
    b = axMax+axRange/5
    # plot line
    plt.plot([a, b], [a, b], c = axcolor, label = 'none')
    plt.hold(True)
    # plot points
    if marker:
        H = plt.scatter(dgm[:, 0], dgm[:, 1], sz, color, marker, label=label, edgecolor = 'none')
    else:
        H = plt.scatter(dgm[:, 0], dgm[:, 1], sz, color, label=label, edgecolor = 'none')
    # add labels
    plt.xlabel('Time of Birth')
    plt.ylabel('Time of Death')
    return H
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:cma    作者:hardmaru    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:SynthText    作者:ankush-me    | 项目源码 | 文件源码
def viz_textbb(fignum,text_im, bb_list,alpha=1.0):
    """
    text_im : image containing text
    bb_list : list of 2x4xn_i boundinb-box matrices
    """
    plt.close(fignum)
    plt.figure(fignum)
    plt.imshow(text_im)
    plt.hold(True)
    H,W = text_im.shape[:2]
    for i in xrange(len(bb_list)):
        bbs = bb_list[i]
        ni = bbs.shape[-1]
        for j in xrange(ni):
            bb = bbs[:,:,j]
            bb = np.c_[bb,bb[:,0]]
            plt.plot(bb[0,:], bb[1,:], 'r', linewidth=2, alpha=alpha)
    plt.gca().set_xlim([0,W-1])
    plt.gca().set_ylim([H-1,0])
    plt.show(block=False)
项目:glmnet_py    作者:hanfang    | 项目源码 | 文件源码
def cvglmnetPlot(cvobject, sign_lambda = 1.0, **options):

    sloglam = sign_lambda*scipy.log(cvobject['lambdau'])

    fig = plt.gcf()
    ax1 = plt.gca()
    #fig, ax1 = plt.subplots()    

    plt.errorbar(sloglam, cvobject['cvm'], cvobject['cvsd'], \
                 ecolor = (0.5, 0.5, 0.5), \
                 **options
                 )
    plt.hold(True)         
    plt.plot(sloglam, cvobject['cvm'], linestyle = 'dashed',\
             marker = 'o', markerfacecolor = 'r')             

    xlim1 = ax1.get_xlim()
    ylim1 = ax1.get_ylim()

    xval = sign_lambda*scipy.log(scipy.array([cvobject['lambda_min'], cvobject['lambda_min']]))
    plt.plot(xval, ylim1, color = 'b', linestyle = 'dashed', \
             linewidth = 1)

    if cvobject['lambda_min'] != cvobject['lambda_1se']:
        xval = sign_lambda*scipy.log([cvobject['lambda_1se'], cvobject['lambda_1se']])
        plt.plot(xval, ylim1, color = 'b', linestyle = 'dashed', \
             linewidth = 1)

    ax2 = ax1.twiny()
    ax2.xaxis.tick_top()

    atdf = ax1.get_xticks()
    indat = scipy.ones(atdf.shape, dtype = scipy.integer)
    if sloglam[-1] >= sloglam[1]:
        for j in range(len(sloglam)-1, -1, -1):
            indat[atdf <= sloglam[j]] = j
    else:
        for j in range(len(sloglam)):
            indat[atdf <= sloglam[j]] = j

    prettydf = cvobject['nzero'][indat]

    ax2.set(XLim=xlim1, XTicks = atdf, XTickLabels = prettydf)
    ax2.grid()
    ax1.yaxis.grid()

    ax2.set_xlabel('Degrees of Freedom')

  #  plt.plot(xlim1, [ylim1[1], ylim1[1]], 'b')
  #  plt.plot([xlim1[1], xlim1[1]], ylim1, 'b')

    if sign_lambda < 0:
        ax1.set_xlabel('-log(Lambda)')
    else:
        ax1.set_xlabel('log(Lambda)')

    ax1.set_ylabel(cvobject['name'])

    #plt.show()
项目:sparks    作者:ImpactHorizon    | 项目源码 | 文件源码
def save_heatmap(heatmap, mask):
    plt.clf()
    xmin, xmax, ymin, ymax = 0, heatmap.shape[1], heatmap.shape[0], 0
    extent = xmin, xmax, ymin, ymax
    alpha=1.0
    if mask is not None:
        alpha=0.5
        xmin, xmax, ymin, ymax = (0, max(heatmap.shape[1], mask.shape[1]), 
                                    max(heatmap.shape[0], mask.shape[0]), 0)
        extent = xmin, xmax, ymin, ymax
        plt.imshow(mask, extent=extent)
        plt.hold(True)
    plt.suptitle("Heatmap of sampled tiles.")
    plt.imshow(heatmap, cmap='gnuplot', interpolation='nearest', extent=extent,
                alpha=alpha)
    return plt
项目:Math412S2017    作者:ctralie    | 项目源码 | 文件源码
def plotDGM(dgm, color = 'b', sz = 20, label = 'dgm', axcolor = np.array([0.0, 0.0, 0.0]), marker = None):
    if dgm.size == 0:
        return
    # Create Lists
    # set axis values
    axMin = np.min(dgm)
    axMax = np.max(dgm)
    axRange = axMax-axMin
    a = max(axMin - axRange/5, 0)
    b = axMax+axRange/5
    # plot line
    plt.plot([a, b], [a, b], c = axcolor, label = 'none')
    plt.hold(True)
    # plot points
    if marker:
        H = plt.scatter(dgm[:, 0], dgm[:, 1], sz, color, marker, label=label, edgecolor = 'none')
    else:
        H = plt.scatter(dgm[:, 0], dgm[:, 1], sz, color, label=label, edgecolor = 'none')
    # add labels
    plt.xlabel('Time of Birth')
    plt.ylabel('Time of Death')
    return H
项目:Math412S2017    作者:ctralie    | 项目源码 | 文件源码
def plotLinePatches(P, name):
    plotPatches(P)
    plt.savefig("%sPatches.svg"%name, bbox_inches='tight')
    plt.clf()
    sio.savemat("P%s.mat"%name, {"P":P})

    plt.subplot(121)
    PDs = doRipsFiltration(P, 2, coeff = 2)
    print PDs[2]
    H1 = plotDGM(PDs[1], color = np.array([1.0, 0.0, 0.2]), label = 'H1', sz = 50, axcolor = np.array([0.8]*3))
    plt.hold(True)
    H2 = plotDGM(PDs[2], color = np.array([0.43, 0.67, 0.27]), marker = 'x', sz = 50, label = 'H2', axcolor = np.array([0.8]*3))
    plt.title("$\mathbb{Z}2$ Coefficients")

    plt.subplot(122)
    PDs = doRipsFiltration(P, 2, coeff = 3)
    print PDs[2]
    H1 = plotDGM(PDs[1], color = np.array([1.0, 0.0, 0.2]), label = 'H1', sz = 50, axcolor = np.array([0.8]*3))
    plt.hold(True)
    H2 = plotDGM(PDs[2], color = np.array([0.43, 0.67, 0.27]), marker = 'x', sz = 50, label = 'H2', axcolor = np.array([0.8]*3))
    plt.title("$\mathbb{Z}3$ Coefficients")
    plt.show()
项目:SamplingBasedPlanning    作者:ryanfarr01    | 项目源码 | 文件源码
def draw(self, q, color='b', show=False, base_color='g'):
        '''
        Draw the robot with the provided configuration
        '''
        plotter.hold(True)
        pts = self.fk(q)
        for i, p in enumerate(pts):
            if i == 0:
                style = base_color+'o'
            else:
                style = color+'o'
            plotter.plot(p[0], p[1], style)
            if i > 0:
                plotter.plot([prev_p[0], p[0]],
                             [prev_p[1], p[1]], color)
            prev_p = p[:]
        if show:
            plotter.show()
项目:PyBGMM    作者:junlulocky    | 项目源码 | 文件源码
def plot_points(X, barycentric=True, border=True, **kwargs):
    '''Plots a set of points in the simplex.
    Arguments:
        `X` (ndarray): A 2xN array (if in Cartesian coords) or 3xN array
                       (if in barycentric coords) of points to plot.
        `barycentric` (bool): Indicates if `X` is in barycentric coords.
        `border` (bool): If True, the simplex border is drawn.
        kwargs: Keyword args passed on to `plt.plot`.
    '''
    if barycentric is True:
        X = X.dot(corners)
    plt.plot(X[:, 0], X[:, 1], 'k.', ms=1, **kwargs)
    plt.axis('equal')
    plt.xlim(0, 1)
    plt.ylim(0, 0.75**0.5)
    plt.axis('off')
    if border is True:
        plt.hold(1)
        plt.triplot(triangle, linewidth=1)
项目:ProMo    作者:timmahrt    | 项目源码 | 文件源码
def plotSinglePitchTrack(fromTuple, fnFullPath):
    _matplotlibCheck()

    plt.hold(True)

    fig, (ax0) = plt.subplots(nrows=1)

    # Old data
    plot1 = ax0.plot(fromTuple, color='red', linewidth=2,
                     )

    plt.ylabel('Pitch (Hz)')
    plt.xlabel('Sample number')

    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
#     plt.legend([plot1, plot2, plot3], ["From", "To", "Merged line"])

    plt.savefig(fnFullPath, dpi=300, bbox_inches='tight')
    plt.close(fig)
项目:laplacian-meshes    作者:bmershon    | 项目源码 | 文件源码
def getBarycentricCoords(A, B, C, X, checkValidity = True):
    T = np.array( [ [A.x - C.x, B.x - C.x ], [A.y - C.y, B.y - C.y] ] )
    y = np.array( [ [X.x - C.x], [X.y - C.y] ] )
    lambdas = linalg.solve(T, y)
    lambdas = lambdas.flatten()
    lambdas = np.append(lambdas, 1 - (lambdas[0] + lambdas[1]))
    if checkValidity:
        if (lambdas[0] < 0 or lambdas[1] < 0 or lambdas[2] < 0):
            print "ERROR: Not a convex combination; lambda = %s"%lambdas
            print "pointInsideConvexPolygon2D = %s"%pointInsideConvexPolygon2D([A, B, C], X, 0)
            plt.plot([A.x, B.x, C.x, A.x], [A.y, B.y, C.y, A.y], 'r')
            plt.hold(True)
            plt.plot([X.x], [X.y], 'b.')
            plt.show()
        assert (lambdas[0] >= 0 and lambdas[1] >= 0 and lambdas[2] >= 0)
    else:
        lambdas[0] = max(lambdas[0], 0)
        lambdas[1] = max(lambdas[1], 0)
        lambdas[2] = max(lambdas[2], 0)
    return lambdas
项目:recognizeFitExercise    作者:tyiannak    | 项目源码 | 文件源码
def dirClassificationSentiment(dirName, modelName, modelType):
    types = ('*.jpg', '*.png',)
    filesList = []
    for files in types:
        filesList.extend(glob.glob(os.path.join(dirName, files)))

    filesList = sorted(filesList)
    print filesList
    Features = []
    plt.close('all');    
    ax = plt.gca()
    plt.hold(True)
    for fi in filesList:
        P, classNames = fileClassification(fi, modelName, modelType)
        im = cv2.imread(fi, cv2.CV_LOAD_IMAGE_COLOR)    
        Width = 0.1;  Height = 0.1; startX = P[classNames.index("positive")]; startY = 0;
        myaximage = ax.imshow(cv2.cvtColor(im, cv2.cv.CV_RGB2BGR), extent=(startX-Width/2.0, startX+Width/2.0, startY-Height/2.0, startY+Height/2.0), alpha=1.0, zorder=-1)
        plt.axis((0,1,-0.1,0.1))
        plt.show(block = False);
        plt.draw()
    plt.show(block = True);
项目:PyDLSSVM    作者:djosix    | 项目源码 | 文件源码
def save_test1_fig(name):
    with open("test1/{}.pkl".format(name), "rb") as f:
        results = pickle.load(f)
        fps, acc, var = [], [], []
        for r in results:
            fps.append(r["fps"])
            acc.append(r["accuracy"])
            var.append(r["config"][name])

        plt.hold(True)
        plt.plot(var, fps, color="blue")
        plt.plot(var, acc, color="red")
        plt.legend(handles=[
            ptc.Patch(color='blue', label='FPS'),
            ptc.Patch(color='red', label='Accuracy')
        ])
        plt.xlabel(name)
        plt.savefig("test1/{}.png".format(name))
        plt.hold(False)
        plt.close()
项目:gail-driver    作者:sisl    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:rec-sys-experiments    作者:rnowling    | 项目源码 | 文件源码
def plot_correlation(flname, title, x_label, y_label, dataset):
    """
    Scatter plot with line of best fit

    dataset - tuple of (x_values, y_values)
    """
    plt.clf()
    plt.hold(True)
    plt.scatter(dataset[0], dataset[1], alpha=0.7, color="k")
    xs = np.array(dataset[0])
    ys = np.array(dataset[1])
    A = np.vstack([xs, np.ones(len(xs))]).T
    m, c = np.linalg.lstsq(A, ys)[0]
    plt.plot(xs, m*xs + c, "c-")
    plt.xlabel(x_label, fontsize=16)
    plt.ylabel(y_label, fontsize=16)
    plt.xlim([0.25, max(dataset[0])])
    plt.ylim([10., max(dataset[1])])
    plt.title(title, fontsize=18)
    plt.savefig(flname, DPI=200)
项目:rec-sys-experiments    作者:rnowling    | 项目源码 | 文件源码
def plot_histogram(flname, title, x_label, datasets):
    """
    Histogram

    dataset - list tuples of (frequencies, bins, style)
    """
    plt.clf()
    plt.hold(True)
    max_bin = 0
    for frequencies, bins, style in datasets:
        xs = []
        ys = []
        max_bin = max(max_bin, max(bins))
        for i, f in enumerate(frequencies):
            xs.append(bins[i])
            xs.append(bins[i+1])
            ys.append(f)
            ys.append(f)
        plt.plot(xs, ys, style)
    plt.xlabel(x_label, fontsize=16)
    plt.ylabel("Occurrences", fontsize=16)
    plt.xlim([0, max_bin + 1])
    plt.title(title, fontsize=18)
    plt.savefig(flname, DPI=200)
项目:RocketFuel    作者:CS236340    | 项目源码 | 文件源码
def __init__(self,ASN):
        self.filename = str(ASN) + 'network graph'
        self.alias_filename = str(ASN) + 'alias_candidates.txt'
        self.ISP_Network = networkx.Graph()
        self.files_read = 0
        self.border_points = set()
        if os.path.isfile(self.filename):
            load_file = shelve.open(self.filename, 'r')
            self.files_read = load_file['files_read']
            self.ISP_Network = load_file['ISP_Network']
            self.border_points = load_file['border_points']
        self.ASN = ASN
        plt.ion()
        country = raw_input('enter country to focus on map [Israel/Usa/Australia/other]: ')
        if country == 'Israel' or country == 'israel' or country == 'ISRAEL':
            self.wmap = Basemap(projection='aeqd', lat_0 = 31.4, lon_0 = 35, width = 200000, height = 450000, resolution = 'i')
        elif country == 'USA' or country == 'usa':
            self.wmap = Basemap(projection='aeqd', lat_0 = 40, lon_0 = -98, width = 4500000, height = 2700000, resolution = 'i')
        elif country == 'Australia' or 'australia' or 'AUSTRALIA':
            self.wmap = Basemap(projection='aeqd', lat_0 = -23.07, lon_0 = 132.08, width = 4500000, height = 3500000, resolution = 'i')
        else:
            self.wmap = Basemap(projection='cyl', resolution = 'c')
        plt.hold(False)
项目:procrustes    作者:bmershon    | 项目源码 | 文件源码
def getBarycentricCoords(A, B, C, X, checkValidity = True):
    T = np.array( [ [A.x - C.x, B.x - C.x ], [A.y - C.y, B.y - C.y] ] )
    y = np.array( [ [X.x - C.x], [X.y - C.y] ] )
    lambdas = linalg.solve(T, y)
    lambdas = lambdas.flatten()
    lambdas = np.append(lambdas, 1 - (lambdas[0] + lambdas[1]))
    if checkValidity:
        if (lambdas[0] < 0 or lambdas[1] < 0 or lambdas[2] < 0):
            print "ERROR: Not a convex combination; lambda = %s"%lambdas
            print "pointInsideConvexPolygon2D = %s"%pointInsideConvexPolygon2D([A, B, C], X, 0)
            plt.plot([A.x, B.x, C.x, A.x], [A.y, B.y, C.y, A.y], 'r')
            plt.hold(True)
            plt.plot([X.x], [X.y], 'b.')
            plt.show()
        assert (lambdas[0] >= 0 and lambdas[1] >= 0 and lambdas[2] >= 0)
    else:
        lambdas[0] = max(lambdas[0], 0)
        lambdas[1] = max(lambdas[1], 0)
        lambdas[2] = max(lambdas[2], 0)
    return lambdas
项目:FingerNet    作者:felixTY    | 项目源码 | 文件源码
def draw_ori_on_img(img, ori, mask, fname, coh=None, stride=16):
    ori = np.squeeze(ori)
    mask = np.squeeze(np.round(mask))
    img = np.squeeze(img)
    ori = ndimage.zoom(ori, np.array(img.shape)/np.array(ori.shape, dtype=float), order=0)
    if mask.shape != img.shape:
        mask = ndimage.zoom(mask, np.array(img.shape)/np.array(mask.shape, dtype=float), order=0)
    if coh is None:
        coh = np.ones_like(img)
    fig = plt.figure()
    plt.imshow(img,cmap='gray')
    plt.hold(True)  
    for i in xrange(stride,img.shape[0],stride):
        for j in xrange(stride,img.shape[1],stride):
            if mask[i, j] == 0:
                continue
            x, y, o, r = j, i, ori[i,j], coh[i,j]*(stride*0.9)
            plt.plot([x, x+r*np.cos(o)], [y, y+r*np.sin(o)], 'r-')
    plt.axis([0,img.shape[1],img.shape[0],0])
    plt.axis('off')
    plt.savefig(fname, bbox_inches='tight', pad_inches = 0)
    plt.close(fig)            
    return
项目:pyImageClassification    作者:tyiannak    | 项目源码 | 文件源码
def dirClassificationSentiment(dirName, modelName, modelType):
    types = ('*.jpg', '*.png',)
    filesList = []
    for files in types:
        filesList.extend(glob.glob(os.path.join(dirName, files)))

    filesList = sorted(filesList)
    print filesList
    Features = []
    plt.close('all');    
    ax = plt.gca()
    plt.hold(True)
    for fi in filesList:
        P, classNames = fileClassification(fi, modelName, modelType)
        im = cv2.imread(fi, cv2.CV_LOAD_IMAGE_COLOR)    
        Width = 0.1;  Height = 0.1; startX = P[classNames.index("positive")]; startY = 0;
        myaximage = ax.imshow(cv2.cvtColor(im, cv2.cv.CV_RGB2BGR), extent=(startX-Width/2.0, startX+Width/2.0, startY-Height/2.0, startY+Height/2.0), alpha=1.0, zorder=-1)
        plt.axis((0,1,-0.1,0.1))
        plt.show(block = False);
        plt.draw()
    plt.show(block = True);
项目:gardenia    作者:xuzhenqi    | 项目源码 | 文件源码
def show(img, show_max=False):
    '''show response map'''
    img = img - img.min()
    img = img / img.max()
    plt.imshow(img, cmap='gray')
    shape = img.shape
    idx = np.argmax(img)
    hi = idx / shape[1]
    wi = idx % shape[1]
    print hi, wi
    if show_max:
        plt.hold(True)
        plt.plot(wi, hi, 'r.', markersize=12)
        plt.axis('off')
        plt.axis('image')
    plt.show()
项目:SOAR    作者:araujolma    | 项目源码 | 文件源码
def displayLogErrors(self, legendList):

        if self.count != 0:
            err = numpy.array(self.errorsList)
            for e in err:
                e = numpy.array(e)
            err = numpy.array(err)
            plt.hold(True)
            if numpy.ndim(err) == 2:
                for ii in range(0, len(self.errorsList[-1])):
                    plt.semilogy(range(0, self.count),
                                 abs(err[:, ii]), label=legendList[ii])
                plt.hold(False)
            else:
                plt.semilogy(range(0, self.count),
                             abs(err), label=legendList[0])
            plt.grid(True)
            plt.ylabel("erros []")
            plt.xlabel("iteration number []")
            plt.title(self.name)
#            if self.name == 'All errors':
            plt.legend()
            plt.show()
项目:SOAR    作者:araujolma    | 项目源码 | 文件源码
def displayFactors(self, legendList):

        if self.count != 0:
            err = numpy.array(self.factorsList)
            for e in err:
                e = numpy.array(e)
            err = numpy.array(err)
            plt.hold(True)
            if numpy.ndim(err) == 2:
                for ii in range(0, len(self.factorsList[-1])):
                    plt.plot(range(0, self.count),
                             abs(err[:, ii]), label=legendList[ii])
                plt.hold(False)
            else:
                plt.plot(range(0, self.count),
                         abs(err), label=legendList[0])
            plt.grid(True)
            plt.ylabel("factors []")
            plt.xlabel("iteration number []")
            plt.title(self.name)
#            if self.name == 'All errors':
            plt.legend()
            plt.show()
项目:pyCSS    作者:eamontoyaa    | 项目源码 | 文件源码
def sliparcdiscretization(pointAtToeVec, pointAtCrownVec, nDivs, slipArcSTR,\
     want2plot = False ):

    ## Doing the math
    xCoordIni = pointAtCrownVec[0]
    xCoordEnd = pointAtToeVec[0]

    xCoords = np.linspace(xCoordIni, xCoordEnd, nDivs+1)
    yCoords = slipArcSTR['center'][1]-np.sqrt(slipArcSTR['radius']**2\
        -(xCoords-slipArcSTR['center'][0])**2)

    arcPointsCoordsArray = np.transpose(np.vstack((xCoords, yCoords)))
    arcPointsCoordsArray = np.flipud(arcPointsCoordsArray)

    ## Plotting the arc
    if want2plot:
        plt.hold(True)
        plt.axis('equal')
        plt.plot(arcPointsCoordsArray[:,0], arcPointsCoordsArray[:,1], 'g-')
        plt.grid(True)
        plt.show(False)

    return arcPointsCoordsArray
项目:rllab    作者:rll    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:calcam    作者:euratom-software    | 项目源码 | 文件源码
def update_image_display(self):

        plt.hold(False)
        self.imax.imshow(self.images[self.current_image])
        plt.hold(True)
        if self.detection_run:
            if self.chessboard_status[self.current_image]:
                status_string = ' - Chessboard Detected OK'
            else:
                status_string = ' - Chessboard Detection FAILED'
        else:
            status_string = ''

        self.current_filename.setText('<html><head/><body><p align="center">{:s} [#{:d}/{:d}]{:s}</p></body></html>'.format(self.filenames[self.current_image],self.current_image+1,len(self.images),status_string))
        if self.chessboard_status[self.current_image]:
            xl = plt.xlim()
            yl = plt.ylim()
            self.imax.plot(self.chessboard_points_2D[self.current_image][:,0],self.chessboard_points_2D[self.current_image][:,1],color='lime',marker='o',linestyle='None')
            plt.xlim(xl)
            plt.ylim(yl)
        self.mplwidget.draw()
项目:ConvNetQuake    作者:tperol    | 项目源码 | 文件源码
def fig_memory_usage():

    # FAST memory
    x = [1,3,7,14,30,90,180]
    y_fast = [0.653,1.44,2.94,4.97,9.05,19.9,35.2]
    # ConvNetQuake
    y_convnet = [6.8*1e-5]*7
    # Create figure
    plt.loglog(x,y_fast,"o-")
    plt.hold('on')
    plt.loglog(x,y_convnet,"o-")
    # plot markers
    plt.loglog(x,[1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5],'o')
    plt.ylabel("Memory usage (GB)")
    plt.xlabel("Continous data duration (days)")
    plt.xlim(1,180)
    plt.grid("on")
    plt.savefig("./figures/memoryusage.eps")
    plt.close()
项目:ConvNetQuake    作者:tperol    | 项目源码 | 文件源码
def fig_run_time():
    # fast run time
    x_fast = [1,3,7,14,30,90,180]
    y_fast = [289,1.13*1e3,2.48*1e3,5.41*1e3,1.56*1e4,
              6.61*1e4,1.98*1e5]
    x_auto = [1,3]
    y_auto = [1.54*1e4, 8.06*1e5]
    x_convnet = [1,3,7,14,30]
    y_convnet = [9,27,61,144,291]
    # create figure
    plt.loglog(x_auto,y_auto,"o-")
    plt.hold('on')
    plt.loglog(x_fast[0:5],y_fast[0:5],"o-")
    plt.loglog(x_convnet,y_convnet,"o-")
    # plot x markers
    plt.loglog(x_convnet,[1e0]*len(x_convnet),'o')
    # plot y markers
    y_markers = [1,60,3600,3600*24]
    plt.plot([1]*4,y_markers,'ko')
    plt.ylabel("run time (s)")
    plt.xlabel("continous data duration (days)")
    plt.xlim(1,35)
    plt.grid("on")
    plt.savefig("./figures/runtimes.eps")
项目:maml_rl    作者:cbfinn    | 项目源码 | 文件源码
def plot_axes_scaling(self, iabscissa=1):
        if not hasattr(self, 'D'):
            self.load()
        dat = self
        self._enter_plotting()
        pyplot.semilogy(dat.D[:, iabscissa], dat.D[:, 5:], '-b')
        pyplot.hold(True)
        pyplot.grid(True)
        ax = array(pyplot.axis())
        # ax[1] = max(minxend, ax[1])
        pyplot.axis(ax)
        pyplot.title('Principle Axes Lengths')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:baxter_throw    作者:rikkimelissa    | 项目源码 | 文件源码
def main():
    plt.close('all')
    plt.figure(facecolor='w')
    plt.hold(True)
    throw_y, throw_z, vel, alpha = find_feasible_release(catch_x, catch_y, catch_z, pos)
    block_width = .047
    dy = catch_y - throw_y - block_width
    t = np.linspace(0,dy/(vel*cos(alpha)),100)
    traj_y = vel*cos(alpha)*t + throw_y;
    traj_z = -.5*9.8*t**2 + vel*sin(alpha)*t + throw_z
    plt.plot(traj_y,traj_z,'r',linewidth=2)
    plt.plot(traj_y[0],traj_z[0],'r.',markersize=15)
    plt.ylim([-.6, .5])
    plt.xlabel('Y position (m)')
    plt.ylabel('Z position (m)')
    plt.title('Trajectories for sample release position, velocity, and angle')
    plt.show(block=False)
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def test_on_SUP_model(sup_model_name, x, y):
    SUP_MODEL = load_model(sup_model_name, custom_objects={"contrastive_loss": contrastive_loss})
    model_pred = SUP_MODEL.predict([x[:, 0], x[:, 1]])
    tpr, fpr, _ = roc_curve(y, model_pred)
    roc_auc = auc(fpr, tpr)
    print('auc is : ' + str(roc_auc))
    plt.figure(1)
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.hold(True)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC curve')
    plt.legend(loc="lower right")
    plt.hold(False)
    plt.savefig('/home/nripesh/Dropbox/temp_images/nnet_train_images/roc_curve_siamese_unsup.png')
项目:Siamese    作者:ascourge21    | 项目源码 | 文件源码
def test_on_UNSUP_model(unsup_model_name, x, y, roc_curv_save_name):
    UNSUP_ENCODER = load_model(unsup_model_name)
    x_0_encode = UNSUP_ENCODER.predict(x[:, 0, :, 1:, 1:, 1:])
    x_1_encode = UNSUP_ENCODER.predict(x[:, 1, :, 1:, 1:, 1:])
    # vectorize the matrices
    x_en_sz = x_0_encode.shape
    x_0_encode = np.reshape(x_0_encode, (x_en_sz[0], x_en_sz[1] * x_en_sz[2] * x_en_sz[3] * x_en_sz[4]))
    x_1_encode = np.reshape(x_1_encode, (x_en_sz[0], x_en_sz[1] * x_en_sz[2] * x_en_sz[3] * x_en_sz[4]))
    model_pred = dist_calc_simple(x_0_encode, x_1_encode)
    tpr, fpr, _ = roc_curve(y, model_pred)
    roc_auc = auc(fpr, tpr)
    print('auc is : ' + str(roc_auc))
    # plt.figure(2)
    # plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    # plt.hold(True)
    # plt.plot([0, 1], [0, 1], 'k--')
    # plt.xlim([0.0, 1.0])
    # plt.ylim([0.0, 1.05])
    # plt.xlabel('False Positive Rate')
    # plt.ylabel('True Positive Rate')
    # plt.title('ROC curve')
    # plt.legend(loc="lower right")
    # plt.hold(False)
    # plt.savefig('/home/nripesh/Dropbox/temp_images/nnet_train_images/' + roc_curv_save_name + '.png')
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def plot_correlations(self, iabscissa=1):
        """spectrum of correlation matrix and largest correlation"""
        if not hasattr(self, 'corrspec'):
            self.load()
        if len(self.corrspec) < 2:
            return self
        x = self.corrspec[:, iabscissa]
        y = self.corrspec[:, 6:]  # principle axes
        ys = self.corrspec[:, :6]  # "special" values

        from matplotlib.pyplot import semilogy, text, grid, axis, title
        self._enter_plotting()
        semilogy(x, y, '-c')
        # hold(True)
        semilogy(x[:], np.max(y, 1) / np.min(y, 1), '-r')
        text(x[-1], np.max(y[-1, :]) / np.min(y[-1, :]), 'axis ratio')
        if ys is not None:
            semilogy(x, 1 + ys[:, 2], '-b')
            text(x[-1], 1 + ys[-1, 2], '1 + min(corr)')
            semilogy(x, 1 - ys[:, 5], '-b')
            text(x[-1], 1 - ys[-1, 5], '1 - max(corr)')
            semilogy(x[:], 1 + ys[:, 3], '-k')
            text(x[-1], 1 + ys[-1, 3], '1 + max(neg corr)')
            semilogy(x[:], 1 - ys[:, 4], '-k')
            text(x[-1], 1 - ys[-1, 4], '1 - min(pos corr)')
        grid(True)
        ax = array(axis())
        # ax[1] = max(minxend, ax[1])
        axis(ax)
        title('Spectrum (roots) of correlation matrix')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def _enter_plotting(self, fontsize=7):
        """assumes that a figure is open """
        from matplotlib import pyplot
        # interactive_status = matplotlib.is_interactive()
        self.original_fontsize = pyplot.rcParams['font.size']
        # if font size deviates from default, we assume this is on purpose and hence leave it alone
        if pyplot.rcParams['font.size'] == pyplot.rcParamsDefault['font.size']:
            pyplot.rcParams['font.size'] = fontsize
        # was: pyplot.hold(False)
        # pyplot.gcf().clear()  # opens a figure window, if non exists
        pyplot.ioff()
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def plot_and_wait(audio_in,d,col):
    print "starting plot"
    plt.xlim([0,4000]);
    plt.ylim([-1,1]);
    plt.plot(audio_in, 'r')
    plt.grid(True)
    plt.hold(True)
    plt.plot(d,col)
    plt.hold(False)
    plt.draw()
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def plot_fft(d):
    eps = 1e-6
    d = abs(fft(d))+eps
    plt.plot(d,'r')
    plt.grid(True)
    plt.hold(False)
    plt.xlim([0,400]);
    plt.draw()
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def __init__(self, size=(600,350)):
    streams = resolve_byprop('name', 'bci', timeout=2.5)
    try:
      self.inlet = StreamInlet(streams[0])
    except IndexError:
      raise ValueError('Make sure stream name=bci is opened first.')

    self.running = True

    self.ProcessedSig = []
    self.SecondTimes = []
    self.count = -1
    self.sampleCount = self.count 
    self.maximum = 0
    self.minimum = 0

    plt.ion()
    plt.hold(False)     
    self.lineHandle = plt.plot(self.SecondTimes, self.ProcessedSig)
    plt.title("Live Stream EEG Data")
    plt.xlabel('Time (s)')
    plt.ylabel('mV')
    #plt.autoscale(True, 'y', tight = True)
    plt.show()
    #while(1):
    #secondTimes.append(serialData[0])                         #add time stamps to array 'timeValSeconds'
    #floatSecondTimes.append(float(serialData[0])/1000000)     # makes all second times into float from string

    #processedSig.append(serialData[6])                           #add processed signal values to 'processedSig'
    #floatProcessedSig.append(float(serialData[6]))
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def __init__(self, size=(600,350)):
    self.running = True
    self.ProcessedSig = []
    self.SecondTimes = []
    self.count = -1

    plt.ion()
    plt.hold(False)     
    self.lineHandle = plt.plot(self.SecondTimes, self.ProcessedSig)
    plt.title("Streaming Live EMG Data")
    plt.xlabel('Time (s)')
    plt.ylabel('Volts')
    plt.show()
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def plot_correlations(self, iabscissa=1):
        """spectrum of correlation matrix and largest correlation"""
        if not hasattr(self, 'corrspec'):
            self.load()
        if len(self.corrspec) < 2:
            return self
        x = self.corrspec[:, iabscissa]
        y = self.corrspec[:, 6:]  # principle axes
        ys = self.corrspec[:, :6]  # "special" values

        from matplotlib.pyplot import semilogy, hold, text, grid, axis, title
        self._enter_plotting()
        semilogy(x, y, '-c')
        hold(True)
        semilogy(x[:], np.max(y, 1) / np.min(y, 1), '-r')
        text(x[-1], np.max(y[-1, :]) / np.min(y[-1, :]), 'axis ratio')
        if ys is not None:
            semilogy(x, 1 + ys[:, 2], '-b')
            text(x[-1], 1 + ys[-1, 2], '1 + min(corr)')
            semilogy(x, 1 - ys[:, 5], '-b')
            text(x[-1], 1 - ys[-1, 5], '1 - max(corr)')
            semilogy(x[:], 1 + ys[:, 3], '-k')
            text(x[-1], 1 + ys[-1, 3], '1 + max(neg corr)')
            semilogy(x[:], 1 - ys[:, 4], '-k')
            text(x[-1], 1 - ys[-1, 4], '1 - min(pos corr)')
        grid(True)
        ax = array(axis())
        # ax[1] = max(minxend, ax[1])
        axis(ax)
        title('Spectrum (roots) of correlation matrix')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def _enter_plotting(self, fontsize=9):
        """assumes that a figure is open """
        # interactive_status = matplotlib.is_interactive()
        self.original_fontsize = pyplot.rcParams['font.size']
        pyplot.rcParams['font.size'] = fontsize
        pyplot.hold(False)  # opens a figure window, if non exists
        pyplot.ioff()
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def plot(self, plot_cmd=None, tf=lambda y: y):
        """plot the data we have, return ``self``"""
        if not plot_cmd:
            plot_cmd = self.plot_cmd
        colors = 'bgrcmyk'
        pyplot.hold(False)
        res = self.res

        flatx, flatf = self.flattened()
        minf = np.inf
        for i in flatf:
            minf = min((minf, min(flatf[i])))
        addf = 1e-9 - minf if minf <= 1e-9 else 0
        for i in sorted(res.keys()):  # we plot not all values here
            if isinstance(i, int):
                color = colors[i % len(colors)]
                arx = sorted(res[i].keys())
                plot_cmd(arx, [tf(np.median(res[i][x]) + addf) for x in arx], color + '-')
                pyplot.text(arx[-1], tf(np.median(res[i][arx[-1]])), i)
                pyplot.hold(True)
                plot_cmd(flatx[i], tf(np.array(flatf[i]) + addf), color + 'o')
        pyplot.ylabel('f + ' + str(addf))
        pyplot.draw()
        pyplot.ion()
        pyplot.show()
        # raw_input('press return')
        return self
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True):
    spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False)
    bark_filters = int(np.ceil(freq2bark(sr//2)))
    wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters)
    '''
    plt.figure()
    plt.subplot(211)
    plt.imshow(wts)
    plt.subplot(212)
    plt.hold(True)
    for i in range(18):
        plt.plot(wts[i, :])
    plt.show()
    '''
    bark_spec = np.matmul(wts, spec)
    if do_rasta:
        bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec)
        log_bark_spec = np.log(bark_spec)
        rasta_log_bark_spec = rasta_filt(log_bark_spec)
        bark_spec = np.exp(rasta_log_bark_spec)
    post_spec = postaud(bark_spec, sr/2.)
    if plp_order > 0:
        lpcas = do_lpc(post_spec, plp_order)
        # lpcas = do_lpc(spec, plp_order) # just for test
    else:
        lpcas = post_spec
    return lpcas
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def plotDGMAx(ax, dgm, color = 'b', sz = 20, label = 'dgm'):
    if dgm.size == 0:
        return
    axMin = np.min(dgm)
    axMax = np.max(dgm)
    axRange = axMax-axMin;
    ax.scatter(dgm[:, 0], dgm[:, 1], sz, color,label=label)
    ax.hold(True)
    ax.plot([axMin-axRange/5,axMax+axRange/5], [axMin-axRange/5, axMax+axRange/5],'k');
    ax.set_xlabel('Time of Birth')
    ax.set_ylabel('Time of Death')
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def plot2DGMs(P1, P2, l1 = 'Diagram 1', l2 = 'Diagram 2'):
    plotDGM(P1, 'r', 10, label = l1)
    plt.hold(True)
    plt.plot(P2[:, 0], P2[:, 1], 'bx', label = l2)
    plt.legend()
    plt.xlabel("Birth Time")
    plt.ylabel("Death Time")
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def plotTriangles(X, A, B, C):
    plt.hold(True)
    ax = plt.gca()
    for i in range(len(A)):
        poly = [X[A[i], :], X[B[i], :], X[C[i], :]]
        ax.add_patch(Polygon(np.array(poly), linestyle='solid', color='#00FF00', alpha=0.05))
项目:osm_wpt    作者:krisanselmo    | 项目源码 | 文件源码
def plot_gpx_route(lon, lat, title):
    fig = plt.figure(facecolor='0.05')
    ax = plt.Axes(fig, [0., 0., 1., 1.], )
    ax.set_aspect(1.2)
    ax.set_axis_off()
    ax.set_title(title, color='white', fontsize=15)
    fig.add_axes(ax)
    plt.plot(lon, lat, '+-', color='red', lw=1, alpha=1)
    plt.hold(True)
    return plt
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def plot_correlations(self, iabscissa=1):
        """spectrum of correlation matrix and largest correlation"""
        if not hasattr(self, 'corrspec'):
            self.load()
        if len(self.corrspec) < 2:
            return self
        x = self.corrspec[:, iabscissa]
        y = self.corrspec[:, 6:]  # principle axes
        ys = self.corrspec[:, :6]  # "special" values

        from matplotlib.pyplot import semilogy, hold, text, grid, axis, title
        self._enter_plotting()
        semilogy(x, y, '-c')
        hold(True)
        semilogy(x[:], np.max(y, 1) / np.min(y, 1), '-r')
        text(x[-1], np.max(y[-1, :]) / np.min(y[-1, :]), 'axis ratio')
        if ys is not None:
            semilogy(x, 1 + ys[:, 2], '-b')
            text(x[-1], 1 + ys[-1, 2], '1 + min(corr)')
            semilogy(x, 1 - ys[:, 5], '-b')
            text(x[-1], 1 - ys[-1, 5], '1 - max(corr)')
            semilogy(x[:], 1 + ys[:, 3], '-k')
            text(x[-1], 1 + ys[-1, 3], '1 + max(neg corr)')
            semilogy(x[:], 1 - ys[:, 4], '-k')
            text(x[-1], 1 - ys[-1, 4], '1 - min(pos corr)')
        grid(True)
        ax = array(axis())
        # ax[1] = max(minxend, ax[1])
        axis(ax)
        title('Spectrum (roots) of correlation matrix')
        # pyplot.xticks(xticklocs)
        self._xlabel(iabscissa)
        self._finalize_plotting()
        return self