Python matplotlib.pyplot 模块,specgram() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用matplotlib.pyplot.specgram()

项目:tools    作者:kastnerkyle    | 项目源码 | 文件源码
def run_phase_reconstruction_example():
    fs, d = fetch_sample_speech_tapestry()
    # actually gives however many components you say! So double what .m file
    # says
    fftsize = 512
    step = 64
    X_s = np.abs(stft(d, fftsize=fftsize, step=step, real=False,
                      compute_onesided=False))
    X_t = iterate_invert_spectrogram(X_s, fftsize, step, verbose=True)

    """
    import matplotlib.pyplot as plt
    plt.specgram(d, cmap="gray")
    plt.savefig("1.png")
    plt.close()
    plt.imshow(X_s, cmap="gray")
    plt.savefig("2.png")
    plt.close()
    """

    wavfile.write("phase_original.wav", fs, soundsc(d))
    wavfile.write("phase_reconstruction.wav", fs, soundsc(X_t))
项目:tools    作者:kastnerkyle    | 项目源码 | 文件源码
def run_phase_reconstruction_example():
    fs, d = fetch_sample_speech_tapestry()
    # actually gives however many components you say! So double what .m file
    # says
    fftsize = 512
    step = 64
    X_s = np.abs(stft(d, fftsize=fftsize, step=step, real=False,
                      compute_onesided=False))
    X_t = iterate_invert_spectrogram(X_s, fftsize, step, verbose=True)

    """
    import matplotlib.pyplot as plt
    plt.specgram(d, cmap="gray")
    plt.savefig("1.png")
    plt.close()
    plt.imshow(X_s, cmap="gray")
    plt.savefig("2.png")
    plt.close()
    """

    wavfile.write("phase_original.wav", fs, soundsc(d))
    wavfile.write("phase_reconstruction.wav", fs, soundsc(X_t))
项目:synthesizer    作者:irmen    | 项目源码 | 文件源码
def harmonics():
    synth = WaveSynth()
    freq = 1500
    num_harmonics = 6
    h_all = synth.harmonics(freq, 1, [(n, 1/n) for n in range(1, num_harmonics+1)])
    even_harmonics = [(1, 1)]  # always include fundamental tone harmonic
    even_harmonics.extend([(n, 1/n) for n in range(2, num_harmonics*2, 2)])
    h_even = synth.harmonics(freq, 1, even_harmonics)
    h_odd = synth.harmonics(freq, 1, [(n, 1/n) for n in range(1, num_harmonics*2, 2)])
    h_all.join(h_even).join(h_odd)
    import matplotlib.pyplot as plot
    plot.title("Spectrogram")
    plot.ylabel("Freq")
    plot.xlabel("Time")
    plot.specgram(h_all.get_frame_array(), Fs=synth.samplerate, noverlap=90, cmap=plot.cm.gist_heat)
    plot.show()
项目:tools    作者:kastnerkyle    | 项目源码 | 文件源码
def implot(arr, scale=None, title="", cmap="gray"):
    import matplotlib.pyplot as plt
    if scale is "specgram":
        # plotting part
        mag = 20. * np.log10(np.abs(arr))
        # Transpose so time is X axis, and invert y axis so
        # frequency is low at bottom
        mag = mag.T[::-1, :]
    else:
        mag = arr
    f, ax = plt.subplots()
    ax.matshow(mag, cmap=cmap)
    plt.axis("off")
    x1 = mag.shape[0]
    y1 = mag.shape[1]

    def autoaspect(x_range, y_range):
        """
        The aspect to make a plot square with ax.set_aspect in Matplotlib
        """
        mx = max(x_range, y_range)
        mn = min(x_range, y_range)
        if x_range <= y_range:
            return mx / float(mn)
        else:
            return mn / float(mx)
    asp = autoaspect(x1, y1)
    ax.set_aspect(asp)
    plt.title(title)
项目:tools    作者:kastnerkyle    | 项目源码 | 文件源码
def implot(arr, scale=None, title="", cmap="gray"):
    import matplotlib.pyplot as plt
    if scale is "specgram":
        # plotting part
        mag = 20. * np.log10(np.abs(arr))
        # Transpose so time is X axis, and invert y axis so
        # frequency is low at bottom
        mag = mag.T[::-1, :]
    else:
        mag = arr
    f, ax = plt.subplots()
    ax.matshow(mag, cmap=cmap)
    plt.axis("off")
    x1 = mag.shape[0]
    y1 = mag.shape[1]

    def autoaspect(x_range, y_range):
        """
        The aspect to make a plot square with ax.set_aspect in Matplotlib
        """
        mx = max(x_range, y_range)
        mn = min(x_range, y_range)
        if x_range <= y_range:
            return mx / float(mn)
        else:
            return mn / float(mx)
    asp = autoaspect(x1, y1)
    ax.set_aspect(asp)
    plt.title(title)
项目:tools    作者:kastnerkyle    | 项目源码 | 文件源码
def run_phase_vq_example():
    def _pre(list_of_data):
        # Temporal window setting is crucial! - 512 seems OK for music, 256
        # fruit perhaps due to samplerates
        n_fft = 256
        step = 32
        f_r = np.vstack([np.abs(stft(dd, n_fft, step=step, real=False,
                                compute_onesided=False))
                         for dd in list_of_data])
        return f_r, n_fft, step

    def preprocess_train(list_of_data, random_state):
        f_r, n_fft, step = _pre(list_of_data)
        clusters = copy.deepcopy(f_r)
        return clusters

    def apply_preprocess(list_of_data, clusters):
        f_r, n_fft, step = _pre(list_of_data)
        f_clust = f_r
        # Nondeterministic ?
        memberships, distances = vq(f_clust, clusters)
        vq_r = clusters[memberships]
        d_k = iterate_invert_spectrogram(vq_r, n_fft, step, verbose=True)
        return d_k

    random_state = np.random.RandomState(1999)

    fs, d = fetch_sample_speech_fruit()
    d1 = d[::9]
    d2 = d[7::8][:5]
    # make sure d1 and d2 aren't the same!
    assert [len(di) for di in d1] != [len(di) for di in d2]

    clusters = preprocess_train(d1, random_state)
    fix_d1 = np.concatenate(d1)
    fix_d2 = np.concatenate(d2)
    vq_d2 = apply_preprocess(d2, clusters)

    wavfile.write("phase_train_no_agc.wav", fs, soundsc(fix_d1))
    wavfile.write("phase_vq_test_no_agc.wav", fs, soundsc(vq_d2))

    agc_d1, freq_d1, energy_d1 = time_attack_agc(fix_d1, fs, .5, 5)
    agc_d2, freq_d2, energy_d2 = time_attack_agc(fix_d2, fs, .5, 5)
    agc_vq_d2, freq_vq_d2, energy_vq_d2 = time_attack_agc(vq_d2, fs, .5, 5)

    """
    import matplotlib.pyplot as plt
    plt.specgram(agc_vq_d2, cmap="gray")
    #plt.title("Fake")
    plt.figure()
    plt.specgram(agc_d2, cmap="gray")
    #plt.title("Real")
    plt.show()
    """

    wavfile.write("phase_train_agc.wav", fs, soundsc(agc_d1))
    wavfile.write("phase_test_agc.wav", fs, soundsc(agc_d2))
    wavfile.write("phase_vq_test_agc.wav", fs, soundsc(agc_vq_d2))
项目:synthesizer    作者:irmen    | 项目源码 | 文件源码
def fm():
    synth = WaveSynth(samplerate=8000)
    from matplotlib import pyplot as plot
    freq = 2000
    lfo1 = Sine(1, amplitude=0.4, samplerate=synth.samplerate)
    s1 = synth.sine(freq, duration=3, fm_lfo=lfo1)
    plot.title("Spectrogram")
    plot.ylabel("Freq")
    plot.xlabel("Time")
    plot.specgram(s1.get_frame_array(), Fs=synth.samplerate, noverlap=90, cmap=plot.cm.gist_heat)
    plot.show()
    with Output(nchannels=1, samplerate=22050) as out:
        synth = WaveSynth(samplerate=22050)
        freq = 440
        lfo1 = Linear(5, samplerate=synth.samplerate)
        lfo1 = EnvelopeFilter(lfo1, 1, 0.5, 0.5, 0.5, 1)
        s1 = synth.sine(freq, duration=3, fm_lfo=lfo1)
        s_all = s1.copy()
        out.play_sample(s1)
        lfo1 = Sine(1, amplitude=0.2, samplerate=synth.samplerate)
        s1 = synth.sine(freq, duration=2, fm_lfo=lfo1)
        s_all.join(s1)
        out.play_sample(s1)
        lfo1 = Sine(freq/17, amplitude=0.5, samplerate=synth.samplerate)
        s1 = synth.sine(freq, duration=2, fm_lfo=lfo1)
        s_all.join(s1)
        out.play_sample(s1)
        lfo1 = Sine(freq/6, amplitude=0.5, samplerate=synth.samplerate)
        s1 = synth.sine(freq, duration=2, fm_lfo=lfo1)
        s_all.join(s1)
        out.play_sample(s1)
        lfo1 = Sine(1, amplitude=0.4, samplerate=synth.samplerate)
        s1 = synth.triangle(freq, duration=2, fm_lfo=lfo1)
        s_all.join(s1)
        out.play_sample(s1)
        freq = 440*2
        lfo1 = Sine(freq/80, amplitude=0.4, samplerate=synth.samplerate)
        s1 = synth.triangle(freq, duration=2, fm_lfo=lfo1)
        s_all.join(s1)
        out.play_sample(s1)
        # s_all.write_wav("fmtestall.wav")
        out.wait_all_played()
项目:PyFusionGUI    作者:SyntaxVoid    | 项目源码 | 文件源码
def plot_clusters(A, clust_arr, ax=None, doplot=False, dosave=None):
    # Inputs:
    #   A: Result from Analysis class (A.run_analysis() must have already been run.
    #   clust_arr: Array of the clusters we want to plot. eg: [1,4,6] will plot clusters 1,4 and 6
    #   ax: if ax is supplied, will plot it on the specified axes
    # Outputs:
    #   A graph.
    if clust_arr == "all":
        clust_arr = np.unique(A.z.cluster_assignments)

    class CycledList:
        def __init__(self, arr):
            self.arr = arr
            return

        def __getitem__(self, key):
            return self.arr[np.mod(key, len(self.arr))]

    plot_colors = CycledList(["silver", "darkorchid", "royalblue", "red", "chartreuse", "gold", "olivedrab",
                              "mediumspringgreen", "lightseagreen", "darkcyan", "deepskyblue",
                              "c", "sienna", "m", "mediumvioletred", "lightsalmon"])
    if ax is None:
        plt.figure(figsize=(11, 8.5), dpi=100, facecolor="w", edgecolor="k")
        plt.specgram(A.results[0][2][0, :], NFFT=1024, Fs=1./np.mean(np.diff(A.results[0][3])),
                     noverlap=128, xextent=[A.results[0][3][0], A.results[0][3][-1]])
        if clust_arr is not None:
            for cl in clust_arr:
                mask = (A.z.cluster_assignments == cl)
                plt.plot(A.z.feature_obj.misc_data_dict["time"][mask],
                         A.z.feature_obj.misc_data_dict["freq"][mask],
                         color=plot_colors[cl], marker="o", linestyle="None",
                         markersize=A.markersize)
        # Cause I'm lazy.
        if dosave is not None and "toroidal" in dosave.lower():
            plt.title("Shot 159243 Toroidal Array")
        if dosave is not None and "poloidal" in dosave.lower():
            plt.title("Shot 159243 Poloidal Array")
        plt.xlabel("Time (ms)")
        plt.ylabel("Freq (kHz)")
        plt.xlim([750, 850])
        plt.ylim([45, 250])
        if doplot:
            plt.show()
        if dosave is not None:
            plt.savefig(dosave)
    else:
        ax.specgram(A.results[0][2][0, :], NFFT=1024, Fs=1. / np.mean(np.diff(A.results[0][3])),
                    noverlap=128, xextent=[A.results[0][3][0], A.results[0][3][-1]])
        if clust_arr is not None:
            for cl in clust_arr:
                mask = (A.z.cluster_assignments == cl)
                ax.plot(A.z.feature_obj.misc_data_dict["time"][mask],
                        A.z.feature_obj.misc_data_dict["freq"][mask],
                        color=plot_colors[cl], marker="o", linestyle="None",
                        markersize=A.markersize)
    return