Python matplotlib.pyplot 模块,matshow() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.matshow()

项目:pytorch-maddpg    作者:xuehy    | 项目源码 | 文件源码
def render(self, plt_delay=1.0):
        plt.matshow(self.model_state[0].T, cmap=plt.get_cmap('Greys'), fignum=1)
        for i in range(self.pursuer_layer.n_agents()):
            x, y = self.pursuer_layer.get_position(i)
            plt.plot(x, y, "r*", markersize=12)
            if self.train_pursuit:
                ax = plt.gca()
                ofst = self.obs_range / 2.0
                ax.add_patch(
                    Rectangle((x - ofst, y - ofst), self.obs_range, self.obs_range, alpha=0.5,
                              facecolor="#FF9848"))
        for i in range(self.evader_layer.n_agents()):
            x, y = self.evader_layer.get_position(i)
            plt.plot(x, y, "b*", markersize=12)
            if not self.train_pursuit:
                ax = plt.gca()
                ofst = self.obs_range / 2.0
                ax.add_patch(
                    Rectangle((x - ofst, y - ofst), self.obs_range, self.obs_range, alpha=0.5,
                              facecolor="#009ACD"))
        plt.pause(plt_delay)
        plt.clf()
项目:MXSeq2Seq    作者:ZiyueHuang    | 项目源码 | 文件源码
def showAttention(input_sentence, output_words, attentions):
    # Set up figure with colorbar
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.numpy(), cmap='bone')
    fig.colorbar(cax)

    # Set up axes
    ax.set_xticklabels([''] + input_sentence.split(' ') +
                       ['<EOS>'], rotation=90)
    ax.set_yticklabels([''] + output_words)

    # Show label at every tick
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show()
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, clf_target_names, title='Confusion matrix', cmap=plt.cm.jet):
    target_names = map(lambda key: key.replace('_','-'), clf_target_names)

    for idx in range(len(cm)): 
        cm[idx,:] = (cm[idx,:] * 100.0 / np.sum(cm[idx,:])).astype(np.int)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    # plt.matshow(cm)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(clf_target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    # plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
项目:convnet-nolearn    作者:jcouvy    | 项目源码 | 文件源码
def display_confusion_matrix(test_data, test_labels, save=False):
    """
    Plot a matrix representing the choices made by the network
    on a testing batch.
    X axis are the predicted values,
    Y axis are the expected values.

    If the flag save is set to True, the output will be saved
    in a .png image.
    """
    expected = test_labels
    predicted = mnist.predict(test_data)
    cm = confusion_matrix(expected, predicted)
    plt.matshow(cm)
    plt.title('Confusion matrix')
    plt.colorbar()
    plt.ylabel('Expected label')
    plt.xlabel('Predicted label')
    plt.show()
    if save is True:
        plt.savefig("../results/mnist/confusion_matrix.png")
项目:Deep-Learning-with-TensorFlow    作者:PacktPublishing    | 项目源码 | 文件源码
def plotresult(org_vec,noisy_vec,out_vec):
    plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray'))
    plt.title("Original Image")
    plt.colorbar()

    plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray'))
    plt.title("Input Image")
    plt.colorbar()

    outimg = np.reshape(out_vec, (28, 28))
    plt.matshow(outimg, cmap=plt.get_cmap('gray'))
    plt.title("Reconstructed Image")
    plt.colorbar()
    plt.show()

# NETOWRK PARAMETERS
项目:Deep-Learning-with-TensorFlow    作者:PacktPublishing    | 项目源码 | 文件源码
def plotresult(org_vec,noisy_vec,out_vec):
    plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray'))
    plt.title("Original Image")
    plt.colorbar()

    plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray'))
    plt.title("Input Image")
    plt.colorbar()

    outimg = np.reshape(out_vec, (28, 28))
    plt.matshow(outimg, cmap=plt.get_cmap('gray'))
    plt.title("Reconstructed Image")
    plt.colorbar()
    plt.show()

# NETOWORK PARAMETERS
项目:Deep-Learning-with-TensorFlow    作者:PacktPublishing    | 项目源码 | 文件源码
def plotresult(org_vec,noisy_vec,out_vec):
    plt.matshow(np.reshape(org_vec, (28, 28)),\
                cmap=plt.get_cmap('gray'))
    plt.title("Original Image")
    plt.colorbar()

    plt.matshow(np.reshape(noisy_vec, (28, 28)),\
                cmap=plt.get_cmap('gray'))
    plt.title("Input Image")
    plt.colorbar()

    outimg   = np.reshape(out_vec, (28, 28))
    plt.matshow(outimg, cmap=plt.get_cmap('gray'))
    plt.title("Reconstructed Image")
    plt.colorbar()
    plt.show()

# NETOWRK PARAMETERS
项目:Deep-Learning-with-TensorFlow    作者:PacktPublishing    | 项目源码 | 文件源码
def plotresult(org_vec,noisy_vec,out_vec):
    plt.matshow(np.reshape(org_vec, (28, 28)),\
                cmap=plt.get_cmap('gray'))
    plt.title("Original Image")
    plt.colorbar()

    plt.matshow(np.reshape(noisy_vec, (28, 28)),\
                cmap=plt.get_cmap('gray'))
    plt.title("Input Image")
    plt.colorbar()

    outimg   = np.reshape(out_vec, (28, 28))
    plt.matshow(outimg, cmap=plt.get_cmap('gray'))
    plt.title("Reconstructed Image")
    plt.colorbar()
    plt.show()

# NETOWORK PARAMETERS
项目:tutorials    作者:pytorch    | 项目源码 | 文件源码
def showAttention(input_sentence, output_words, attentions):
    # Set up figure with colorbar
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.numpy(), cmap='bone')
    fig.colorbar(cax)

    # Set up axes
    ax.set_xticklabels([''] + input_sentence.split(' ') +
                       ['<EOS>'], rotation=90)
    ax.set_yticklabels([''] + output_words)

    # Show label at every tick
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show()
项目:multiffn-nli    作者:erickrf    | 项目源码 | 文件源码
def plot_attention(tokens1, tokens2, attention):
    """
    Print a colormap showing attention values from tokens 1 to
    tokens 2.
    """
    len1 = len(tokens1)
    len2 = len(tokens2)
    extent = [0, len2, 0, len1]
    pl.matshow(attention, extent=extent, aspect='auto')
    ticks1 = np.arange(len1) + 0.5
    ticks2 = np.arange(len2) + 0.5
    pl.xticks(ticks2, tokens2, rotation=45)
    pl.yticks(ticks1, reversed(tokens1))
    ax = pl.gca()
    ax.xaxis.set_ticks_position('bottom')
    pl.colorbar()
    pl.title('Alignments')
    pl.show(block=False)
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser(description='')
    parser.add_argument('--transform')
    parser.add_argument('--out')
    args = parser.parse_args()

    infile1 = h5py.File(args.transform, 'r')
    resolutions = infile1['resolutions'][...]
    chroms = infile1['chromosomes'][...]
    data1 = load_data(infile1, chroms, resolutions)
    infile1.close()

    '''
    #for now, don't plot this
    for resolution in data1.keys():
        for chromo in chroms:
            N = data1[resolution][chromo][1].shape[0]
            full=numpy.empty((N,N))
            #full=full/0
            for i in range(100):
                temp1 = numpy.arange(N - i - 1)
                temp2 = numpy.arange(i+1, N)
                full[temp1, temp2] = data1[resolution][chromo][1][temp1, i]
                full[temp2, temp1] = full[temp1, temp2]
            x=0.8
            plt.matshow(full,cmap='seismic',vmin=-x,vmax=x)
            plt.colorbar()
            plt.show()
            plt.savefig(args.out+'.res'+str(resolution)+'.chr'+chromo+'.pdf')    
   '''
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
    plt.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_conf_matrix(y_actual,y_predict,labels):
    cm = confusion_matrix(y_actual,y_predict,labels)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm)
    pl.title('confusion matrix')
    fig.colorbar(cax)
    ax.set_xticklabels([''] + labels)
    ax.set_yticklabels([''] + labels)
    pl.xlabel('Predicted')
    pl.ylabel('True')
    pl.show()
项目:image-classifier    作者:gustavkkk    | 项目源码 | 文件源码
def plot_confusion_matrix(df_confusion, title='Confusion matrix', cmap=plt.cm.gray_r):
    plt.matshow(df_confusion, cmap=cmap) # imshow
    #plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(df_confusion.columns))
    plt.xticks(tick_marks, df_confusion.columns, rotation=45)
    plt.yticks(tick_marks, df_confusion.index)
    #plt.tight_layout()
    plt.ylabel(df_confusion.index.name)
    plt.xlabel(df_confusion.columns.name)
项目:tf-image-segmentation    作者:VittalP    | 项目源码 | 文件源码
def _discrete_matshow_adaptive(data, labels_names=[], title=""):
    """Displays segmentation results using colormap that is adapted
    to a number of classes. Uses labels_names to write class names
    aside the color label. Used as a helper function for 
    visualize_segmentation_adaptive() function.

    Parameters
    ----------
    data : 2d numpy array (width, height)
        Array with integers representing class predictions
    labels_names : list
        List with class_names
    """

    fig_size = [7, 6]
    plt.rcParams["figure.figsize"] = fig_size

    #get discrete colormap
    cmap = plt.get_cmap('Paired', np.max(data)-np.min(data)+1)

    # set limits .5 outside true range
    mat = plt.matshow(data,
                      cmap=cmap,
                      vmin = np.min(data)-.5,
                      vmax = np.max(data)+.5)

    #tell the colorbar to tick at integers
    cax = plt.colorbar(mat,
                       ticks=np.arange(np.min(data),np.max(data)+1))

    # The names to be printed aside the colorbar
    if labels_names:
        cax.ax.set_yticklabels(labels_names)

    if title:
        plt.suptitle(title, fontsize=15, fontweight='bold')

    plt.show()
项目:loopy-nn    作者:planetceres    | 项目源码 | 文件源码
def plot_confusion_matrix(cls_pred, iter_num):
    # This is called from print_test_accuracy() below.

    # cls_pred is an array of the predicted class-number for
    # all images in the test-set.

    # Get the true classifications for the test-set.
    cls_true = data.test.cls

    # Get the confusion matrix using sklearn.
    cm = confusion_matrix(y_true=cls_true,
                          y_pred=cls_pred)

    # Print the confusion matrix as text.
    print(cm)

    # Plot the confusion matrix as an image.
    plt.matshow(cm)

    # Make various adjustments to the plot.
    plt.colorbar()
    tick_marks = np.arange(num_classes)
    plt.xticks(tick_marks, range(num_classes))
    plt.yticks(tick_marks, range(num_classes))
    plt.xlabel('Predicted')
    plt.ylabel('True')

    # Ensure the plot is shown correctly with multiple plots
    # in a single Notebook cell.
    #plt.title('Confusion Matrix at iter: ' + str(iter_num))
    plt.text(0.5, 0, 'Iter: ' + str(iter_num), verticalalignment='bottom')
    file_name = plt_dir + '/Confusion_Matrix_iter_' + str(iter_num) + '.png'
    plt.show()
    plt.savefig(file_name, format='png', bbox_inches='tight')


# Split the data-set in batches of this size to limit RAM usage.
项目:Tethys    作者:JosePedroMatos    | 项目源码 | 文件源码
def plot(self):
        mean=np.flipud(np.nanmean(self.loaded['data'], 0)*365*8)
        ax = plt.matshow(mean)
        plt.colorbar(ax)
        plt.show(block=True)
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def plot_confusion_matrix(cls_pred):
    # This is called from print_test_accuracy() below.

    # cls_pred is an array of the predicted class-number for
    # all images in the test-set.

    # Get the true classifications for the test-set.
    cls_true = data.test.cls

    # Get the confusion matrix using sklearn.
    cm = confusion_matrix(y_true=cls_true,
                          y_pred=cls_pred)

    # Print the confusion matrix as text.
    print(cm)

    # Plot the confusion matrix as an image.
    plt.matshow(cm)

    # Make various adjustments to the plot.
    plt.colorbar()
    tick_marks = np.arange(num_classes)
    plt.xticks(tick_marks, range(num_classes))
    plt.yticks(tick_marks, range(num_classes))
    plt.xlabel('Predicted')
    plt.ylabel('True')

    # Ensure the plot is shown correctly with multiple plots
    # in a single Notebook cell.
    plt.show()


# ### Helper-functions for calculating classifications
# 
# This function calculates the predicted classes of images and also returns a boolean array whether the classification of each image is correct.
# 
# The calculation is done in batches because it might use too much RAM otherwise. If your computer crashes then you can try and lower the batch-size.

# In[35]:

# Split the data-set in batches of this size to limit RAM usage.
项目:fcn    作者:ilovin    | 项目源码 | 文件源码
def _discrete_matshow_adaptive(data, labels_names=[], title=""):
    """Displays segmentation results using colormap that is adapted
    to a number of classes. Uses labels_names to write class names
    aside the color label. Used as a helper function for 
    visualize_segmentation_adaptive() function.

    Parameters
    ----------
    data : 2d numpy array (width, height)
        Array with integers representing class predictions
    labels_names : list
        List with class_names
    """

    fig_size = [7, 6]
    plt.rcParams["figure.figsize"] = fig_size

    #get discrete colormap
    cmap = plt.get_cmap('Paired', np.max(data)-np.min(data)+1)

    # set limits .5 outside true range
    mat = plt.matshow(data,
                      cmap=cmap,
                      vmin = np.min(data)-.5,
                      vmax = np.max(data)+.5)

    #tell the colorbar to tick at integers
    cax = plt.colorbar(mat,
                       ticks=np.arange(np.min(data),np.max(data)+1))

    # The names to be printed aside the colorbar
    if labels_names:
        cax.ax.set_yticklabels(labels_names)

    if title:
        plt.suptitle(title, fontsize=15, fontweight='bold')

    plt.show()
项目:nonlinanharchizer    作者:anharx    | 项目源码 | 文件源码
def lvlEnergy(signal, n=N, r=TINY):
 "For each set of coefficients in a same level, return its /energy/, or square root of the sum of squares"
 projections = project(signal, n, r)
 averages = projections[0] # take the first component, which should be the same as all the others
 length = signal.size - n
 levels = log2int(n)
 lvlEnergy = np.empty([levels, length])
 for j in xrange(levels):
  lvlEnergy[j] = np.linalg.norm(projections[2**j:2*2**j], axis=0)
 return averages, lvlEnergy

#thing = lvlEnergy(wav[1000:2256], n=256)[1]
#plt.matshow(thing, origin='upper', aspect='auto'); plt.colorbar(); plt.show()
项目:cpy2py    作者:maxfischer2781    | 项目源码 | 文件源码
def draw(xy_matrix, info='<None>'):
    """Draw an XY matrix and attach some info"""
    from matplotlib import pyplot
    pyplot.copper()
    pyplot.matshow(xy_matrix)
    pyplot.xlabel(info, color="red")
    pyplot.show()


# native function not assigned to particular interpreter
项目:cpy2py    作者:maxfischer2781    | 项目源码 | 文件源码
def draw(xy_matrix, info='<None>'):
    """Draw an XY matrix and attach some info"""
    from matplotlib import pyplot
    pyplot.copper()
    pyplot.matshow(xy_matrix)
    pyplot.xlabel(info, color="red")
    pyplot.show()


# native function not assigned to particular interpreter
项目:object-classification    作者:HenrYxZ    | 项目源码 | 文件源码
def show_conf_mat(confusion_matrix):
    """
    Show a windows with a color image for a confusion matrix

    Args:
        confusion_matrix (NumPy Array): The matrix to be shown.

    Returns:
        void
    """
    plt.matshow(confusion_matrix)
    plt.title('Confusion Matrix')
    plt.colorbar()
    plt.show()
项目:sentisignal    作者:jonathanmanfield    | 项目源码 | 文件源码
def plot_corr(df,size=10):
    '''Function plots a graphical correlation matrix for each pair of columns in the dataframe.

    Input:
        df: pandas DataFrame
        size: vertical and horizontal size of the plot'''

    corr = df.corr()
    # fig, ax = plt.subplots(figsize=(size, size))
    # cax = ax.matshow(corr, interpolation='nearest')
    # plt.xticks(range(len(corr.columns)), corr.columns, rotation=90)
    # plt.yticks(range(len(corr.columns)), corr.columns)
    # fig.colorbar(cax)

    # Set up the matplotlib figure
    f, ax = plt.subplots(figsize=(size, size))

    # Draw the heatmap using seaborn
    sns.heatmap(corr, vmax=1.0, square=True)

    # Use matplotlib directly to emphasize known networks
    # networks = corrmat.columns.get_level_values("network")
    # for i, network in enumerate(networks):
    #     if i and network != networks[i - 1]:
    #         ax.axhline(len(networks) - i, c="w")
    #         ax.axvline(i, c="w")
    # f.tight_layout()

    # 

    # fig = plt.figure()
    # data_nasdaq_top_100_mkt_cap_symbology_corr = data_nasdaq_top_100_mkt_cap_symbology.corr()
    # # plt.matshow(data_nasdaq_top_100_mkt_cap_symbology_corr)
    # # plt.colorbar(data_nasdaq_top_100_mkt_cap_symbology_corr)

    # labels = data_nasdaq_top_100_mkt_cap_symbology_corr.columns
    # # print labels
    # ax = fig.add_subplot(111)
    # cax = ax.matshow(data_nasdaq_top_100_mkt_cap_symbology_corr, interpolation='nearest')
    # fig.colorbar(cax)
项目:tf-image-segmentation    作者:warmspringwinds    | 项目源码 | 文件源码
def _discrete_matshow_adaptive(data, labels_names=[], title=""):
    """Displays segmentation results using colormap that is adapted
    to a number of classes. Uses labels_names to write class names
    aside the color label. Used as a helper function for 
    visualize_segmentation_adaptive() function.

    Parameters
    ----------
    data : 2d numpy array (width, height)
        Array with integers representing class predictions
    labels_names : list
        List with class_names
    """

    fig_size = [7, 6]
    plt.rcParams["figure.figsize"] = fig_size

    #get discrete colormap
    cmap = plt.get_cmap('Paired', np.max(data)-np.min(data)+1)

    # set limits .5 outside true range
    mat = plt.matshow(data,
                      cmap=cmap,
                      vmin = np.min(data)-.5,
                      vmax = np.max(data)+.5)

    #tell the colorbar to tick at integers
    cax = plt.colorbar(mat,
                       ticks=np.arange(np.min(data),np.max(data)+1))

    # The names to be printed aside the colorbar
    if labels_names:
        cax.ax.set_yticklabels(labels_names)

    if title:
        plt.suptitle(title, fontsize=15, fontweight='bold')

    plt.show()
项目:sdp_kmeans    作者:simonsfoundation    | 项目源码 | 文件源码
def plot_confusion_matrix(conf_mat):
    cm = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]

    plt.matshow(cm, cmap='gray_r', vmin=0, vmax=1)

    # text portion
    ind_array = np.arange(cm.shape[0])
    x, y = np.meshgrid(ind_array, ind_array)

    for i, j in zip(x.flatten(), y.flatten()):
        c = 'k' if cm[i, j] <= 0.5 else 'w'
        plt.text(j, i, '{}'.format(conf_mat[i, j]), color=c, va='center', ha='center')

    plt.xticks([])
    plt.yticks([])
项目:procuring_python_performace_talk    作者:ian-bertolacci    | 项目源码 | 文件源码
def main():
  argparser = argparse.ArgumentParser()
  argparser.add_argument( "-N", "--grid_size", type=int, default=100 )
  argparser.add_argument( "-T", "--time_steps", type=int, default=100 )
  argparser.add_argument( "-d", "--display", action='store_true' )
  args = argparser.parse_args()

  # Starting grid
  read = np.zeros( ( args.grid_size+2, args.grid_size+2 ) )

  # Make it 'hot; on the [0,_] side and cold on the [_,0] side and 'warm' on the [i,N-i] line
  for i in range(args.grid_size+2):
    read[0,i] = 100.0;
    read[i,0] = -100.0;
    read[i,args.grid_size+1-i] = 50.0

  # Write grid
  write = copy.deepcopy( read )

  if args.display:
    plt.matshow( read )

  timer = Timer()

  timer.start()
  # Outer time-stepping loop
  for t in range( args.time_steps ):

    jacobi( read, write, args.grid_size )

    # flip the read and write array
    write, read = read, write

  timer.stop()

  print( "Elapsed: {}s".format( timer.elapsed() ) )

  if args.display:
    plt.matshow( read )

  plt.show()
项目:procuring_python_performace_talk    作者:ian-bertolacci    | 项目源码 | 文件源码
def main():
  argparser = argparse.ArgumentParser()
  argparser.add_argument( "-N", "--grid_size", type=int, default=100 )
  argparser.add_argument( "-T", "--time_steps", type=int, default=100 )
  argparser.add_argument( "-d", "--display", action='store_true' )
  args = argparser.parse_args()

  # Starting grid
  read = [ [ 0.0 for _ in range(args.grid_size+2)] for _ in range(args.grid_size+2)]

  # Make it 'hot; on the [0][_] side and cold on the [_][0] side and 'warm' on the [i][N-i] line
  for i in range(args.grid_size+2):
    read[0][i] = 100.0;
    read[i][0] = -100.0;
    read[i][args.grid_size+1-i] = 50.0

  # Write grid
  write = copy.deepcopy( read )

  if args.display:
    plt.matshow( read )

  timer = Timer()

  timer.start()
  # Outer time-stepping loop
  for t in range( args.time_steps ):

    jacobi( read, write, args.grid_size )

    # flip the read and write array
    write, read = read, write

  timer.stop()

  print( "Elapsed: {}s".format( timer.elapsed() ) )

  if args.display:
    plt.matshow( read )
    plt.show()
项目:procuring_python_performace_talk    作者:ian-bertolacci    | 项目源码 | 文件源码
def main():
  argparser = argparse.ArgumentParser()
  argparser.add_argument( "-N", "--grid_size", type=int, default=100 )
  argparser.add_argument( "-T", "--time_steps", type=int, default=100 )
  argparser.add_argument( "-d", "--display", action='store_true' )
  args = argparser.parse_args()

  # Starting grid
  read = [ [ 0.0 for _ in range(args.grid_size+2)] for _ in range(args.grid_size+2)]

  # Make it 'hot; on the [0][_] side and cold on the [_][0] side and 'warm' on the [i][N-i] line
  for i in range(args.grid_size+2):
    read[0][i] = 100.0;
    read[i][0] = -100.0;
    read[i][args.grid_size+1-i] = 50.0

  # Write grid
  write = copy.deepcopy( read )

  if args.display:
    plt.matshow( read )

  timer = Timer()

  timer.start()
  # Outer time-stepping loop
  for t in range( args.time_steps ):
    jacobi_iteration( read, write, args.grid_size )

    # flip the read and write array
    write, read = read, write

  timer.stop()

  print( "Elapsed: {}s".format( timer.elapsed() ) )

  if args.display:
    plt.matshow( read )
    plt.show()
项目:procuring_python_performace_talk    作者:ian-bertolacci    | 项目源码 | 文件源码
def main():
  argparser = argparse.ArgumentParser()
  argparser.add_argument( "-N", "--grid_size", type=int, default=100 )
  argparser.add_argument( "-T", "--time_steps", type=int, default=100 )
  argparser.add_argument( "-d", "--display", action='store_true' )
  args = argparser.parse_args()

  # Starting grid
  read = [ [ 0.0 for _ in range(args.grid_size+2)] for _ in range(args.grid_size+2)]

  # Make it 'hot; on the [0][_] side and cold on the [_][0] side and 'warm' on the [i][N-i] line
  for i in range(args.grid_size+2):
    read[0][i] = 100.0;
    read[i][0] = -100.0;
    read[i][args.grid_size+1-i] = 50.0

  # Write grid
  write = copy.deepcopy( read )

  if args.display:
    plt.matshow( read )

  timer = Timer()

  timer.start()
  # Outer time-stepping loop
  for t in range( args.time_steps ):
    jacobi_iteration( read, write, args.grid_size )

    # flip the read and write array
    write, read = read, write

  timer.stop()

  print( "Elapsed: {}s".format( timer.elapsed() ) )

  if args.display:
    plt.matshow( read )
    plt.show()
项目:SignGlove    作者:papachristoumarios    | 项目源码 | 文件源码
def confusionMatrix(dataSet, saveFolder=None):
    testPercent = .2
    labels, instances = dataSet.getLabelsAndInstances2()
    scaledInstances = normalizeData(instances)

    # Separate training from test
    yTrain, yTest, xTrain, xTest = train_test_split(
            labels, scaledInstances, test_size=testPercent)

    # Train and predict
    clf = SVC()
    clf.fit(xTrain, yTrain)
    yPred = clf.predict(xTest)
    cm = confusion_matrix(yTest, yPred)

    labels, _ = dataSet.getLabelsAndInstances()

    plt.matshow(cm, aspect="auto")
    plt.ylabel("True label")
    plt.xlabel("Predicted label")
    plt.yticks(range(28), labels)
    plt.xticks(range(28), labels, rotation=90)
    plt.colorbar()
    plt.grid(True)
    if saveFolder is not None:
        plt.savefig(saveFolder+"/confussion.png", bbox_inches="tight")
    plt.show()
项目:KerasRL    作者:aejax    | 项目源码 | 文件源码
def test_qtable():

    single_run = True

    n_episode = 1000000
    tMax = 200

    env = gym.make('FrozenLake-v0')

    S = env.observation_space
    A = env.action_space

    learning_rate=1e-2
    gamma=0.99
    policy=epsilon_greedy

    if single_run:
        agent = QTable(S, A, learning_rate=learning_rate, gamma=gamma, policy=policy)
        ave_r = run(env, agent, n_episode, tMax, plot=True, epsilon=0.1)

        plt.matshow(flQ_table(agent.table))
        plt.savefig('qtable_data/policy.png', format='png')

    else:
        # Sample learning rates #
        lrs = 10**np.random.uniform(-4.0, -2, size=10)
        learning_rates = [lrs[n] for n in xrange(lrs.shape[0]) ]

        ave_returns = []
        for lr in learning_rates:
            agent = QTable(S, A, learning_rate=lr, gamma=gamma, policy=policy)

            ave_r = run(env, agent, n_episode, tMax, plot=True)
            print agent.table
            ave_returns.append(ave_r)

        plt.figure()
        plt.semilogx(learning_rates, ave_returns, 'o')
        plt.savefig('lr_returns.png'.format(), format='png')
        plt.xlabel('learning rate')
        plt.ylabel('average returns')
项目:percolation    作者:bluepatoune    | 项目源码 | 文件源码
def draw(self, time=1):
        """Draw the matrix using MatPlotLib."""

        pyplot.clf()
        pyplot.matshow(self.data, 1, cmap=self.cmap, norm=self.norm)
        pyplot.pause(time)