Python matplotlib.pyplot 模块,NullLocator() 实例源码

我们从Python开源项目中,提取了以下31个代码示例,用于说明如何使用matplotlib.pyplot.NullLocator()

项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def saveHintonPlot(self, matrix, num_tests, max_weight=None, ax=None):
        """Draw Hinton diagram for visualizing a weight matrix."""
        fig,ax = plt.subplots(1,1)

        if not max_weight:
            max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))

        ax.patch.set_facecolor('gray')
        ax.set_aspect('equal', 'box')
        ax.xaxis.set_major_locator(plt.NullLocator())
        ax.yaxis.set_major_locator(plt.NullLocator())

        for (x, y), w in np.ndenumerate(matrix):
            color = 'white' if w > 0 else 'black'
            size = np.sqrt(np.abs(0.5*w/num_tests)) # Need to scale so that it is between 0 and 0.5
            rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                                 facecolor=color, edgecolor=color)
            ax.add_patch(rect)

        ax.autoscale_view()
        ax.invert_yaxis()
        plt.savefig(self.figures_path + self.save_prefix + '-Hinton.eps')
        plt.close()
项目:route-plotter    作者:perimosocordiae    | 项目源码 | 文件源码
def _setup_figure(bg_img, bg_extent, scale=1.0):
  plt.rc('figure', autolayout=False)  # turn off tight_layout
  dpi = plt.rcParams.get('figure.dpi', 100.0)
  fig = plt.figure(dpi=dpi, frameon=False)

  # scale the figure to fit the bg image
  bg_height, bg_width = bg_img.shape[:2]
  fig.set_size_inches(bg_width / dpi * scale, bg_height / dpi * scale)

  ax = fig.add_axes([0, 0, 1, 1])
  ax.set_axis_off()
  ax.xaxis.set_major_locator(plt.NullLocator())
  ax.yaxis.set_major_locator(plt.NullLocator())
  ax.imshow(bg_img, zorder=0, extent=bg_extent, cmap='Greys_r', aspect='auto')
  ax.autoscale(False)
  ax.margins(0, 0)
  return fig, ax
项目:faampy    作者:ncasuk    | 项目源码 | 文件源码
def plot_heater(ax, data):
    """
    plots deiced heater status i.e. ON/OFF

    """
    if not 'PRTAFT_deiced_temp_flag' in data:
        return
    ax.text(0.05, 0.98,'Heater', axes_title_style, transform=ax.transAxes)
    ax.grid(False)
    ax.set_ylim(0,1)
    ax.yaxis.set_major_locator(plt.NullLocator())
    plt.setp(ax.get_xticklabels(), visible=False)
    heater_status=np.array(data['PRTAFT_deiced_temp_flag'], dtype=np.int8)
    toggle=np.diff(heater_status.ravel())
    time_periods=zip(list(np.where(toggle == 1)[0]),
                     list(np.where(toggle == -1)[0]))
    for t in time_periods:
        #plt.barh(0, data['mpl_timestamp'][0,1], left=data['mpl_timestamp'][0,0])
        width=data['mpl_timestamp'][t[1],0]-data['mpl_timestamp'][t[0],0]
        ax.add_patch(patches.Rectangle((data['mpl_timestamp'][t[0],0], 0), width, 1, alpha=0.8, color='#ffaf4d'))
    return ax
项目:kvae    作者:simonkamronn    | 项目源码 | 文件源码
def hinton(matrix, max_weight=None, ax=None):
    """Draw Hinton diagram for visualizing a weight matrix."""
    ax = ax if ax is not None else plt.gca()

    if not max_weight:
        max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w) / max_weight)
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis()
项目:labelme    作者:wkentaro    | 项目源码 | 文件源码
def draw_label(label, img, label_names, colormap=None):
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
                        wspace=0, hspace=0)
    plt.margins(0, 0)
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if colormap is None:
        colormap = label_colormap(len(label_names))

    label_viz = label2rgb(label, img, n_labels=len(label_names))
    plt.imshow(label_viz)
    plt.axis('off')

    plt_handlers = []
    plt_titles = []
    for label_value, label_name in enumerate(label_names):
        fc = colormap[label_value]
        p = plt.Rectangle((0, 0), 1, 1, fc=fc)
        plt_handlers.append(p)
        plt_titles.append(label_name)
    plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=.5)

    f = io.BytesIO()
    plt.savefig(f, bbox_inches='tight', pad_inches=0)
    plt.cla()
    plt.close()

    out = np.array(PIL.Image.open(f))[:, :, :3]
    out = scipy.misc.imresize(out, img.shape[:2])
    return out
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def hinton(matrix, max_weight=None, ax=None, xtick=None, ytick=None, inverted_color=False):
    """Draw Hinton diagram for visualizing a weight matrix.

    Copied from: http://matplotlib.org/examples/specialty_plots/hinton_demo.html
    """
    ax = ax if ax is not None else plt.gca()
    if not max_weight:
        max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        if inverted_color:
            color = 'black' if w > 0 else 'white'
        else:
            color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w))
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis()

    if xtick:
        ax.set_xticks(np.arange(matrix.shape[0]))
        ax.set_xticklabels(xtick)
    if ytick:
        ax.set_yticks(np.arange(matrix.shape[1]))
        ax.set_yticklabels(ytick)
    return ax
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def hinton(matrix, max_weight=None, ax=None, xtick=None, ytick=None, inverted_color=False):
    """Draw Hinton diagram for visualizing a weight matrix.

    Copied from: http://matplotlib.org/examples/specialty_plots/hinton_demo.html
    """
    ax = ax if ax is not None else plt.gca()
    if not max_weight:
        max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        if inverted_color:
            color = 'black' if w > 0 else 'white'
        else:
            color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w))
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis()

    if xtick:
        ax.set_xticks(np.arange(matrix.shape[0]))
        ax.set_xticklabels(xtick)
    if ytick:
        ax.set_yticks(np.arange(matrix.shape[1]))
        ax.set_yticklabels(ytick)
    return ax
项目:odin    作者:imito    | 项目源码 | 文件源码
def plot_hinton(matrix, max_weight=None, ax=None):
  '''
  Hinton diagrams are useful for visualizing the values of a 2D array (e.g.
  a weight matrix):
      Positive: white
      Negative: black
  squares, and the size of each square represents the magnitude of each value.
  * Note: performance significant decrease as array size > 50*50
  Example:
      W = np.random.rand(10,10)
      hinton_plot(W)
  '''
  from matplotlib import pyplot as plt

  """Draw Hinton diagram for visualizing a weight matrix."""
  ax = ax if ax is not None else plt.gca()

  if not max_weight:
    max_weight = 2**np.ceil(np.log(np.abs(matrix).max()) / np.log(2))

  ax.patch.set_facecolor('gray')
  ax.set_aspect('equal', 'box')
  ax.xaxis.set_major_locator(plt.NullLocator())
  ax.yaxis.set_major_locator(plt.NullLocator())

  for (x, y), w in np.ndenumerate(matrix):
    color = 'white' if w > 0 else 'black'
    size = np.sqrt(np.abs(w))
    rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                         facecolor=color, edgecolor=color)
    ax.add_patch(rect)

  ax.autoscale_view()
  ax.invert_yaxis()
  return ax


# ===========================================================================
# Helper methods
# ===========================================================================
项目:deepsleepnet    作者:akaraspt    | 项目源码 | 文件源码
def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836):
    """Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

    Parameters
    ----------
    I : numpy.array
        The image
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    cmap : None or string
        'gray' for greyscale, None for default, etc.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> env = gym.make("Pong-v0")
    >>> observation = env.reset()
    >>> tl.visualize.frame(observation)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images

    if len(I.shape) and I.shape[-1]==1:     # (10,10,1) --> (10,10)
        I = I[:,:,0]

    plt.imshow(I, cmap)
    plt.title(name)
    # plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
    # plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:DropNeuron    作者:zsdonghao    | 项目源码 | 文件源码
def visualize_CNN(CNN, second=10, saveable=True, name='cnn1_', fig_idx=39362):
    n_feature = CNN.shape[0]
    n_color = CNN.shape[1]
    n_row = CNN.shape[2]
    n_col = CNN.shape[3]
    row = int(np.sqrt(n_feature))
    col = int(np.ceil(n_feature/row))
    plt.ion()   # active mode
    fig = plt.figure(fig_idx)
    count = 1
    for ir in range(1, row+1):
        for ic in range(1, col+1):
            if count > n_feature:
                break
            a = fig.add_subplot(col, row, count)
            plt.imshow(
                    np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),
                    cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # ?????(tick)
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:DropNeuron    作者:zsdonghao    | 项目源码 | 文件源码
def visualize_CNN(CNN, second=10, saveable=True, name='cnn1_', fig_idx=39362):
    n_feature = CNN.shape[0]
    n_color = CNN.shape[1]
    n_row = CNN.shape[2]
    n_col = CNN.shape[3]
    row = int(np.sqrt(n_feature))
    col = int(np.ceil(n_feature/row))
    plt.ion()   # active mode
    fig = plt.figure(fig_idx)
    count = 1
    for ir in range(1, row+1):
        for ic in range(1, col+1):
            if count > n_feature:
                break
            a = fig.add_subplot(col, row, count)
            plt.imshow(
                    np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),
                    cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # ?????(tick)
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:dlcv_for_beginners    作者:frombeijingwithlove    | 项目源码 | 文件源码
def draw_density_estimation(self, axis, title, samples, cmap):
        axis.clear()
        axis.set_xlabel(title)
        density_estimation = numpy.zeros((self.l_kde, self.l_kde))
        for x, y in samples:
            if 0 < x < 1 and 0 < y < 1:
                density_estimation[int((1-y) / self.resolution)][int(x / self.resolution)] += 1
        density_estimation = filters.gaussian(density_estimation, self.bw_kde_)
        axis.imshow(density_estimation, cmap=cmap)
        axis.xaxis.set_major_locator(pyplot.NullLocator())
        axis.yaxis.set_major_locator(pyplot.NullLocator())
项目:artemis    作者:QUVA-Lab    | 项目源码 | 文件源码
def remove_y_axis():
    plt.tick_params(axis='y', labelbottom='off')
    # plt.gca().yaxis.set_major_locator(plt.NullLocator())
项目:dcgan    作者:zsdonghao    | 项目源码 | 文件源码
def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836):
    """Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

    Parameters
    ----------
    I : numpy.array
        The image
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    cmap : None or string
        'gray' for greyscale, None for default, etc.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> env = gym.make("Pong-v0")
    >>> observation = env.reset()
    >>> tl.visualize.frame(observation)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images

    if len(I.shape) and I.shape[-1]==1:     # (10,10,1) --> (10,10)
        I = I[:,:,0]

    plt.imshow(I, cmap)
    plt.title(name)
    # plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
    # plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def frame(I=None, second=5, saveable=True, name='frame', fig_idx=12836):
    """Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

    Parameters
    ----------
    I : numpy.array
        The image
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolen
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> env = gym.make("Pong-v0")
    >>> observation = env.reset()
    >>> tl.visualize.frame(observation)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images

    plt.imshow(I)
    # plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
    # plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836):
    """Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

    Parameters
    ----------
    I : numpy.array
        The image
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    cmap : None or string
        'gray' for greyscale, None for default, etc.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> env = gym.make("Pong-v0")
    >>> observation = env.reset()
    >>> tl.visualize.frame(observation)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images

    if len(I.shape) and I.shape[-1]==1:     # (10,10,1) --> (10,10)
        I = I[:,:,0]

    plt.imshow(I, cmap)
    plt.title(name)
    # plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
    # plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:odin_old    作者:trungnt13    | 项目源码 | 文件源码
def plot_hinton(matrix, max_weight=None, ax=None):
    '''
    Hinton diagrams are useful for visualizing the values of a 2D array (e.g.
    a weight matrix):
        Positive: white
        Negative: black
    squares, and the size of each square represents the magnitude of each value.
    * Note: performance significant decrease as array size > 50*50
    Example:
        W = np.random.rand(10,10)
        hinton_plot(W)
    '''
    from matplotlib import pyplot as plt

    """Draw Hinton diagram for visualizing a weight matrix."""
    ax = ax if ax is not None else plt.gca()

    if not max_weight:
        max_weight = 2**np.ceil(np.log(np.abs(matrix).max()) / np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w))
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis()
    return ax

# ===========================================================================
# Helper methods
# ===========================================================================
项目:deepsleepnet    作者:akaraspt    | 项目源码 | 文件源码
def W(W=None, second=10, saveable=True, shape=[28,28], name='mnist', fig_idx=2396512):
    """Visualize every columns of the weight matrix to a group of Greyscale img.

    Parameters
    ----------
    W : numpy.array
        The weight matrix
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    shape : a list with 2 int
        The shape of feature image, MNIST is [28, 80].
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images
    size = W.shape[0]
    n_units = W.shape[1]

    num_r = int(np.sqrt(n_units))  # ???????   ?25?hidden unit -> ????5?
    num_c = int(np.ceil(n_units/num_r))
    count = int(1)
    for row in range(1, num_r+1):
        for col in range(1, num_c+1):
            if count > n_units:
                break
            a = fig.add_subplot(num_r, num_c, count)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray')
            # ------------------------------------------------------------
            feature = W[:,count-1] / np.sqrt( (W[:,count-1]**2).sum())
            # feature[feature<0.0001] = 0   # value threshold
            # if count == 1 or count == 2:
            #     print(np.mean(feature))
            # if np.std(feature) < 0.03:      # condition threshold
            #     feature = np.zeros_like(feature)
            # if np.mean(feature) < -0.015:      # condition threshold
            #     feature = np.zeros_like(feature)
            plt.imshow(np.reshape(feature ,(shape[0],shape[1])),
                    cmap='gray', interpolation="nearest")#, vmin=np.min(feature), vmax=np.max(feature))
            # plt.title(name)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:deepsleepnet    作者:akaraspt    | 项目源码 | 文件源码
def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362):
    """Display a group of RGB or Greyscale CNN masks.

    Parameters
    ----------
    CNN : numpy.array
        The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
    """
    # print(CNN.shape)    # (5, 5, 3, 64)
    # exit()
    n_mask = CNN.shape[3]
    n_row = CNN.shape[0]
    n_col = CNN.shape[1]
    n_color = CNN.shape[2]
    row = int(np.sqrt(n_mask))
    col = int(np.ceil(n_mask/row))
    plt.ion()   # active mode
    fig = plt.figure(fig_idx)
    count = 1
    for ir in range(1, row+1):
        for ic in range(1, col+1):
            if count > n_mask:
                break
            a = fig.add_subplot(col, row, count)
            # print(CNN[:,:,:,count-1].shape, n_row, n_col)   # (5, 1, 32) 5 5
            # exit()
            # plt.imshow(
            #         np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),
            #         cmap='gray', interpolation="nearest")     # theano
            if n_color == 1:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col)),
                        cmap='gray', interpolation="nearest")
            elif n_color == 3:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col, n_color)),
                        cmap='gray', interpolation="nearest")
            else:
                raise Exception("Unknown n_color")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:gail-driver    作者:sisl    | 项目源码 | 文件源码
def __init__(self, reward_fn=None, mu=0., std=1.0):
        super(DriveEnv_1D, self).__init__(reward_fn, mu, std)

        # Load in trajectory data from NGSIM
        self.j = j = julia.Julia()
        j.using("NGSIM")
        j.using("AutomotiveDrivingModels")
        j.add_module_functions("NGSIM")
        print 'Loading NGSIM data...'
        self.trajdata = j.eval("load_trajdata(1)")
        self.ids = self.j.get_ids(self.trajdata)
        print 'Done.'

        # Graphics
        if GRAPHICS:
            _, self.ax = plt.subplots(1, 1)
            drawParams = {}

            drawParams['xBottom'] = -50
            drawParams['yTop'] = 10.0
            drawParams['xTop'] = 10.0
            drawParams['carlength'] = carlength = 5
            drawParams['carheight'] = carheight = 2

            drawParams['txtDist'] = plt.text(
                0.5, 0.9, '', ha='center', va='center', transform=self.ax.transAxes)
            drawParams['txtS_ego'] = plt.text(
                0.3, 0.5, '', ha='center', va='center', transform=self.ax.transAxes)
            drawParams['txtS_lead'] = plt.text(
                0.7, 0.5, '', ha='center', va='center', transform=self.ax.transAxes)

            self.ax.set_xlim((drawParams['xBottom'], drawParams['xTop']))
            self.ax.set_ylim((0, drawParams['yTop']))
            self.ax.xaxis.set_major_locator(plt.NullLocator())
            self.ax.yaxis.set_major_locator(plt.NullLocator())
            self.ax.set_aspect(1)

            drawParams['ego'] = ego = mpl.patches.Rectangle(
                (0 - carlength, 0), carlength, carheight, color='b')
            drawParams['lead'] = lead = mpl.patches.Rectangle(
                (0, 0), carlength, carheight, color='r')

            self.drawParams = drawParams

            self.ax.add_patch(ego)
            self.ax.add_patch(lead)
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def W(W=None, second=10, saveable=True, shape=[28,28], name='mnist', fig_idx=2396512):
    """Visualize every columns of the weight matrix to a group of Greyscale img.

    Parameters
    ----------
    W : numpy.array
        The weight matrix
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    shape : a list with 2 int
        The shape of feature image, MNIST is [28, 80].
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
    """
    import matplotlib.pyplot as plt
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images
    size = W.shape[0]
    n_units = W.shape[1]

    num_r = int(np.sqrt(n_units))  # ???????   ?25?hidden unit -> ????5?
    num_c = int(np.ceil(n_units/num_r))
    count = int(1)
    for row in range(1, num_r+1):
        for col in range(1, num_c+1):
            if count > n_units:
                break
            a = fig.add_subplot(num_r, num_c, count)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray')
            # ------------------------------------------------------------
            feature = W[:,count-1] / np.sqrt( (W[:,count-1]**2).sum())
            # feature[feature<0.0001] = 0   # value threshold
            # if count == 1 or count == 2:
            #     print(np.mean(feature))
            # if np.std(feature) < 0.03:      # condition threshold
            #     feature = np.zeros_like(feature)
            # if np.mean(feature) < -0.015:      # condition threshold
            #     feature = np.zeros_like(feature)
            plt.imshow(np.reshape(feature ,(shape[0],shape[1])),
                    cmap='gray', interpolation="nearest")#, vmin=np.min(feature), vmax=np.max(feature))
            # plt.title(name)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836):
    """Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

    Parameters
    ----------
    I : numpy.array
        The image
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    cmap : None or string
        'gray' for greyscale, None for default, etc.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> env = gym.make("Pong-v0")
    >>> observation = env.reset()
    >>> tl.visualize.frame(observation)
    """
    import matplotlib.pyplot as plt
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images

    if len(I.shape) and I.shape[-1]==1:     # (10,10,1) --> (10,10)
        I = I[:,:,0]

    plt.imshow(I, cmap)
    plt.title(name)
    # plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
    # plt.gca().yaxis.set_major_locator(plt.NullLocator())

    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362):
    """Display a group of RGB or Greyscale CNN masks.

    Parameters
    ----------
    CNN : numpy.array
        The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
    """
    import matplotlib.pyplot as plt
    # print(CNN.shape)    # (5, 5, 3, 64)
    # exit()
    n_mask = CNN.shape[3]
    n_row = CNN.shape[0]
    n_col = CNN.shape[1]
    n_color = CNN.shape[2]
    row = int(np.sqrt(n_mask))
    col = int(np.ceil(n_mask/row))
    plt.ion()   # active mode
    fig = plt.figure(fig_idx)
    count = 1
    for ir in range(1, row+1):
        for ic in range(1, col+1):
            if count > n_mask:
                break
            a = fig.add_subplot(col, row, count)
            # print(CNN[:,:,:,count-1].shape, n_row, n_col)   # (5, 1, 32) 5 5
            # exit()
            # plt.imshow(
            #         np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),
            #         cmap='gray', interpolation="nearest")     # theano
            if n_color == 1:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col)),
                        cmap='gray', interpolation="nearest")
            elif n_color == 3:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col, n_color)),
                        cmap='gray', interpolation="nearest")
            else:
                raise Exception("Unknown n_color")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:Semantic-Segmentation-using-Adversarial-Networks    作者:oyam    | 项目源码 | 文件源码
def draw_label(label, img, n_class, label_titles, bg_label=0):
    """Convert label to rgb with label titles.

    @param label_title: label title for each labels.
    @type label_title: dict
    """
    from PIL import Image
    from scipy.misc import fromimage
    from skimage.color import label2rgb
    from skimage.transform import resize
    colors = labelcolormap(n_class)
    label_viz = label2rgb(label, img, colors=colors[1:], bg_label=bg_label)
    # label 0 color: (0, 0, 0, 0) -> (0, 0, 0, 255)
    label_viz[label == 0] = 0

    # plot label titles on image using matplotlib
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0,
                        wspace=0, hspace=0)
    plt.margins(0, 0)
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())
    plt.axis('off')
    # plot image
    plt.imshow(label_viz)
    # plot legend
    plt_handlers = []
    plt_titles = []
    for label_value in np.unique(label):
        if label_value not in label_titles:
            continue
        fc = colors[label_value]
        p = plt.Rectangle((0, 0), 1, 1, fc=fc)
        plt_handlers.append(p)
        plt_titles.append(label_titles[label_value])
    plt.legend(plt_handlers, plt_titles, loc='lower right', framealpha=0.5)
    # convert plotted figure to np.ndarray
    f = StringIO.StringIO()
    plt.savefig(f, bbox_inches='tight', pad_inches=0)
    result_img_pil = Image.open(f)
    result_img = fromimage(result_img_pil, mode='RGB')
    result_img = resize(result_img, img.shape, preserve_range=True)
    result_img = result_img.astype(img.dtype)
    return result_img
项目:DKFZBiasFilter    作者:eilslabs    | 项目源码 | 文件源码
def hinton(weight_matrix, intensity_matrix, cmap, vmin, vmax, max_weight=None, ax=None):
    """
        Draw Hinton diagram for visualizing a weight matrix.

        Args
        ----
          weight_matrix: np.array
          intensity_matrix: np.array
          cmap: string
            Identifier of colormap being used for plotting (e.g. "PRGn")
          vmin: float
            Minimal value to be displayed in intensity matrix
          vmax: float
            Maximal value to be displayed in intensity matrix
          max_weight: int
            Force maximal weight of weight matrix
          ax: matplotlib.axes.Axes instance
    """
    ax = ax if ax is not None else plt.gca()

    # Set colors for intensity matrix
    cm = plt.get_cmap(cmap)
    cNorm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
    scalarMap = matplotlib.cm.ScalarMappable(norm=cNorm, cmap=cm)
    intensity_colors = scalarMap.to_rgba(intensity_matrix)

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x,y),w in np.ndenumerate(weight_matrix):
        color = intensity_colors[x][y]
        size = 0.
        if(not(w==0)):
            size = calculateRootedSize(float(w), float(weight_matrix.max()))

        if(not(max_weight == None)):
            size = 0.
            if(not(w==0)):
                size = calculateRootedSize(float(w), float(max_weight))
        rect = plt.Rectangle([(3-y) - size / 2, x - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    plt.ylim([-1,4])
    plt.xlim(-1,4)
    ax.invert_xaxis()
    ax.invert_yaxis()
项目:DKFZBiasFilter    作者:eilslabs    | 项目源码 | 文件源码
def hintonLegend(weight_matrix, intensity_matrix, text_matrix, cmap, vmin, vmax, max_weight=None, ax=None):
    """
        Draw Hinton diagram for visualizing a legend describing the number of mutations corresponding to sizes of squares.

        Args
        ----
          weight_matrix: np.array
          intensity_matrix: np.array
          text_matrix: np.array
          cmap: string
            Identifier of colormap being used for plotting (e.g. "PRGn")
          vmin: float
            Minimal value to be displayed in intensity matrix
          vmax: float
            Maximal value to be displayed in intensity matrix
          max_weight: int
            Force maximal weight of weight matrix
          ax: matplotlib.axes.Axes instance
    """
    ax = ax if ax is not None else plt.gca()

    # Set colors for intensity matrix
    cm = plt.get_cmap(cmap)
    cNorm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
    scalarMap = matplotlib.cm.ScalarMappable(norm=cNorm, cmap=cm)
    intensity_colors = scalarMap.to_rgba(intensity_matrix)

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x,y),w in np.ndenumerate(weight_matrix):
        color = intensity_colors[x][y]
        size = 0.
        if(not(w==0)):
            size = calculateRootedSize(float(w), float(weight_matrix.max()))

        if(not(max_weight == None)):
            size = 0.
            if(not(w==0)):
                size = calculateRootedSize(float(w), float(max_weight))
        rect = plt.Rectangle([(3-y) - size / 2, x - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    for (x,y),w in np.ndenumerate(text_matrix):
        ax.add_patch(rect)
        plt.text(3-y, x, w)


    plt.ylim([-1,4])
    plt.xlim(-1,4)
    ax.invert_xaxis()
    ax.invert_yaxis()
项目:dcgan    作者:zsdonghao    | 项目源码 | 文件源码
def W(W=None, second=10, saveable=True, shape=[28,28], name='mnist', fig_idx=2396512):
    """Visualize every columns of the weight matrix to a group of Greyscale img.

    Parameters
    ----------
    W : numpy.array
        The weight matrix
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    shape : a list with 2 int
        The shape of feature image, MNIST is [28, 80].
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images
    size = W.shape[0]
    n_units = W.shape[1]

    num_r = int(np.sqrt(n_units))  # ???????   ?25?hidden unit -> ????5?
    num_c = int(np.ceil(n_units/num_r))
    count = int(1)
    for row in range(1, num_r+1):
        for col in range(1, num_c+1):
            if count > n_units:
                break
            a = fig.add_subplot(num_r, num_c, count)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray')
            # ------------------------------------------------------------
            feature = W[:,count-1] / np.sqrt( (W[:,count-1]**2).sum())
            # feature[feature<0.0001] = 0   # value threshold
            # if count == 1 or count == 2:
            #     print(np.mean(feature))
            # if np.std(feature) < 0.03:      # condition threshold
            #     feature = np.zeros_like(feature)
            # if np.mean(feature) < -0.015:      # condition threshold
            #     feature = np.zeros_like(feature)
            plt.imshow(np.reshape(feature ,(shape[0],shape[1])),
                    cmap='gray', interpolation="nearest")#, vmin=np.min(feature), vmax=np.max(feature))
            # plt.title(name)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:dcgan    作者:zsdonghao    | 项目源码 | 文件源码
def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362):
    """Display a group of RGB or Greyscale CNN masks.

    Parameters
    ----------
    CNN : numpy.array
        The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
    """
    # print(CNN.shape)    # (5, 5, 3, 64)
    # exit()
    n_mask = CNN.shape[3]
    n_row = CNN.shape[0]
    n_col = CNN.shape[1]
    n_color = CNN.shape[2]
    row = int(np.sqrt(n_mask))
    col = int(np.ceil(n_mask/row))
    plt.ion()   # active mode
    fig = plt.figure(fig_idx)
    count = 1
    for ir in range(1, row+1):
        for ic in range(1, col+1):
            if count > n_mask:
                break
            a = fig.add_subplot(col, row, count)
            # print(CNN[:,:,:,count-1].shape, n_row, n_col)   # (5, 1, 32) 5 5
            # exit()
            # plt.imshow(
            #         np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),
            #         cmap='gray', interpolation="nearest")     # theano
            if n_color == 1:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col)),
                        cmap='gray', interpolation="nearest")
            elif n_color == 3:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col, n_color)),
                        cmap='gray', interpolation="nearest")
            else:
                raise Exception("Unknown n_color")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def W(W=None, second=10, saveable=True, shape=[28,28], name='mnist', fig_idx=2396512):
    """Visualize every columns of the weight matrix to a group of Greyscale img.

    Parameters
    ----------
    W : numpy.array
        The weight matrix
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolen
        Save or plot the figure.
    shape : a list with 2 int
        The shape of feature image, MNIST is [28, 80].
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images
    size = W.shape[0]
    n_units = W.shape[1]

    num_r = int(np.sqrt(n_units))  # ???????   ?25?hidden unit -> ????5?
    num_c = int(np.ceil(n_units/num_r))
    count = int(1)
    for row in range(1, num_r+1):
        for col in range(1, num_c+1):
            if count > n_units:
                break
            a = fig.add_subplot(num_r, num_c, count)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray')
            # ------------------------------------------------------------
            feature = W[:,count-1] / np.sqrt( (W[:,count-1]**2).sum())
            # feature[feature<0.0001] = 0   # value threshold
            # if count == 1 or count == 2:
            #     print(np.mean(feature))
            # if np.std(feature) < 0.03:      # condition threshold
            #     feature = np.zeros_like(feature)
            # if np.mean(feature) < -0.015:      # condition threshold
            #     feature = np.zeros_like(feature)
            plt.imshow(np.reshape(feature ,(shape[0],shape[1])),
                    cmap='gray', interpolation="nearest")#, vmin=np.min(feature), vmax=np.max(feature))
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362):
    """Display a group of RGB or Greyscale CNN masks.

    Parameters
    ----------
    CNN : numpy.array
        The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolen
        Save or plot the figure.
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
    """
    # print(CNN.shape)    # (5, 5, 3, 64)
    # exit()
    n_mask = CNN.shape[3]
    n_row = CNN.shape[0]
    n_col = CNN.shape[1]
    n_color = CNN.shape[2]
    row = int(np.sqrt(n_mask))
    col = int(np.ceil(n_mask/row))
    plt.ion()   # active mode
    fig = plt.figure(fig_idx)
    count = 1
    for ir in range(1, row+1):
        for ic in range(1, col+1):
            if count > n_mask:
                break
            a = fig.add_subplot(col, row, count)
            # print(CNN[:,:,:,count-1].shape, n_row, n_col)   # (5, 1, 32) 5 5
            # exit()
            # plt.imshow(
            #         np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),
            #         cmap='gray', interpolation="nearest")     # theano
            if n_color == 1:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col)),
                        cmap='gray', interpolation="nearest")
            elif n_color == 3:
                plt.imshow(
                        np.reshape(CNN[:,:,:,count-1], (n_row, n_col, n_color)),
                        cmap='gray', interpolation="nearest")
            else:
                raise Exception("Unknown n_color")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def W(W=None, second=10, saveable=True, shape=[28,28], name='mnist', fig_idx=2396512):
    """Visualize every columns of the weight matrix to a group of Greyscale img.

    Parameters
    ----------
    W : numpy.array
        The weight matrix
    second : int
        The display second(s) for the image(s), if saveable is False.
    saveable : boolean
        Save or plot the figure.
    shape : a list with 2 int
        The shape of feature image, MNIST is [28, 80].
    name : a string
        A name to save the image, if saveable is True.
    fig_idx : int
        matplotlib figure index.

    Examples
    --------
    >>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
    """
    if saveable is False:
        plt.ion()
    fig = plt.figure(fig_idx)      # show all feature images
    size = W.shape[0]
    n_units = W.shape[1]

    num_r = int(np.sqrt(n_units))  # ???????   ?25?hidden unit -> ????5?
    num_c = int(np.ceil(n_units/num_r))
    count = int(1)
    for row in range(1, num_r+1):
        for col in range(1, num_c+1):
            if count > n_units:
                break
            a = fig.add_subplot(num_r, num_c, count)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray')
            # ------------------------------------------------------------
            feature = W[:,count-1] / np.sqrt( (W[:,count-1]**2).sum())
            # feature[feature<0.0001] = 0   # value threshold
            # if count == 1 or count == 2:
            #     print(np.mean(feature))
            # if np.std(feature) < 0.03:      # condition threshold
            #     feature = np.zeros_like(feature)
            # if np.mean(feature) < -0.015:      # condition threshold
            #     feature = np.zeros_like(feature)
            plt.imshow(np.reshape(feature ,(shape[0],shape[1])),
                    cmap='gray', interpolation="nearest")#, vmin=np.min(feature), vmax=np.max(feature))
            # plt.title(name)
            # ------------------------------------------------------------
            # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest")
            plt.gca().xaxis.set_major_locator(plt.NullLocator())    # distable tick
            plt.gca().yaxis.set_major_locator(plt.NullLocator())
            count = count + 1
    if saveable:
        plt.savefig(name+'.pdf',format='pdf')
    else:
        plt.draw()
        plt.pause(second)