Python matplotlib.pyplot 模块,Line2D() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用matplotlib.pyplot.Line2D()

项目:OpenTDA    作者:outlace    | 项目源码 | 文件源码
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show()
项目:OpenTDA    作者:outlace    | 项目源码 | 文件源码
def drawComplex(data, ph, axes=[-6, 8, -6, 6]):
    plt.clf()
    plt.axis(axes)  # axes = [x1, x2, y1, y2]
    plt.scatter(data[:, 0], data[:, 1])  # plotting just for clarity
    for i, txt in enumerate(data):
        plt.annotate(i, (data[i][0] + 0.05, data[i][1]))  # add labels

    # add lines for edges
    for edge in [e for e in ph.ripsComplex if len(e) == 2]:
        # print(edge)
        pt1, pt2 = [data[pt] for pt in [n for n in edge]]
        # plt.gca().add_line(plt.Line2D(pt1,pt2))
        line = plt.Polygon([pt1, pt2], closed=None, fill=None, edgecolor='r')
        plt.gca().add_line(line)

    # add triangles
    for triangle in [t for t in ph.ripsComplex if len(t) == 3]:
        pt1, pt2, pt3 = [data[pt] for pt in [n for n in triangle]]
        line = plt.Polygon([pt1, pt2, pt3], closed=False,
                           color="blue", alpha=0.3, fill=True, edgecolor=None)
        plt.gca().add_line(line)
    plt.show()
项目:OpenTDA    作者:outlace    | 项目源码 | 文件源码
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show()
项目:pyextremelm    作者:tobifinn    | 项目源码 | 文件源码
def __line(self, neuron1, neuron2):
        line = plt.Line2D(
            # (neuron1.x - x_adjustment, neuron2.x + x_adjustment),
            # (neuron1.y - y_adjustment, neuron2.y + y_adjustment))
            (neuron1.x-1, neuron2.x+1),
            (neuron1.y, neuron2.y))
        plt.gca().add_line(line)
项目:mimclib    作者:StochasticNumerics    | 项目源码 | 文件源码
def draw(self, renderer):
        import matplotlib.pylab as plt
        ax = self.get_axes()
        if self.flip:
            y = self._linspace(ax.get_ylim(), ax.get_yscale())
            self.set_xdata(self.fn(y))
            self.set_ydata(y)
        else:
            x = self._linspace(ax.get_xlim(), ax.get_xscale())
            self.set_xdata(x)
            self.set_ydata(self.fn(x))

        plt.Line2D.draw(self, renderer)
        self.set_xdata([])
        self.set_ydata([])
项目:TF-Genetic    作者:thepropterhoc    | 项目源码 | 文件源码
def draw_neural_net(self, ax, left, right, bottom, top, layer_sizes):
            '''
            Draw a neural network cartoon using matplotilb.

            :usage:
                    >>> fig = plt.figure(figsize=(12, 12))
                    >>> draw_neural_net(fig.gca(), .1, .9, .1, .9, [4, 7, 2])

            :parameters:
                    - ax : matplotlib.axes.AxesSubplot
                            The axes on which to plot the cartoon (get e.g. by plt.gca())
                    - left : float
                            The center of the leftmost node(s) will be placed here
                    - right : float
                            The center of the rightmost node(s) will be placed here
                    - bottom : float
                            The center of the bottommost node(s) will be placed here
                    - top : float
                            The center of the topmost node(s) will be placed here
                    - layer_sizes : list of int
                            List of layer sizes, including input and output dimensionality
            '''

            n_layers = len(layer_sizes) + 1
            maxLayerSize = 0

            for layer_group in layer_sizes:
                layer_size = sum(map(lambda x: x[1], layer_group))
                maxLayerSize = max(maxLayerSize, layer_size)
            v_spacing = (top - bottom)/float(maxLayerSize)
            h_spacing = (right - left)/float(len(layer_sizes) - 1)

            # Nodes
            for layerIndex, layer_group in enumerate(layer_sizes):
                layer_size = sum(map(lambda x: x[1], layer_group))
                layer_top = v_spacing*(layer_size - 1)/2. + (top + bottom)/2.
                currentIndex = 0
                for functionIndex, (inputSize, outputSize) in enumerate(layer_group):

                    if outputSize > 0:

                        for nodeIndex in range(outputSize):
                            circle = plt.Circle((layerIndex*h_spacing + left, layer_top - currentIndex*v_spacing), v_spacing/4.,
                                                                    color=self.activationFunctionColors[functionIndex], ec='k', zorder=4)
                            ax.add_artist(circle)
                            currentIndex += 1
                    else:
                        # Null nodes, ignore and keep going 
                        continue

            """
            # Edges
            for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
                    layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2.
                    layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2.
                    for m in xrange(layer_size_a):
                            for o in xrange(layer_size_b):
                                    line = plt.Line2D([n*h_spacing + left, (n + 1)*h_spacing + left],
                                                                        [layer_top_a - m*v_spacing, layer_top_b - o*v_spacing], c='k')
                                    ax.add_artist(line)
            """
项目:vnep-approx    作者:vnep-approx    | 项目源码 | 文件源码
def _make_edge(self, edge, u, layer_u, v, layer_v):
        if layer_u == layer_v:
            lon1 = self._substrate.node[u]['Longitude']
            lat1 = self._substrate.node[u]['Latitude']
            lon2 = self._substrate.node[v]['Longitude']
            lat2 = self._substrate.node[v]['Latitude']
            self._background_map.drawgreatcircle(lon1, lat1, lon2, lat2,
                                                 color="k",
                                                 ax=self._layer_axes[layer_u],
                                                 linewidth=self._edge_weights[edge],
                                                 # alpha = 0.8,
                                                 # dashes=(4,1),
                                                 zorder=1)
            return

        data_coordinates_u = self._nodes_to_data_coordinates[layer_u][u]
        data_coordinates_v = self._nodes_to_data_coordinates[layer_v][v]
        x_u, y_u = self._transform_from_data_to_figure_coordinates(data_coordinates_u,
                                                                   self._layer_axes[layer_u])
        x_v, y_v = self._transform_from_data_to_figure_coordinates(data_coordinates_v,
                                                                   self._layer_axes[layer_v])

        dx = abs(x_u - x_v)
        if x_u < x_v:
            x_left, y_left = x_u, y_u
            x_right, y_right = x_v, y_v
        else:
            x_left, y_left = x_v, y_v
            x_right, y_right = x_u, y_u
        n = 30
        x_values = np.linspace(x_left, x_right, n, endpoint=True)
        pi = 2 * np.arcsin(1.0)
        y_values = np.linspace(y_left, y_right, n, endpoint=True)

        if self._curved_edges and u != self._extended_graph.super_source and v != self._extended_graph.super_sink:
            y_values += 0.8 * MAP_MARGIN * np.sin((x_values - x_left) * pi / dx)

        return plt.Line2D(x_values, y_values,
                          transform=self._fig.transFigure,
                          linestyle="-",
                          color="k",
                          linewidth=self._edge_weights[edge],
                          zorder=1.0)