Python matplotlib.pyplot 模块,figaspect() 实例源码

我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用matplotlib.pyplot.figaspect()

项目:TA_example_labs    作者:mit-racecar    | 项目源码 | 文件源码
def initialize(self):
        plt.ion()
        #Set up plot
        self.fig = plt.figure(figsize=plt.figaspect(2.))

        self.ax0 = self.fig.add_subplot(2,1,1)

        self.laser_angular, = self.ax0.plot([],[], 'r.')
        self.laser_filtered, = self.ax0.plot([],[], 'b-')

        self.ax0.set_ylim(-1, 15)
        self.ax0.set_xlim(-np.pi, +np.pi)
        self.ax0.invert_xaxis()
        self.ax0.grid()

        self.ax1 = self.fig.add_subplot(2,1,2) 
        self.ax1.invert_xaxis()
        self.ax1.grid()
        self.laser_euclid, = self.ax1.plot([],[], '.')
        self.laser_regressed, = self.ax1.plot([],[], 'g')

        self.redraw()
项目:py-NnK    作者:FMassin    | 项目源码 | 文件源码
def demo(self):

        # Axes Plots
        fig = plt.figure(figsize=plt.figaspect(1.))
        p = ((0,0), (1,0), (0,1), (1,1))
        cb=[0,0,0,1]
        for i,v in enumerate(self.simple_models.keys()):
            ax = plt.subplot2grid((2,2), p[i], projection='3d', aspect='equal', ylim=[-1,1], xlim=[-1,1], zlim=[-1,1])
            example = SeismicSource(self.simple_models[v]['definition'])
            example.Aki_Richards.plot(wave='P', style='*', ax=ax, cbarxlabel='P-wave amplitudes', cb=cb[i])
            ax.set_title(self.simple_models[v]['name'])

        plt.tight_layout()
项目:py-NnK    作者:FMassin    | 项目源码 | 文件源码
def demodc(self):

        # Axes Plots
        fig = plt.figure(figsize=plt.figaspect(2.))
        p = ((0,0), (1,0), (2,0))
        cb=[0,0,1]
        for i,v in enumerate(self.simple_models_dc.keys()):
            ax = plt.subplot2grid((3,1), p[i], projection='3d', aspect='equal', ylim=[-1,1], xlim=[-1,1], zlim=[-1,1])
            example = SeismicSource(self.simple_models_dc[v]['definition'])
            example.Aki_Richards.plot(wave='P', style='*', ax=ax, cbarxlabel='P-wave amplitudes', cb=cb[i])
            ax.set_title(self.simple_models_dc[v]['name'])

        plt.tight_layout()
项目:RiboCode    作者:xzt41    | 项目源码 | 文件源码
def lengthDistribution(length_counter,outname):
    w,h = plt.figaspect(0.4)
    plt.figure(figsize=(w,h))
    x = sorted(length_counter.keys())
    y = [length_counter[i] for i in x]
    plt.bar(x,y,width=0.95,edgecolor="white",align="center",color="#297FFF")
    plt.savefig(outname + "_readlength_distribution.pdf")
    plt.close()
项目:py-NnK    作者:FMassin    | 项目源码 | 文件源码
def stream_multiplexor_plot(stream,cf):
    """
    Plots the multi-scale time-series resulting from the multiplexors
    used in `~trigger` for characteristic function calculation
    (from `~trigger.ShortLongTerms` or `~trigger.leftRightTerms` or
    `~trigger.Component` classes).
    ______
    :type:
        - ObsPy:class:`~obspy.core.stream`.
        - NumPy:class:`~numpy.ndarray` [data-stream, channel, sample].
    :param:
        - data of e.g. seismograms.
        - multi-scale time-series associated to data, as given by
            `~trigger.ShortLongTerms.output` or
            `~trigger.leftRightTerms.output` or
            `~trigger.Component.output`.
    _______
    :rtype:
        - matplotlib:class:`~matplotlib.axes.Axes`
    :return:
        - axis to use for the plot.
    ___________
    .. rubric:: Example

        >>> import trigger
        >>> stlt = trigger.ShortLongTerms(trigger.artificial_stream(npts=500))
        >>> trigger.stream_multiplexor_plot(stlt.data, (stlt.output())[0])

    """
    fig = plt.figure()#figsize=plt.figaspect(1.2))
    ax = fig.gca()
    (tmax,nmax) = streamdatadim(stream)
    labels = ["" for x in range(tmax)]
    for t, trace in enumerate(stream):
        df = trace.stats.sampling_rate
        npts = trace.stats.npts
        time = np.arange(npts, dtype=np.float32) / df
        labels[t] = trace.id
        ax.plot(time, t+trace.data/(2*np.max(np.abs(trace.data))), '0.5')

        for c, channel in enumerate(cf[0][t]):
            if np.sum(cf[1][t][c][0:npts]) != 0 :
                if len(cf) > 0 :
                    ax.plot(time, t-.5+cf[0][t][c][0:npts]/(np.nanmax(np.abs(cf[0][t][c][0:npts]))), 'r')
                if len(cf) > 1 :
                    ax.plot(time, t-.5+cf[1][t][c][0:npts]/(np.nanmax(np.abs(cf[1][t][c][0:npts]))), 'b')
                if len(cf) > 2 :
                    ax.plot(time, t-.5+cf[2][t][c][0:npts]/(np.nanmax(np.abs(cf[1][t][c][0:npts]))), 'g')

    plt.yticks(np.arange(0, tmax, 1.0))
    ax.set_yticklabels(labels)
    ax.set_xlabel('Time (s)')
    ax.set_ylabel('Channel')
    plt.axis('tight')
    plt.tight_layout()

    return ax