Python matplotlib.pyplot 模块,set_cmap() 实例源码

我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用matplotlib.pyplot.set_cmap()

项目:Cocktail-Party-Problem    作者:vishwajeet97    | 项目源码 | 文件源码
def plotImages(image_list, name_list, path, as_grey, toSave=False):
    """Plots the images given in image_list side by side."""

    fig = plt.figure()
    imageCoordinate = 100 + 10*len(image_list) + 1
    i = 0

    for image in image_list:
        fig.add_subplot(imageCoordinate)
        plt.title(name_list[i])
        plt.axis('off')
        plt.imshow(image)
        if as_grey:
            plt.set_cmap('gray')

        imageCoordinate += 1
        i += 1

    if toSave:
        plt.savefig("./plots/images/" + path + ".png",bbox_inches='tight')
    plt.show()
项目:Cocktail-Party-Problem    作者:vishwajeet97    | 项目源码 | 文件源码
def plotImages(image_list, name_list, path, as_grey, toSave=False):
    """Plots the images given in image_list side by side."""

    fig = plt.figure()
    imageCoordinate = 100 + 10*len(image_list) + 1
    i = 0

    for image in image_list:
        fig.add_subplot(imageCoordinate)
        plt.title(name_list[i])
        plt.axis('off')
        plt.imshow(image)
        if as_grey:
            plt.set_cmap('gray')

        imageCoordinate += 1
        i += 1

    if toSave:
        plt.savefig(path + ".jpg",bbox_inches='tight')
    plt.show()
项目:pysptools    作者:ctherien    | 项目源码 | 文件源码
def _plot_single_map1(self, path, cmap, signo, dist_map, threshold, constrained, stretch, colorMap, suffix):
        import matplotlib.pyplot as plt
        if path != None:
            plt.ioff()
        grad = self.get_single_map(signo, cmap, dist_map, threshold, constrained, stretch)
        plt.imshow(grad, interpolation='none')
        plt.set_cmap(colorMap)
        cbar = plt.colorbar()
        cbar.set_ticks([])
        if path != None:
            if suffix == None:
                fout = osp.join(path, '{0}_{1}.png'.format(self.label, signo))
            else:
                fout = osp.join(path, '{0}_{1}_{2}.png'.format(self.label, signo, suffix))
            try:
                plt.savefig(fout)
            except IOError:
                raise IOError('in classifiers.output, no such file or directory: {0}'.format(path))
        else:
            if suffix == None:
                plt.title('{0} - EM{1}'.format(self.label, signo))
            else:
                plt.title('{0} - EM{1} - {2}'.format(self.label, signo, suffix))
            plt.show()
        plt.close()
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseLearnedFeatures(self):
        """
            Visualise the features learned by the autoencoder
        """
        import matplotlib.pyplot as plt

        extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture
        # number of rows and columns to plot (number of hidden units also stored in self._architecture)
        plotDims = np.rint(np.sqrt(self._architecture[1]))
        plt.ion()
        fig = plt.figure()
        plt.set_cmap("gnuplot")
        plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1)
        learnedFeatures = self.getLearnedFeatures()
        for i in range(self._architecture[1]):
            image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000
            ax = fig.add_subplot(plotDims, plotDims, i)
            plt.axis("off")
            ax.imshow(image, interpolation="nearest")
        plt.show()
        raw_input("Program paused. Press enter to continue.")
项目:RealtimeFacialEmotionRecognition    作者:sushant3095    | 项目源码 | 文件源码
def showimage(img):
    if img.ndim == 3:
        img = img[:, :, ::-1]
    plt.set_cmap('jet')
    plt.imshow(img,vmin=0, vmax=0.2)

# Display network activations
项目:tda-image-analysis    作者:rachellevanger    | 项目源码 | 文件源码
def plot_defect_classifications(bmp, list_of_classified_defects, unclassified_defect_region, td_classify, defect_free_region):

  plt.rcParams['figure.figsize'] = (10.0, 10.0);
  plt.set_cmap('gray');

  fig = plt.figure();
  ax = fig.add_subplot(111);
  fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None);

  # Plot the labeled defect regions on top of the temperature field
  bmp[defect_free_region==1.] = 0.5*bmp[defect_free_region==1.] # Defect-free region

  txt_out = []
  for defect in list_of_classified_defects:
      defect_center = centroid(defect['defect_region'])
      outline = defect['defect_region'] ^ morphology.binary_dilation(defect['defect_region'],morphology.disk(2))
      bmp[outline==1] = 255
      txt = ax.annotate(DEFECT_TYPES[defect['defect_type']],(defect_center[0]-5,defect_center[1]), color='white', fontweight='bold', fontsize=10);
      txt.set_path_effects([PathEffects.withStroke(linewidth=2, foreground='k')]);
      txt_out.append(txt)

  unknown_td = np.multiply(unclassified_defect_region, (td_classify != 0).astype(np.int))
  bmp[morphology.binary_dilation(unknown_td,morphology.disk(2))==1] = 0
  bmp[morphology.binary_dilation(unknown_td,morphology.disk(1))==1] = 255

  frame = ax.imshow(bmp);

  ax.axis('off');

  return fig, ax, frame, txt_out
项目:uci-statnlp    作者:sameersingh    | 项目源码 | 文件源码
def plot(m):
    plt.figure()
    img=plt.imshow(m)
    #img.set_clim(0.0,1.0)
    img.set_interpolation('nearest')
    #plt.set_cmap('gray')
    plt.colorbar()
项目:Cocktail-Party-Problem    作者:vishwajeet97    | 项目源码 | 文件源码
def showHistogram(image_list, name_list, path, toSave=False, hist_range=(0.0, 1.0)):
    """Shows the histogram of images specified by image_list 
    and sets the range of hist() using hist_range"""
    fig = plt.figure()
    fig.subplots_adjust(hspace=.5)
    image_coordinate = 321
    i = 0
    for image in image_list:
        fig.add_subplot(image_coordinate)
        plt.title(name_list[i])
        plt.set_cmap('gray')
        plt.axis('off')
        plt.imshow(image)

        image_coordinate += 1

        fig.add_subplot(image_coordinate)
        plt.title('histogram')
        plt.hist(image.ravel(), bins=256, range=hist_range)

        image_coordinate += 1   
        i += 1

    if toSave:
        plt.savefig("./plots/images/" + path + ".jpg")
    plt.show()
项目:Cocktail-Party-Problem    作者:vishwajeet97    | 项目源码 | 文件源码
def showHistogram(image_list, name_list, path, toSave=False, hist_range=(0.0, 1.0)):
    """Shows the histogram of images specified by image_list 
    and sets the range of hist() using hist_range"""
    fig = plt.figure()
    fig.subplots_adjust(hspace=.5)
    image_coordinate = 321
    i = 0
    for image in image_list:
        fig.add_subplot(image_coordinate)
        plt.title(name_list[i])
        plt.set_cmap('gray')
        plt.axis('off')
        plt.imshow(image)

        image_coordinate += 1

        fig.add_subplot(image_coordinate)
        plt.title('histogram')
        plt.hist(image.ravel(), bins=256, range=hist_range)

        image_coordinate += 1   
        i += 1

    if toSave:
        plt.savefig(path + ".jpg")
    plt.show()
项目:Fluid2d    作者:pvthinker    | 项目源码 | 文件源码
def gen_anim(self,varname,cax):
        plt.ion()
        plt.figure()
        plt.set_cmap('Spectral')
        t,z2d = self.read_crop(varname,-1)
        im=plt.imshow(z2d,vmin=cax[0],vmax=cax[1],extent=self.domain)
        plt.colorbar()
        for kt in range(self.nt):
            t,z2d=self.read_crop(varname,kt)
            im.set_data(z2d)
            plt.title('t = %4.2f'%t)
            #plt.draw()
            plt.savefig('%s_%02i.png'%(varname,kt))
项目:HappyNet    作者:danduncan    | 项目源码 | 文件源码
def showimage(img):
    if img.ndim == 3:
        img = img[:, :, ::-1]
    plt.set_cmap('jet')
    plt.imshow(img,vmin=0, vmax=0.2)

# Display network activations
项目:pysptools    作者:ctherien    | 项目源码 | 文件源码
def plot1(self, img, path=None, mask=None, interpolation='none', colorMap='jet', suffix=''):
        import matplotlib.pyplot as plt
        if path != None:
            plt.ioff()

        if isinstance(mask, np.ndarray):
            img = img[:,:] * mask

        plt.imshow(img, interpolation=interpolation)
        plt.set_cmap(colorMap)
        cbar = plt.colorbar()
        cbar.set_ticks([])
        if path != None:
            if suffix == None:
                fout = osp.join(path, '{0}.png'.format(self.label))
            else:
                fout = osp.join(path, '{0}_{1}.png'.format(self.label, suffix))
            try:
                plt.savefig(fout)
            except IOError:
                raise IOError('in classifiers.output, no such file or directory: {0}'.format(path))
        else:
            if suffix == None:
                plt.title('{0}'.format(self.label))
            else:
                plt.title('{0} - {1}'.format(self.label, suffix))
            plt.show()

        plt.close()
项目:emotion-conv-net    作者:GautamShine    | 项目源码 | 文件源码
def showimage(img):
    if img.ndim == 3:
        img = img[:, :, ::-1]
    plt.set_cmap('jet')
    plt.imshow(img,vmin=0, vmax=0.2)

# Display network activations
项目:nn-segmentation-for-lar    作者:cvdlab    | 项目源码 | 文件源码
def __init__(self, global_counter, path_to_mha=None, how_many_from_one=1, saving_path='./test_data/'):
        if path_to_mha is None:
            raise NameError(' missing .mha path ')
        self.images = []
        for i in range(0, len(path_to_mha)):
            self.images.append(np.array(sitk.GetArrayFromImage(sitk.ReadImage(path_to_mha[i]))))

        mkdir_p(saving_path)
        plt.set_cmap('gray')
        while how_many_from_one > 0:
            image_to_save = np.zeros((5,
                                      216,
                                      160))
            rand_value = rnd.randint(30, len(self.images[0]) - 30)
            for i in range(0, len(path_to_mha)):
                try:
                    image_to_save[i] = self.images[i][rand_value]
                except:
                    print('ahi')
                    print(self.images[i][rand_value].shape)
                    print(type(self.images))
                    print(type(self.images))
                    print('*')
                    continue
            print(image_to_save.shape)
            image_to_save = image_to_save.reshape((216 * 5, 160))
            print(image_to_save.shape)
            # image_to_save = resize(image_to_save, (5*216, 160), mode='constant')
            # image_to_save = image_to_save.resize(5*216, 160)
            plt.imsave(saving_path + str(global_counter) + '.png',
                       image_to_save)
            global_counter += 1
            how_many_from_one -= 1
项目:VNet    作者:faustomilletari    | 项目源码 | 文件源码
def sitk_show(nda, title=None, margin=0.0, dpi=40):
    figsize = (1 + margin) * nda.shape[0] / dpi, (1 + margin) * nda.shape[1] / dpi

    extent = (0, nda.shape[1], nda.shape[0], 0)
    fig = plt.figure(figsize=figsize, dpi=dpi)
    ax = fig.add_axes([margin, margin, 1 - 2*margin, 1 - 2*margin])

    plt.set_cmap("gray")
    for k in range(0,nda.shape[2]):
        print "printing slice "+str(k)
        ax.imshow(np.squeeze(nda[:,:,k]),extent=extent,interpolation=None)
        plt.draw()
        plt.pause(0.1)
        #plt.waitforbuttonpress()
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def run(plotIt=True):

    sig_halfspace = 1e-6
    sig_sphere = 1e0
    sig_air = 1e-8

    sphere_z = -50.
    sphere_radius = 30.

    # x-direction
    cs = 1
    nc = np.ceil(2.5*(- (sphere_z-sphere_radius))/cs)

    # define a mesh
    mesh = discretize.CylMesh([[(cs, nc)], 1, [(cs, nc)]], x0='00C')

    # Put the model on the mesh
    sigma = sig_air*np.ones(mesh.nC)  # start with air cells
    sigma[mesh.gridCC[:, 2] < 0.] = sig_halfspace  # cells below the earth

    # indices of the sphere
    sphere_ind = (
        (mesh.gridCC[:, 0]**2 + (mesh.gridCC[:, 2] - sphere_z)**2) <=
        sphere_radius**2
    )
    sigma[sphere_ind] = sig_sphere  # sphere

    if plotIt is False:
        return

    # Plot a cross section through the mesh
    fig, ax = plt.subplots(2, 1)
    # Set a nice colormap!
    plt.set_cmap(plt.get_cmap('viridis'))
    plt.colorbar(mesh.plotImage(np.log10(sigma), ax=ax[0])[0], ax=ax[0])
    ax[0].set_title('mirror = False')
    ax[0].axis('equal')
    ax[0].set_xlim([-200., 200.])

    plt.colorbar(
        mesh.plotImage(np.log10(sigma), ax=ax[1], mirror=True)[0], ax=ax[1]
    )
    ax[1].set_title('mirror = True')
    ax[1].axis('equal')
    ax[1].set_xlim([-200., 200.])

    plt.tight_layout()
项目:python-psignifit    作者:wichmann-lab    | 项目源码 | 文件源码
def plot2D(result,par1,par2, 
           colorMap = getColorMap(), 
            labelSize = 15,
            fontSize = 10,
            axisHandle = None,
            showImediate   = True):
    """ 
    This function constructs a 2 dimensional marginal plot of the posterior
    density. This is the same plot as it is displayed in plotBayes in an
    unmodifyable way.

    The result struct is passed as result.
    par1 and par2 should code the two parameters to plot:
        0 = threshold
        1 = width
        2 = lambda
        3 = gamma
        4 = eta

    Further plotting options may be passed.
    """
    # convert strings to dimension number
    par1,label1 = _utils.strToDim(str(par1))
    par2,label2 = _utils.strToDim(str(par2))

    assert (par1 != par2), 'par1 and par2 must be different numbers to code for the parameters to plot'

    if axisHandle == None:
        axisHandle = plt.gca()

    try:
        plt.axes(axisHandle)
    except TypeError:
        raise ValueError('Invalid axes handle provided to plot in.')

    plt.set_cmap(colorMap)

    marg, _, _ = marginalize(result, np.array([par1, par2]))

    if par1 > par2 :
        marg = marg.T


    if 1 in marg.shape:
        if len(result['X1D'][par1])==1:
            plotMarginal(result,par2)
        else:
            plotMarginal(result,par2)
    else:
        e = [result['X1D'][par2][0], result['X1D'][par2][-1], \
             result['X1D'][par1][0], result['X1D'][par1][-1]]
        plt.imshow(marg, extent = e)
        plt.ylabel(label1,fontsize = labelSize)
        plt.xlabel(label2,fontsize = labelSize)

    plt.tick_params(direction='out',right='off',top='off')
    for side in ['top','right']: axisHandle.spines[side].set_visible(False)
    plt.ticklabel_format(style='sci',scilimits=(-2,4))
    if (showImediate):
        plt.show(0)