Python matplotlib.pyplot 模块,autoscale() 实例源码

我们从Python开源项目中,提取了以下26个代码示例,用于说明如何使用matplotlib.pyplot.autoscale()

项目:brainpipe    作者:EtienneCmb    | 项目源码 | 文件源码
def _plot(xvec, yvec, title='', xlabel='', ylabel='', maxplot=10, **kwargs):
    """Simple plot"""
    def _subplot(yvec):
        dimLen = len(yvec.shape)
        if dimLen == 1:
            X = [yvec]
        elif dimLen == 2:
            X = [n.mean(yvec, 1)]
        elif dimLen == 3:
            X = [n.mean(yvec[k, :, :], 1) for k in range(0, yvec.shape[0])]
        [plt.plot(xvec, k, label=str(i), **kwargs) for i, k in enumerate(X)]
        ax = plt.gca()
        ax.set_xlabel(xlabel), ax.set_ylabel(ylabel)
        ax.set_title(title), ax.legend()
        plt.autoscale(tight=True)
        return ax

    return _sub(yvec, _subplot, maxplot=maxplot)
项目:extract    作者:dblalock    | 项目源码 | 文件源码
def plot(self, saveDir=None):
        # for i in range(3):
            # plt.plot(self.sampleTimes, self.data[:,i])
        plt.figure()
        plt.autoscale(tight=True)
        plt.plot(self.sampleTimes, self.data)
        minVal = np.min(self.data) - .2
        maxVal = np.max(self.data) + .2
        for time in self.gestureTimes:
            plt.plot([time, time], [minVal, maxVal],
                color='k', linestyle='--', linewidth=1)
        plt.title(self.gestureLabel)
        if saveDir:
            ensureDirExists(saveDir)
            fileName = "%s_%d" % (self.gestureLabel, self.id)
            fileName = join(saveDir, fileName)
            plt.savefig(fileName)
        # else:
        #   plt.show() # TODO uncomment
项目:vi_vae_gmm    作者:wangg12    | 项目源码 | 文件源码
def get_plot_buf(x, clusters, mu, logstd, true_mu, true_logstd):
    N = x.shape[0]
    K = mu.shape[0]
    fig = plt.figure()
    # print(clusters.shape)
    # print(x.shape)
    ax = fig.add_subplot(111, aspect='auto')
    plt.scatter(x[:, 0], x[:, 1], c=clusters, s=50)
    # print(mu, logstd)
    ells = [Ellipse(xy=mean_, width=6*np.exp(logstd_[0]), height=6*np.exp(logstd_[1]),
                angle=0, facecolor='none', zorder=10, edgecolor='g', label='predict' if i==0 else None)
            for i, (mean_, logstd_) in enumerate(zip(mu, logstd))]
    true_ells = [Ellipse(xy=mean_, width=6*np.exp(logstd_[0]), height=6*np.exp(logstd_[1]),
                angle=0, facecolor='none', zorder=10, edgecolor='r', label='true' if i==0 else None)
            for i,(mean_, logstd_) in enumerate(zip(true_mu, true_logstd))]
    # print(ells[0])
    [ax.add_patch(ell) for ell in ells]
    [ax.add_patch(true_ell) for true_ell in true_ells]
    ax.legend(loc='best')
    ax.set_title('N={},K={}'.format(N, K))
    plt.autoscale(True)
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    plt.close()
    buf.seek(0)
    return buf
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def __init__(self, size=(600,350)):
    streams = resolve_byprop('name', 'bci', timeout=2.5)
    try:
      self.inlet = StreamInlet(streams[0])
    except IndexError:
      raise ValueError('Make sure stream name=bci is opened first.')

    self.running = True

    self.ProcessedSig = []
    self.SecondTimes = []
    self.count = -1
    self.sampleCount = self.count 
    self.maximum = 0
    self.minimum = 0

    plt.ion()
    plt.hold(False)     
    self.lineHandle = plt.plot(self.SecondTimes, self.ProcessedSig)
    plt.title("Live Stream EEG Data")
    plt.xlabel('Time (s)')
    plt.ylabel('mV')
    #plt.autoscale(True, 'y', tight = True)
    plt.show()
    #while(1):
    #secondTimes.append(serialData[0])                         #add time stamps to array 'timeValSeconds'
    #floatSecondTimes.append(float(serialData[0])/1000000)     # makes all second times into float from string

    #processedSig.append(serialData[6])                           #add processed signal values to 'processedSig'
    #floatProcessedSig.append(float(serialData[6]))
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/netinterface.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            r_kb.append(row[4])
            s_kb.append(row[5])

    # Plot lines
    plt.plot(x,r_kb, label='Kilobytes received per second', color='#009973', antialiased=True)
    plt.plot(x,s_kb, label='Kilobytes sent per second', color='#b3b300', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Kb/s',fontstyle='italic')
    plt.title('Network statistics')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.18), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/netinterface.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/cpu.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            user_cpu.append(row[2])
            system_cpu.append(row[4])
            idle_cpu.append(row[7])

    # Plot lines
    plt.plot(x,user_cpu, label='User %', color='g', antialiased=True)
    plt.plot(x,system_cpu, label='System %', color='r', antialiased=True)
    plt.plot(x,idle_cpu, label='Idle %', color='b', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('CPU %',fontstyle='italic')
    plt.title('CPU usage graph')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/cpu.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/swap.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            swap_free.append(str(int(row[1])/1024))
            swap_used.append(str(int(row[2])/1024))


    # Plot lines
    plt.plot(x,swap_used, label='Used', color='r', antialiased=True)
    plt.plot(x,swap_free, label='Free', color='g', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('SWAP (MB)',fontstyle='italic')
    plt.title('SWAP usage graph')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/swap.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/ram.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            free_mem.append(str((int(row[1])/1024)+(int(row[4])/1024)+(int(row[5])/1024)))
            used_mem.append(str((int(row[2])/1024)-(int(row[4])/1024)-(int(row[5])/1024)))
            buffer_mem.append(str(int(row[4])/1024))
            cached_mem.append(str(int(row[5])/1024))

    # Plot lines
    plt.plot(x,free_mem, label='Free', color='g', antialiased=True)
    plt.plot(x,used_mem, label='Used', color='r', antialiased=True)
    plt.plot(x,buffer_mem, label='Buffer', color='b', antialiased=True)
    plt.plot(x,cached_mem, label='Cached', color='c', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Memory (MB)',fontstyle='italic')
    plt.title('RAM usage graph')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/ram.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/sockets.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            t_tcp.append(str((int(row[2]))+(int(row[6]))))
            t_tcp_use.append(row[2])
            t_udp_use.append(row[3])
            t_tcp_time_wait.append(row[6])

    # Plot lines
    plt.plot(x,t_tcp, label='Total TCP sockets', color='#ff9933', antialiased=True)
    plt.plot(x,t_tcp_use, label='TCP sockets in use', color='#66ccff', antialiased=True)
    plt.plot(x,t_udp_use, label='UDP sockets in use', color='#009933', antialiased=True)
    plt.plot(x,t_tcp_time_wait, label='TCP sockets in TIME WAIT state', color='#cc3300', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Number of sockets',fontstyle='italic')
    plt.title('Sockets')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.20), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/sockets.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/loadaverage.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            m1.append(row[3])
            m5.append(row[4])
            m15.append(row[5])

    # Plot lines
    plt.plot(x,m1, label='1 min', color='g', antialiased=True)
    plt.plot(x,m5, label='5 min', color='r', antialiased=True)
    plt.plot(x,m15, label='15 min', color='b', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Load average',fontstyle='italic')
    plt.title('Load average graph')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/loadaverage.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/proc.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            procs_per_second.append(row[1])

    # Plot lines
    plt.plot(x,procs_per_second, label='Processes created per second', color='r', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Processes',fontstyle='italic')
    plt.title('Processes created per second graph')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/proc.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/iotransfer.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            b_read_second.append(row[4])
            b_written_second.append(row[5])

    # Plot lines
    plt.plot(x,b_read_second, label='Blocks read per second', color='r', antialiased=True)
    plt.plot(x,b_written_second, label='Blocks written per second', color='g', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Blocks per second',fontstyle='italic')
    plt.title('IO Transfer graph')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/iotransfer.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:sarviewer    作者:juliojsb    | 项目源码 | 文件源码
def generate_graph():
    with open('../../data/proc.dat', 'r') as csvfile:
        data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
        for row in data_source:
            # [0] column is a time column
            # Convert to datetime data type
            a = datetime.strptime((row[0]),'%H:%M:%S')
            x.append((a))
            # The remaining columns contain data
            contextsw_per_second.append(row[2])

    # Plot lines
    plt.plot(x,contextsw_per_second, label='Context switches performed per second', color='r', antialiased=True)

    # Graph properties
    plt.xlabel('Time',fontstyle='italic')
    plt.ylabel('Context switches',fontstyle='italic')
    plt.title('Context switches')
    plt.grid(linewidth=0.4, antialiased=True)
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
    plt.autoscale(True)

    # Graph saved to PNG file
    plt.savefig('../../graphs/contextsw.png', bbox_inches='tight')
    #plt.show()

# ======================
# MAIN
# ======================
项目:steem-flow    作者:fooblic    | 项目源码 | 文件源码
def plot_pic(pic):
    #### 1 STEEM - exchange

    plt.figure(pic["num"])
    plt.bar(pic["xtics"] - 0.2, pic["df1"],
                width=0.4,
                color="blue",
                label=pic["x_legend"])
    plt.bar(pic["xtics"] + 0.2, pic["df2"],
                width=0.4,
                color="lightblue",
                label=pic["y_legend"])
    plt.legend(loc = "best")

    if "Monthly" in pic["title"]:
        x_ticks = []
        for mon in pic["df1"].index.values:
            x_ticks.append(monthes_list[mon - 1])
        plt.xticks(pic["xtics"], x_ticks)
    else:
        plt.xticks(pic["xtics"], pic["df1"].index.values)

    plt.title(pic["title"])
    plt.xlabel(pic["x_label"])
    plt.ylabel(pic["y_label"])
    plt.autoscale(tight=True)
    plt.subplots_adjust(bottom = pic["bottom"])
    plt.savefig(img_path + pic["fname"])

# STEEM flow rate
项目:Building-Machine-Learning-Systems-With-Python-Second-Edition    作者:PacktPublishing    | 项目源码 | 文件源码
def plot_models(x, y, models, fname, mx=None, ymax=None, xmin=None):

    plt.figure(num=None, figsize=(8, 6))
    plt.clf()
    plt.scatter(x, y, s=10)
    plt.title("Web traffic over the last month")
    plt.xlabel("Time")
    plt.ylabel("Hits/hour")
    plt.xticks(
        [w * 7 * 24 for w in range(10)], ['week %i' % w for w in range(10)])

    if models:
        if mx is None:
            mx = sp.linspace(0, x[-1], 1000)
        for model, style, color in zip(models, linestyles, colors):
            # print "Model:",model
            # print "Coeffs:",model.coeffs
            plt.plot(mx, model(mx), linestyle=style, linewidth=2, c=color)

        plt.legend(["d=%i" % m.order for m in models], loc="upper left")

    plt.autoscale(tight=True)
    plt.ylim(ymin=0)
    if ymax:
        plt.ylim(ymax=ymax)
    if xmin:
        plt.xlim(xmin=xmin)
    plt.grid(True, linestyle='-', color='0.75')
    plt.savefig(fname)

# first look at the data
项目:nntour    作者:miku    | 项目源码 | 文件源码
def drawimg(X, y, W, filename=None, title=''):
    """
    Save data plus boundary to filname.
    """
    if not filename:
        _, filename = tempfile.mkstemp(prefix='nntour-')

    plt.clf()

    pos = np.array([x[1:] for i, x in enumerate(X) if y[i] == 1])
    neg = np.array([x[1:] for i, x in enumerate(X) if y[i] == -1])

    axes = plt.gca()
    axes.set_xlim([-2, 2])
    axes.set_ylim([-2, 2])

    axes.get_xaxis().set_visible(False)
    axes.get_yaxis().set_visible(False)

    plt.title(title)
    plt.autoscale(enable=False)

    plt.scatter(pos[:, 0], pos[:, 1], color='b')
    plt.scatter(neg[:, 0], neg[:, 1], color='r')

    xb = np.linspace(-2, 2, 1000)
    yb = (-W[0] - W[1] * xb) / W[2]

    plt.plot(xb, yb, '-', color='k')
    plt.savefig(filename)
项目:product-taz    作者:TheAnomalieZ    | 项目源码 | 文件源码
def plot(self):
        fig().plot(); #jus' closes a previous plot
        self.format();
        d=self.data()
        plt.plot(d['trn'],label='training')
        po=plt.plot(d['vld'],label='validation')[0]
        po.axes.set_yscale('log')
        po.axes.get_xaxis().set_label_text('epoch')
        po.axes.get_yaxis().set_label_text('$L$')
        plt.legend(loc='upper right')
        plt.autoscale(tight=True)
        plt.tight_layout(pad=0.05)
        return po
项目:object_tracking_simulator_python    作者:yonhdee    | 项目源码 | 文件源码
def __init__(self):

        #fig = plt.figure('Figure Simulator')

        #self.fig2 = plt.subplot(122, projection = 'polar')
        #plt.title('Polar')

        #fig1,ax = fig.add_subplot(111)
        #fig1 = plt.subplot(111)
        fig, ax = plt.subplots(sharex=True, sharey=True)
        ax.set_title('Figure Simulator')
        ax.axis([-10,10,-10,10])
        ax.set_anchor('C')
        ax.set_title('Mouse Input')
        ax.set_xlabel('Pose X')
        ax.set_ylabel('Pose Y')
        ax.set_xlim(-10,10)
        ax.set_ylim(-10,10)
        ax.set_autoscalex_on(False)
        ax.set_autoscaley_on(False)
        ax.grid(True)

        for direction in ["left", "right", "bottom", "top"]:

            ax.spines[direction].set_visible(False)

        fig.canvas.mpl_connect('figure_enter_event', enter_figure)
        fig.canvas.mpl_connect('figure_leave_event', leave_figure)
        fig.canvas.mpl_connect('axes_enter_event', enter_axes)
        fig.canvas.mpl_connect('axes_leave_event', leave_axes)

        fig.canvas.mpl_connect('button_press_event', OnClick)
        fig.canvas.mpl_connect('button_release_event', OnRelease)

        timer = fig.canvas.new_timer(interval=100)
        timer.add_callback(timer_callback, ax)
        timer.start()

        plt.autoscale(enable=False, axis='both', tight=None)
项目:extract    作者:dblalock    | 项目源码 | 文件源码
def plotDf(df, xlabel="Classifier", ylabel="Dataset", title=None,
    symmetricAboutMean=False, cmap='RdBu'):

    data = df.values
    if symmetricAboutMean:
        mean = data.mean()
        bound = max(abs(data.max() - mean), abs(data.min() - mean))
        lower = mean - bound
        upper = mean + bound
    else:
        lower = data.min()
        upper = data.max()

    plt.rcParams["font.size"] = 17
    # plt.figure(figsize=(10, 10))
    fig, ax = plt.subplots(figsize=(10, 10))
    p = ax.pcolormesh(data, cmap=cmap, vmin=lower, vmax=upper)
    plt.colorbar(p, ax=ax)

    plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
    plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns,
        fontsize=13, rotation=80)

    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.title(title)

    plt.autoscale(True, tight=True)
    plt.tight_layout()
    plt.show()
项目:esys-pbi    作者:fsxfreak    | 项目源码 | 文件源码
def _graph_lsl(self):
    while self.running:
      # initial run
      self.sample, self.timestamp = self.inlet.pull_sample(timeout=5)
      #if self.timeBuffer[0] == 0.0:
       # self.timeBuffer = collections.deque([self.timestamp] * self._bufsize, self._bufsize)
    # time correction to sync to local_clock()
      try:
        if self.timestamp is not None and self.sample is not None:
          self.timestamp = self.timestamp + self.inlet.time_correction(timeout=5) 

      except TimeoutError:
        pass
      self.SecondTimes.append(self.timestamp)                         #add time stamps to array 'timeValSeconds'
      #print(abs(self.sample[3])/1000)
      self.ProcessedSig.append(abs(self.sample[3])/1000)                           #add processed signal values to 'processedSig'
      if(abs(self.sample[3]/1000) > self.maximum):
          self.maximum = abs(self.sample[3]/1000)
      if(abs(self.sample[3]/1000) < self.minimum):
          self.minimum = abs(self.sample[3]/1000)

      self.sampleCount = self.sampleCount + 1  
      self.count = self.count + 1
      #plt.show()
      if((self.count % 20 == 0) and (self.count != 0)):   #every 20 samples (ie ~ 0.2 ms) is when plot updates. Change the sample number (ie 20) to modify frequency at which plot updates
      #if(self.count == 20):
        self.count = -1
    self.lineHandle[0].set_ydata(self.ProcessedSig)
    self.lineHandle[0].set_xdata(self.SecondTimes)
    #plt.xlim(0, 5)
    plt.xlim(self.SecondTimes[0], self.SecondTimes[-1])

        plt.ylim(self.minimum - 0.75, self.maximum + 0.75)
        #plt.ylim(0, 20)
    #plt.ylim(0, 10)
        #elf.ax.set_autoscaley_on(True)
        #plt.autoscale(enable=True, axis='y', tight=True)
    plt.pause(0.01)



      if(self.sampleCount >= 511):        #shows up to 2 seconds of data (512 samples = 2s of data given a 256 Hz sampling freq by the BCI)
        self.ProcessedSig.pop(0)    
        self.SecondTimes.pop(0)

    plt.pause(0.01)
    print('closing graphing utility')
    self.inlet.close_stream()
项目:seq2seq    作者:eske    | 项目源码 | 文件源码
def heatmap(xlabels=None, ylabels=None, weights=None, output_file=None):
    """
    Draw a heatmap showing the alignment between two sequences.

    :param xlabels: input words
    :param ylabels: output words
    :param weights: numpy array of shape (len(xlabels), len(ylabels))
    :param output_file: write the figure to this file, or show it into a window if None
    """
    from matplotlib import pyplot as plt

    weights *= 10

    xlabels = xlabels or []
    ylabels = ylabels or []

    fig, ax = plt.subplots()

    plt.autoscale(enable=True, axis='x', tight=True)
    #ax.pcolor(weights, cmap=plt.cm.Greys)
    ax.pcolor(weights, cmap=plt.cm.Greys)
    ax.set_frame_on(False)
    # plt.colorbar(mappable=heatmap_)

    # put the major ticks at the middle of each cell
    ax.set_yticks(np.arange(weights.shape[0]) + 0.5, minor=False)
    ax.set_xticks(np.arange(weights.shape[1]) + 0.5, minor=False)
    ax.invert_yaxis()
    ax.xaxis.tick_top()

    ax.set_xticklabels(xlabels, minor=False)
    ax.set_yticklabels(ylabels, minor=False)
    ax.tick_params(axis='both', which='both', length=0)

    plt.xticks(rotation=90, fontsize=20)
    plt.xticks(fontsize=18)
    plt.yticks(fontsize=18)
    plt.tight_layout()
    plt.subplots_adjust(wspace=0, hspace=0)
    # ax.set_aspect('equal')
    ax.grid(True)

    xsize = max(2.0 + len(xlabels) / 3, 8.0)
    ysize = max(2.0 + len(ylabels) / 3, 8.0)
    fig.set_size_inches(xsize, ysize, forward=True)

    if output_file is None:
        plt.show()
    else:
        plt.savefig(output_file)
项目:PythonDBAGraphs    作者:bobbydurrett    | 项目源码 | 文件源码
def line_2subplots():
    """
    Creates a split plot with one set of x axis labels and
    two subplots.

    """

# Save data to redraw plot later

    save_data('line_2subplots')

# set the screen title, size, density

    fig = plt.figure(title,graph_dimensions,graph_dpi)

# do the plot
# top half of the graph plot_number 1
    nrows = 2
    ncols = 1
    plot_number = 1   
    ax = plt.subplot(nrows,ncols,plot_number)
    plt.title(title)
    plt.ylabel(ylabel1)
    plt.grid(which="major")
    red = 'r'
    plt.plot(xdatetimes,ylists[0],red)
    plt.autoscale(tight=True)
    fig.autofmt_xdate()
    ax.fmt_xdata = mdates.DateFormatter('%m/%d/%Y %H:%M')
    datetimefmt = mdates.DateFormatter('')
    ax.xaxis.set_major_formatter(datetimefmt)
# bottom half of the graph plot_number 2
    plot_number = 2   
    ax = plt.subplot(nrows,ncols,plot_number)
    plt.ylabel(ylabel2)
    plt.grid(which="major")
    green='g'
    plt.plot(xdatetimes,ylists[1],green)
    plt.autoscale(tight=True)
    fig.autofmt_xdate()
    ax.fmt_xdata = mdates.DateFormatter('%m/%d/%Y %H:%M')
    loc=mdates.AutoDateLocator()
    datetimefmt = mdates.AutoDateFormatter(loc)
    ax.xaxis.set_major_formatter(datetimefmt)
    ax.xaxis.set_major_locator(loc)

# subplots_adjust settings
    vleft  = 0.07  # the left side of the subplots of the figure
    vright = 0.97    # the right side of the subplots of the figure
#    vbottom = 0.15   # the bottom of the subplots of the figure
    vbottom = 0.10   # the bottom of the subplots of the figure
    vtop = 0.95      # the top of the subplots of the figure
    vwspace = 0.0   # the amount of width reserved for blank space between subplots
    vhspace = 0.08   # the amount of height reserved for white space between subplots

    plt.subplots_adjust(left=vleft,right=vright,bottom=vbottom,top=vtop,wspace=vwspace,hspace=vhspace)


    fileorscreen(title+'.png')

    return
项目:LSTM-and-maxlayer-for-SNV-based-phenotype-prediction    作者:widmi    | 项目源码 | 文件源码
def plot_timeseries(kwargs):
    """
    Plot different timeseries in list vs list optional of target timeseries
    """
    timeseries = kwargs.get('timeseries') #list(array([timesteps, 3])) contains min, max, mean
    filename = kwargs.get('filename')

    targets = kwargs.get('targets', [])
    ts_labels = kwargs.get('ts_labels', None)
    suptitle = kwargs.get('suptitle', '')
    title = kwargs.get('title', '')
    alpha = kwargs.get('alpha', 1.)
    balpha = kwargs.get('balpha', alpha/4)
    linewidth = kwargs.get('linewidth', 1.)
    linestyle_lines = kwargs.get('linestyle_lines', ['-', ':'])
    markes_lines = kwargs.get('markes_lines', ['', ''])

    fig, ax = pl.subplots(figsize=kwargs.get('figsize', [8,5]))


    if not isinstance(timeseries, list):
        timeseries = [timeseries]

    colors = [pl.cm.brg(i) for i in np.linspace(0, 0.9, len(timeseries))]
    for t_i, ts in enumerate(timeseries):
        ax.fill_between(np.arange(len(ts[:,1])), ts[:,1], ts[:,0], facecolor=colors[t_i], alpha=balpha, linestyle=':')
        ax.plot(ts[:,2], 
                linestyle=linestyle_lines[ts_labels[t_i].endswith('(train)')], 
                alpha=alpha, label=str(ts_labels[t_i]), linewidth=linewidth, 
                color=colors[t_i-ts_labels[t_i].endswith('(train)')],
                marker=markes_lines[ts_labels[t_i].endswith('(train)')])

    color = kwargs.get('target_color', 'r')
    for (t_i, tar) in enumerate(targets):
        line_styles = '-'
        ax.plot(tar, linestyle=line_styles, color=color, alpha=alpha, label='target', linewidth=0.6)

    #pl.axvline(x=118, linestyle='-.', color='r')
    ax.set_xlabel(kwargs.get('xlabel', ''))
    ax.set_ylabel(kwargs.get('ylabel', ''))
    if kwargs.get('ylim', None) is not None:
        pl.ylim(kwargs.get('ylim'))
    pl.grid()
    pl.axis('on')
    pl.suptitle(suptitle)
    pl.title(title)#, fontsize=kwargs.get('fontsize', 10))

    pl.autoscale(enable=True)
    pl.tight_layout()

    # Shrink current axis by 20%
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    leg = ax.legend(loc='center left', prop=kwargs.get('legend_props', {'size':10}), bbox_to_anchor=(1, 0.5))
    # make lines wider
    for legobj in leg.legendHandles:
        legobj.set_linewidth(3.0)

    pl.savefig(filename)
    return 0
项目:LSTM-and-maxlayer-for-SNV-based-phenotype-prediction    作者:widmi    | 项目源码 | 文件源码
def timeseries_prediction_vs_target(kwargs):
    """
    Plot different timeseries in list vs list of target timeseries
    """
    predictions = kwargs.get('predictions') #2dims (timesteps, predictions)
    targets = kwargs.get('targets')
    filename = kwargs.get('filename')

    suptitle = kwargs.get('suptitle', '')
    title = kwargs.get('title', '')
    alpha = kwargs.get('alpha', 1.)

    fig, ax = pl.subplots(figsize=[20,20])

    linestyle_lines = '-'


    for (n_i, n) in enumerate(np.arange(predictions.shape[1])):
        if n_i == 0:
            colors = [pl.cm.brg(i) for i in np.linspace(0, 0.9, predictions.shape[1]-1)]
            #ax.set_color_cycle(colors) #depreciated with matplotlib 1.5
            ax.set_prop_cycle(cycler('color', colors))
        else:
            ax.plot(predictions[:,n], linestyle=linestyle_lines, alpha=alpha, 
                    label=str(n), linewidth=0.4)

    ax.plot(predictions[:,0], linestyle='-', alpha=alpha, 
            label='prediction', color='k', linewidth=0.6)

    color='r'
    for (t_i, tar) in enumerate(targets):
        line_styles = '-'
        ax.plot(tar, linestyle=line_styles, color=color, alpha=alpha, label='target', linewidth=0.6)
        color='b'

    pl.axvline(x=118, linestyle='-.', color='r')
    ax.set_xlabel('timestep')
    ax.set_ylabel('activations')

    pl.grid()
    pl.axis('on')
    pl.suptitle(suptitle)
    pl.title(title, fontsize=10)
    pl.autoscale(enable=True)
    pl.savefig(filename)
    return 0
项目:Labyrinther    作者:olety    | 项目源码 | 文件源码
def run(num_tests):
        lab = Labyrinth(file='5x5.csv')
        ga_won = 0
        gens = []
        fitness = []
        print('Running GA tests ({})'.format(num_tests))
        for i in range(num_tests):
            print('Test ?{} - '.format(i), end='')
            ga = GeneticAlgorithm(lab, elitism_num=2, num_population=100, max_iter=150, crossover_pts=1,
                                  roulette_mult=2, max_moves_mult=2, file_name='try_{}'.format(i))
            ga.save_data()
            if ga.found_winner:
                print('Found winner')
                ga_won += 1
                gens.append(ga.max_gen)
                fitness.append(ga.pop)
            else:
                gens.append(0)
                fitness.append(ga.pop)
                print('Didn\'t find winner')
        fitness = np.array(fitness)
        print(fitness.shape)
        print('Stats:\n? won: \t{}\n% won: \t{}\n? gens req (avg): \t{}\nAvg fitness: \t{}'
              .format(ga_won, 100 * ga_won / num_tests,
                      np.mean(gens), np.mean(fitness[:, :, 1])))
        # num_subplots = 0
        # plt.autoscale = True
        # f, ax = plt.subplot(2, len(fitness))
        #
        # for i, pop in enumerate(fitness[:, :, 1]):
        #     plt.subplot()
        #     ax[0][i].plot(pop[:, 1])

        ax_gens = plt.subplot(211)
        ax_gens.set_ylim([math.ceil(min(gens) - 0.5 * (max(gens) - min(gens))),
                          math.ceil(min(gens) + 0.5 * (max(gens) - min(gens)))])
        plt.bar(np.arange(num_tests), width=0.35, height=gens, color='m')
        print('Running random search tests ({})'.format(num_tests))
        iterations = []
        rand_won = 0
        for i in range(num_tests):
            print('Test ?{} - '.format(i), end='')
            ga = GeneticAlgorithm(lab, selection='random', min_moves_mult=0.5, max_moves_mult=2,
                                  file_name='rng_try_{}'.format(i))
            if ga.found_winner:
                print('Found winner')
                rand_won += 1
            else:
                print('Didn\'t find winner')
            iterations.append(ga.max_gen)
        print('Stats:\n? won: \t{}\n% won: \t{}\n? iters (avg): \t{}'
              .format(rand_won, 100 * rand_won / num_tests, np.mean(iterations)))

        ax_iterations = plt.subplot(212, sharex=ax_gens)
        ax_iterations.set_ylim([math.ceil(min(iterations) - 0.5 * (max(iterations) - min(iterations))),
                                math.ceil(min(iterations) + 0.5 * (max(iterations) - min(iterations)))])
        plt.bar(np.arange(num_tests), width=0.35, height=iterations, color='y')

        # ax.legend((rects1[0], rects2[0]), ('Men', 'Women'))
        plt.show(block=False)
项目:PythonDBAGraphs    作者:bobbydurrett    | 项目源码 | 文件源码
def line():
    """
    Creates a single graph with date and time as the x axis and
    a variable number of plots.

    """

# Save data to redraw plot later

    save_data('line')

# set the screen title, size, density

    fig = plt.figure(title,graph_dimensions,graph_dpi)

# do the plot
    plt.title(title)
    plt.ylabel(ylabel1)
    plt.grid(which="major")

    for plot_num in range(len(ylists)):
         plt.plot(xdatetimes,ylists[plot_num],color=my_colors(plot_num))

# date time formatting

    ax = plt.axes()
    fig.autofmt_xdate()
    ax.fmt_xdata = mdates.DateFormatter('%m/%d/%Y %H:%M')
    loc=mdates.AutoDateLocator()
    datetimefmt = mdates.AutoDateFormatter(loc)
    ax.xaxis.set_major_formatter(datetimefmt)
    ax.xaxis.set_major_locator(loc)

# other formatting

    plt.legend(ylistlabels,loc='upper left')
    plt.autoscale(tight=True)

    # subplots_adjust settings - single plot so zero space between plots
    vleft  = 0.06  # the left side of the subplots of the figure
    vright = 0.97    # the right side of the subplots of the figure
    vbottom = 0.12   # the bottom of the subplots of the figure
    vtop = 0.95      # the top of the subplots of the figure
    vwspace = 0.0   # the amount of width reserved for blank space between subplots
    vhspace = 0.0   # the amount of height reserved for white space between subplots

    plt.subplots_adjust(left=vleft,right=vright,bottom=vbottom,top=vtop,wspace=vwspace,hspace=vhspace)

    fileorscreen(title+'.png')

    return