Python matplotlib.ticker 模块,FormatStrFormatter() 实例源码

我们从Python开源项目中,提取了以下40个代码示例,用于说明如何使用matplotlib.ticker.FormatStrFormatter()

项目:MicroGrids    作者:squoilin    | 项目源码 | 文件源码
def LDR(Time_Series):

    columns=['Consume diesel', 'Lost Load', 'Energy PV','Curtailment','Energy Diesel', 
             'Discharge energy from the Battery', 'Charge energy to the Battery', 
             'Energy_Demand',  'State_Of_Charge_Battery'  ]
    Sort_Values = Time_Series.sort('Energy_Demand', ascending=False)

    index_values = []

    for i in range(len(Time_Series)):
        index_values.append((i+1)/float(len(Time_Series))*100)

    Sort_Values = pd.DataFrame(Sort_Values.values/1000, columns=columns, index=index_values)

    plt.figure() 
    ax = Sort_Values['Energy_Demand'].plot(style='k-',linewidth=1)

    fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
    xticks = mtick.FormatStrFormatter(fmt)
    ax.xaxis.set_major_formatter(xticks)
    ax.set_ylabel('Load (kWh)')
    ax.set_xlabel('Percentage (%)')

    plt.savefig('Results/LDR.png', bbox_inches='tight')
    plt.show()
项目:monogreedy    作者:jinjunqi    | 项目源码 | 文件源码
def draw2dsurface(X, Y, zf):
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    X, Y = np.meshgrid(X, Y)
    Z = X*0
    for i in range(len(X)):
        for j in range(len(X[0])):
            Z[i][j] = zf([X[i][j], Y[i][j]])

    surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)

    ax.set_zlim(np.min(Z.flatten()), np.max(Z.flatten()))

    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    fig.colorbar(surf, shrink=0.5, aspect=5)

    # plt.show()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _remove_labels_from_axis(axis):
    for t in axis.get_majorticklabels():
        t.set_visible(False)

    try:
        # set_visible will not be effective if
        # minor axis has NullLocator and NullFormattor (default)
        import matplotlib.ticker as ticker
        if isinstance(axis.get_minor_locator(), ticker.NullLocator):
            axis.set_minor_locator(ticker.AutoLocator())
        if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
            axis.set_minor_formatter(ticker.FormatStrFormatter(''))
        for t in axis.get_minorticklabels():
            t.set_visible(False)
    except Exception:   # pragma no cover
        raise
    axis.get_label().set_visible(False)
项目:py-smps    作者:dhhagan    | 项目源码 | 文件源码
def histplot(histogram, bins, ax=None, plot_kws=None, fig_kws=None, **kwargs):
    """Plot the histogram in the form of a bar chart."""
    if isinstance(histogram, pd.DataFrame):
        histogram = histogram.mean().values

    if fig_kws is None:
        fig_kws = dict(figsize=(16,8))

    if plot_kws is None:
        plot_kws = dict(alpha=1, edgecolor=None, linewidth=0)

    if ax is None:
        plt.figure(**fig_kws)
        ax = plt.gca()

    ax.bar(left=bins[:, 0], height=histogram, width=bins[:, -1] - bins[:, 0],
            align='edge', **plot_kws)

    ax.semilogx()

    ax.set_xlabel("$D_p \; [\mu m]$")

    ax.xaxis.set_major_formatter(mtick.FormatStrFormatter("%.4g"))

    return ax
项目:matplotlib    作者:DaveL17    | 项目源码 | 文件源码
def chartFormatAxisY(self, ax, k_dict, p_dict):
        """"""
        ax.tick_params(axis='y', **k_dict['k_major_y'])
        ax.tick_params(axis='y', **k_dict['k_minor_y'])
        ax.yaxis.set_major_formatter(mtick.FormatStrFormatter(u"%.{0}f".format(int(p_dict['yAxisPrecision']))))

        # Mirror Y axis values on Y2. Not all charts will support this option.
        try:
            if p_dict['yMirrorValues']:
                ax.tick_params(labelright=True)

                # A user may want tick labels only on Y2.
                if not p_dict['yMirrorValuesAlsoY1']:
                    ax.tick_params(labelleft=False)

        except Exception:
            pass

        return ax
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_surf(a, b, c, points=None):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    X = np.arange(-1, 1, 0.05)
    Y = np.arange(-1, 1, 0.05)
    X, Y = np.meshgrid(X, Y)
    Z = -(X*a + Y*b + c)
    surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
    ax.set_zlim(-1.01, 1.01)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    fig.colorbar(surf, shrink=0.5, aspect=5)
    if points != None:
        x1 = points[:, 0]
        y1 = points[:, 1]
        z1 = points[:, 2]
        ax.scatter(x1, y1, z1, c='r')
        pl.show()
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_surfs(surfs, points, xlim=(-1.0, 1.0), ylim=(-1.0, 1.0), zlim=(-1.1, 1.1)):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    for ans, surf_id in zip(surfs, range(len(surfs))):
        a, b, c = ans[0][0], ans[0][1], ans[0][2]
        X = np.arange(xlim[0], xlim[1], (xlim[1]-xlim[0])/100.0)
        Y = np.arange(ylim[0], ylim[1], (ylim[1]-ylim[0])/100.0)
        X, Y = np.meshgrid(X, Y)
        Z = -(X*a + Y*b + c)
        # ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
        # fig.colorbar(s, shrink=0.5, aspect=5)
        s = ax.plot_wireframe(X, Y, Z, rstride=15, cstride=15)
        x1 = ans[2][:, 0]
        y1 = ans[2][:, 1]
        z1 = ans[2][:, 2]
        ax.scatter(x1, y1, z1, c='crkgmy'[surf_id])

    ax.set_zlim(zlim[0], zlim[1])
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    # x1 = points[:, 0]
    # y1 = points[:, 1]
    # z1 = points[:, 2]
    # ax.scatter(x1, y1, z1, c='r')
    pl.show()
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_surfs(surfs, points, xlim=(-1.0, 1.0), ylim=(-1.0, 1.0), zlim=(-1.1, 1.1), show = True):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    for ans, surf_id in zip(surfs, range(len(surfs))):
        a, b, c = ans[0][0], ans[0][1], ans[0][2]
        X = np.arange(xlim[0], xlim[1], (xlim[1]-xlim[0])/100.0)
        Y = np.arange(ylim[0], ylim[1], (ylim[1]-ylim[0])/100.0)
        X, Y = np.meshgrid(X, Y)
        Z = -(X*a + Y*b + c)
        s = ax.plot_wireframe(X, Y, Z, rstride=15, cstride=15)
        x1 = ans[2][:, 0]
        y1 = ans[2][:, 1]
        z1 = ans[2][:, 2]
        # tan_color = np.ones((len(x1), len(y1))) * np.arctan2(len(surfs)) # c='crkgmycrkgmycrkgmycrkgmy'[surf_id]
        # ax.scatter(x1, y1, z1, c='rcykgm'[surf_id % 6], marker='o^sd*+xp'[int(surf_id/6)])

    ax.set_zlim(zlim[0], zlim[1])
    # ax.set_ylim(ylim[0], ylim[1])
    # ax.set_xlim(xlim[0], xlim[1])
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    if show:
        pl.show()
项目:TensorFlow_DCIGN    作者:yselivonchyk    | 项目源码 | 文件源码
def plot_single_cross_section_3d(data, select, subplot):
  data = data[:, select]
  # subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
  # subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)

  d = data
  # subplot.plot(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=1, alpha=0.8, color='red')
  # subplot.scatter(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=10, alpha=0.3, marker=".", color='b')
  d = data
  subplot.scatter(d[:, 0], d[:, 1], d[:, 2], s=4, alpha=1.0, lw=0.5,
                  c=vis._build_radial_colors(len(d)),
                  marker=".",
                  cmap=plt.cm.hsv)
  subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=0.2, alpha=0.9)

  subplot.set_xlim([-0.01, 1.01])
  subplot.set_ylim([-0.01, 1.01])
  subplot.set_zlim([-0.01, 1.01])
  ticks = []
  subplot.xaxis.set_ticks(ticks)
  subplot.yaxis.set_ticks(ticks)
  subplot.zaxis.set_ticks(ticks)
  subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
  subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
项目:TensorFlow_DCIGN    作者:yselivonchyk    | 项目源码 | 文件源码
def plot_single_cross_section_line(data, select, subplot):
  data = data[:, select]
  # subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
  # subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)

  d = data
  # subplot.plot(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=1, alpha=0.8, color='red')
  # subplot.scatter(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=10, alpha=0.3, marker=".", color='b')
  d = data
  subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)

  subplot.set_xlim([-0.01, 1.01])
  subplot.set_ylim([-0.01, 1.01])
  subplot.set_zlim([-0.01, 1.01])
  ticks = []
  subplot.xaxis.set_ticks(ticks)
  subplot.yaxis.set_ticks(ticks)
  subplot.zaxis.set_ticks(ticks)
  subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
  subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
项目:TensorFlow_DCIGN    作者:yselivonchyk    | 项目源码 | 文件源码
def _plot_single_cross_section(data, select, subplot):
  data = data[:, select]
  # subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
  subplot.plot(data[:, 0], data[:, 1], color='black', lw=1, alpha=0.4)
  subplot.plot(data[[-1, 0], 0], data[[-1, 0], 1], lw=1, alpha=0.8, color='red')
  subplot.scatter(data[:, 0], data[:, 1], s=4, alpha=1.0, lw=0.5,
                  c=_build_radial_colors(len(data)),
                  marker=".",
                  cmap=plt.cm.Spectral)
  # data = np.vstack((data, np.asarray([data[0, :]])))
  # subplot.plot(data[:, 0], data[:, 1], alpha=0.4)

  subplot.set_xlabel('feature %d' % select[0], labelpad=-12)
  subplot.set_ylabel('feature %d' % select[1], labelpad=-12)
  subplot.set_xlim([-0.05, 1.05])
  subplot.set_ylim([-0.05, 1.05])
  subplot.xaxis.set_ticks([0, 1])
  subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
  subplot.yaxis.set_ticks([0, 1])
  subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
项目:Quantitative-Trading-System    作者:carlche15    | 项目源码 | 文件源码
def plot_portfolio_val(self,ax):
          ax=ax
          index = self.portfolio["Portfolio Value: "].index
          data = self.portfolio["Portfolio Value: "].values
          ind = np.arange(len(index))  #
          formatter = MyFormatter(index)  #

          ax.xaxis.set_major_formatter(formatter)  #
          ax.plot(ind, data,color="orange")  #
          formatter = ticker.FormatStrFormatter('$%1.2f')
          ax.yaxis.set_major_formatter(formatter)
          min_temp = np.min(data)
          max_temp=np.max(data)
          plt.xticks()

          date_min = np.min(ind)
          date_max = np.max(ind)
          plt.xlim([date_min, date_max])

          ######designed for equally display codes!!!!!!

          ax.fill_between(ind,0, data, color="navajowhite")
          # fig.autofmt_xdate()
          # cursor1 = Cursor_haunter(ax, ind, data, "Portfolio Value", 1)
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def plotResponseFEM(Ax,fi,f,H,Comp):

    FS = 20

    xTicks = (np.logspace(np.log(np.min(f)),np.log(np.max(f)),9))
    Ylim = np.array([np.min(np.real(H)),np.max(np.real(H))])

    Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
    Ax.semilogx(f,0*f,color='k',linewidth=2)
    Ax.semilogx(f,np.real(H),color='k',linewidth=4,label="Real")
    Ax.semilogx(f,np.imag(H),color='k',linewidth=4,ls='--',label="Imaginary")
    Ax.semilogx(np.array([fi,fi]),1.1*Ylim,linewidth=3,color='r')
    Ax.set_xbound(np.min(f),np.max(f))
    Ax.set_ybound(1.1*Ylim)
    Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2)
    Ax.tick_params(labelsize=FS-2)
    Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

    if Comp == 'x':
        Ax.set_ylabel('$\mathbf{Hx}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{Hx}$ Response at $\mathbf{Rx}$',fontsize=FS+6)
    elif Comp == 'y':
        Ax.set_ylabel('$\mathbf{Hy}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{Hy}$ Response at $\mathbf{Rx}$',fontsize=FS+6)
    elif Comp == 'z':
        Ax.set_ylabel('$\mathbf{Hz}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{Hz}$ Response at $\mathbf{Rx}$',fontsize=FS+6)
    elif Comp == 'abs':
        Ax.set_ylabel('$\mathbf{|H|}$ [A/m]',fontsize=FS+4,labelpad=-5)
        Ax.set_title('$\mathbf{|H|}$ Response at $\mathbf{Rx}$',fontsize=FS+6)


    if np.max(np.real(H[-1])) > 0.:
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='upper left', fontsize=FS)
    elif np.max(np.real(H[-1])) < 0.:
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='lower left', fontsize=FS)

    return Ax
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def plot_InducedCurrent_FD(self,Ax,Is,fi):

        FS = 20

        R = self.R
        L = self.L

        Imax = np.max(-np.real(Is))

        f = np.logspace(0,8,101)


        Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
        Ax.semilogx(f,-np.real(Is),color='k',linewidth=4,label="$I_{Re}$")
        Ax.semilogx(f,-np.imag(Is),color='k',ls='--',linewidth=4,label="$I_{Im}$")
        Ax.semilogx(fi*np.array([1.,1.]),np.array([0,1.1*Imax]),color='r',ls='-',linewidth=3)
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='upper left', fontsize=FS)

        Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2)
        Ax.set_ylabel('$\mathbf{- \, I_s (\omega)}$ [A]',fontsize=FS+2,labelpad=-10)
        Ax.set_title('Frequency Response',fontsize=FS)
        Ax.set_ybound(0,1.1*Imax)
        Ax.tick_params(labelsize=FS-2)
        Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

        #R_str    = '{:.3e}'.format(R)
        #L_str    = '{:.3e}'.format(L)
        #f_str    = '{:.3e}'.format(fi)
        #EMF_str  = '{:.2e}j'.format(EMFi.imag)
        #I_str    = '{:.2e} - {:.2e}j'.format(float(np.real(Isi)),np.abs(float(np.imag(Isi))))

        #Ax.text(1.4,1.01*Imax,'$R$ = '+R_str+' $\Omega$',fontsize=FS)
        #Ax.text(1.4,0.94*Imax,'$L$ = '+L_str+' H',fontsize=FS)
        #Ax.text(1.4,0.87*Imax,'$f$ = '+f_str+' Hz',fontsize=FS,color='r')
        #Ax.text(1.4,0.8*Imax,'$V$ = '+EMF_str+' V',fontsize=FS,color='r')
        #Ax.text(1.4,0.73*Imax,'$I_s$ = '+I_str+' A',fontsize=FS,color='r')

        return Ax
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def plot_InducedCurrent_TD(self,Ax,Is,ti,Vi,Isi):

        FS = 20

        R = self.R
        L = self.L

        Imax = np.max(Is)

        t = np.logspace(-6,0,101)

        Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
        Ax.semilogx(t,Is,color='k',linewidth=4)
        Ax.semilogx(ti*np.array([1.,1.]),np.array([0,1.3*Imax]),color='r',ls='-',linewidth=3)

        Ax.set_xlabel('Time [s]',fontsize=FS+2)
        Ax.set_ylabel('$\mathbf{I_s (\omega)}$ [A]',fontsize=FS+2,labelpad=-10)
        Ax.set_title('Transient Induced Current',fontsize=FS)
        Ax.set_ybound(0,1.2*Imax)
        Ax.tick_params(labelsize=FS-2)
        Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

        #R_str    = '{:.3e}'.format(R)
        #L_str    = '{:.3e}'.format(L)
        #t_str    = '{:.3e}'.format(ti)
        #V_str    = '{:.3e}'.format(Vi)
        #I_str    = '{:.3e}'.format(Isi)

        #Ax.text(1.4e-6,1.12*Imax,'$R$ = '+R_str+' $\Omega$',fontsize=FS)
        #Ax.text(1.4e-6,1.04*Imax,'$L$ = '+L_str+' H',fontsize=FS)
        #Ax.text(4e-2,1.12*Imax,'$t$ = '+t_str+' s',fontsize=FS,color='r')
        #Ax.text(4e-2,1.04*Imax,'$V$ = '+V_str+' V',fontsize=FS,color='r')
        #Ax.text(4e-2,0.96*Imax,'$I_s$ = '+I_str+' A',fontsize=FS,color='r')

        return Ax
项目:simple-linear-regression    作者:williamd4112    | 项目源码 | 文件源码
def plot_3d(model, phi, x_min, x_max, y_min, y_max, z_min, z_max, filename=None):
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    X = np.arange(x_min, x_max, 5)
    Y = np.arange(y_min, y_max, 5)
    X, Y = np.meshgrid(X, Y)

    x, y = np.reshape(X, len(X)**2), np.reshape(Y, len(Y)**2) 
    Z = model(np.matrix(phi(np.array([x, y], dtype=np.float32).T)))

    Z = np.reshape(Z, [len(X), len(X)])    

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False, shade=True)

    # Customize the z axis.
    ax.set_zlim(z_min, z_max)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)

    plt.show()
项目:CTPAPI    作者:doubleelforbes    | 项目源码 | 文件源码
def drawgraph(markethistory):
    global graphdrawn
    # Set up a graph and data sets
    timeplots = []
    priceplots = []
    # Set up the graph
    figgraph = Figure(figsize=(10, 10), dpi=60)
    # 2D Graph : 1 column, 1 Row, 1 Plot
    axes = figgraph.add_subplot(111)
    for key in markethistory:
        figgraph.suptitle(markethistory[key].Label)
        price = markethistory[key].Price
        timestamp = markethistory[key].Timestamp
        dtplot = datetime.datetime.fromtimestamp(timestamp)
        timeplots.insert(len(timeplots), dtplot)
        priceplots.insert(len(priceplots), price)
    # Enforce 8 decimal places
    axes.yaxis.set_major_formatter(FormatStrFormatter('%.8f'))
    # Plot the graph
    axes.plot(timeplots, priceplots)
    # Canvas placed in main frame, controlled by figgraph
    window.canvas = FigureCanvasTkAgg(figgraph, master=window.mainframe)
    window.canvas.get_tk_widget().place(relx=0.26, rely=0.01, relheight=0.46, relwidth=0.74)
    window.canvas.draw()
    graphdrawn = True


# Sell order list select event.
项目:MicapsDataDraw    作者:flashlxy    | 项目源码 | 文件源码
def DrawGridLine(products, m):
        pj = products.map.projection
        if m is plt:
            # ???
            plt.axis(pj.axis)

            # ????????????
            if pj.axis == 'on':
                x_majorFormatter = FormatStrFormatter(pj.axisfmt[0])
                y_majorFormatter = FormatStrFormatter(pj.axisfmt[1])
                plt.gca().xaxis.set_major_formatter(x_majorFormatter)
                plt.gca().yaxis.set_major_formatter(y_majorFormatter)
                xaxis = plt.gca().xaxis
                for label in xaxis.get_ticklabels():
                    label.set_fontproperties('DejaVu Sans')
                    label.set_fontsize(10)
                yaxis = plt.gca().yaxis
                for label in yaxis.get_ticklabels():
                    label.set_fontproperties('DejaVu Sans')
                    label.set_fontsize(10)

                xaxis.set_visible(pj.lonlabels[3] == 1)
                yaxis.set_visible(pj.latlabels[0] == 1)

            return
        else:
            # draw parallels and meridians.
            if pj.axis == 'on':
                m.drawparallels(np.arange(-80., 81., 10.),
                                labels=pj.latlabels,
                                family='DejaVu Sans',
                                fontsize=10)
                m.drawmeridians(np.arange(-180., 181., 10.),
                                labels=pj.lonlabels,
                                family='DejaVu Sans',
                                fontsize=10)
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def plot_surface(self):
        fig = plt.figure(figsize = (8,8))
        ax = fig.gca(projection='3d')
        X, Y = np.meshgrid(np.arange(-1.00, 1.01, 2./(len(self.lattice_in) - 1)), np.arange(-1.00, 1.01, 2./(len(self.lattice_in) - 1)))
        surf = ax.plot_surface(X, Y, self.lattice_in, rstride=1, cstride=1,cmap = cm.coolwarm,
                       linewidth=0, antialiased=False)
        ax.set_zlim(-1.01, 1.01)
        ax.zaxis.set_major_locator(LinearLocator(10))
        ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
        fig.colorbar(surf, shrink=0.5, aspect=10)
项目:house-price-map    作者:andyljones    | 项目源码 | 文件源码
def plot_price(smoothed_prices):
    plot_over_map(10**(smoothed_prices - 3), norm=LogNorm(1.5e2, 1e3))
    cb = plt.colorbar(fraction=0.03, ticks=sp.linspace(2e2, 1e3, 9), format=FormatStrFormatter(u%dk'))
    cb.set_label(u'price paid (£1000s)')    

    plt.title('2015 Average Price Paid')
    plt.gcf().set_size_inches(36, 36)
    plt.gcf().savefig(os.path.join(OUTPUT_PATH, 'price_paid.png'), bbox_inches='tight')
项目:house-price-map    作者:andyljones    | 项目源码 | 文件源码
def plot_relative_price(relative_prices):
    plot_over_map(10**relative_prices, norm=LogNorm(0.5, 2))
    cb = plt.colorbar(fraction=0.03, ticks=sp.linspace(0.5, 2, 4), format=FormatStrFormatter('x%.2f'))
    cb.set_label('fraction of average price paid for commute time')

    plt.title('Price relative to commute')
    plt.gcf().set_size_inches(36, 36)
    plt.gcf().savefig(os.path.join(OUTPUT_PATH, 'relative_price.png'), bbox_inches='tight')
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_points(points, show = True, title = '', xlim = None, ylim = None, zlim = None):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    if xlim == None:
        xlim = (np.min(points[:, 0]), np.max(points[:, 0]))
    if ylim == None:
        ylim = (np.min(points[:, 1]), np.max(points[:, 1]))
    if zlim == None:
        zlim = (np.min(points[:, 2]), np.max(points[:, 2]))
    x1 = points[:, 0]
    y1 = points[:, 1]
    z1 = points[:, 2]
    ax.scatter(x1, y1, z1, c='r')

    ax.set_zlim(zlim[0], zlim[1])
    ax.set_ylim(ylim[0], ylim[1])
    ax.set_xlim(xlim[0], xlim[1])
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    pl.title(title)
    if show:
        pl.show()
    return fig
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_surfs(surfs, points, show = True, title = ''):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    xlim = (np.min(points[:, 0]), np.max(points[:, 0]))
    ylim = (np.min(points[:, 1]), np.max(points[:, 1]))
    zlim = (np.min(points[:, 2]), np.max(points[:, 2]))
    for ans, surf_id in zip(surfs, range(len(surfs))):
        a, b, c = ans.args[0], ans.args[1], ans.args[2]
        X = np.arange(xlim[0], xlim[1], (xlim[1]-xlim[0])/100.0)
        Y = np.arange(ylim[0], ylim[1], (ylim[1]-ylim[0])/100.0)
        X, Y = np.meshgrid(X, Y)
        Z = -(X*a + Y*b + c)
        s = ax.plot_wireframe(X, Y, Z, rstride=15, cstride=15)
        x1 = ans.points[:, 0]
        y1 = ans.points[:, 1]
        z1 = ans.points[:, 2]
        ax.scatter(x1, y1, z1, c='rcykgm'[surf_id % 6], marker='o^sd*+xp'[int(surf_id/6)])

    ax.set_zlim(zlim[0], zlim[1])
    # ax.set_ylim(ylim[0], ylim[1])
    # ax.set_xlim(xlim[0], xlim[1])
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    pl.title(title)
    if show:
        pl.show()
    return fig
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_surfs(surfs, points, show = True, title = ''):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    xlim = (np.min(points[:, 0]), np.max(points[:, 0]))
    ylim = (np.min(points[:, 1]), np.max(points[:, 1]))
    zlim = (np.min(points[:, 2]), np.max(points[:, 2]))
    for ans, surf_id in zip(surfs, range(len(surfs))):
        a, b, c = ans.args[0], ans.args[1], ans.args[2]
        X = np.arange(xlim[0], xlim[1], (xlim[1]-xlim[0])/100.0)
        Y = np.arange(ylim[0], ylim[1], (ylim[1]-ylim[0])/100.0)
        X, Y = np.meshgrid(X, Y)
        Z = -(X*a + Y*b + c)
        s = ax.plot_wireframe(X, Y, Z, rstride=15, cstride=15)
        x1 = ans.points[:, 0]
        y1 = ans.points[:, 1]
        z1 = ans.points[:, 2]
        ax.scatter(x1, y1, z1, c='rcykgm'[surf_id % 6], marker='o^sd*+xp'[int(surf_id/6)])

    ax.set_zlim(zlim[0], zlim[1])
    ax.set_ylim(ylim[0], ylim[1])
    ax.set_xlim(xlim[0], xlim[1])
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    pl.title(title)
    if show:
        pl.show()
    return fig
项目:PyGeo    作者:CalvinNeo    | 项目源码 | 文件源码
def paint_points(points, show = True, title = '', xlim = None, ylim = None, zlim = None):
    fig = pl.figure()
    ax = fig.add_subplot(111, projection='3d')
    if xlim == None:
        xlim = (np.min(points[:, 0]), np.max(points[:, 0]))
    if ylim == None:
        ylim = (np.min(points[:, 1]), np.max(points[:, 1]))
    if zlim == None:
        zlim = (np.min(points[:, 2]), np.max(points[:, 2]))
    x1 = points[:, 0]
    y1 = points[:, 1]
    z1 = points[:, 2]
    ax.scatter(x1, y1, z1, c='r')

    ax.set_zlim(zlim[0], zlim[1])
    ax.set_ylim(ylim[0], ylim[1])
    ax.set_xlim(xlim[0], xlim[1])
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    pl.title(title)
    if show:
        pl.show()
    return fig
项目:computationalphysics_N2014301020131    作者:Nucleus2014    | 项目源码 | 文件源码
def plot_3d(self,ax,x1,x2,y1,y2):   # give 3d plot the potential
        self.x=linspace(x1,x2,self.n)
        self.y=linspace(y2,y1,self.n)
        self.x,self.y=meshgrid(self.x,self.y)
        self.surf=ax.plot_surface(self.x,self.y,self.V, rstride=1, cstride=1, cmap=cm.coolwarm)
        ax.set_xlim(x1,x2)
        ax.set_ylim(y1,y2)
        ax.zaxis.set_major_locator(LinearLocator(10))
        ax.zaxis.set_major_formatter(FormatStrFormatter('%.01f'))
        ax.set_xlabel('x (m)',fontsize=14)
        ax.set_ylabel('y (m)',fontsize=14)
        ax.set_zlabel('Electric potential (V)',fontsize=14)
        ax.set_title('Potential near capacitor',fontsize=18)
项目:computationalphysics_N2014301020131    作者:Nucleus2014    | 项目源码 | 文件源码
def plot_3d(self,ax,x1,x2,y1,y2):   # give 3d plot the potential
        self.x=linspace(x1,x2,self.n)
        self.y=linspace(y2,y1,self.n)
        self.x,self.y=meshgrid(self.x,self.y)
        self.surf=ax.plot_surface(self.x,self.y,self.V, rstride=1, cstride=1, cmap=cm.coolwarm)
        ax.set_xlim(x1,x2)
        ax.set_ylim(y1,y2)
        ax.zaxis.set_major_locator(LinearLocator(10))
        ax.zaxis.set_major_formatter(FormatStrFormatter('%.01f'))
        ax.set_xlabel('x (m)',fontsize=14)
        ax.set_ylabel('y (m)',fontsize=14)
        ax.set_zlabel('Electric potential (V)',fontsize=14)
        ax.set_title('Potential near capacitor',fontsize=18)
项目:computationalphysics_N2014301020131    作者:Nucleus2014    | 项目源码 | 文件源码
def plot_3d(self,ax,x1,x2,y1,y2):       # give 3d plot the potential
        self.x=linspace(x1,x2,self.n)
        self.y=linspace(y2,y1,self.n)
        self.x,self.y=meshgrid(self.x,self.y)
        self.surf=ax.plot_surface(self.x,self.y,self.V, rstride=1, cstride=1, cmap=cm.coolwarm)
        ax.set_xlim(x1,x2)
        ax.set_ylim(y1,y2)
        ax.zaxis.set_major_locator(LinearLocator(10))
        ax.zaxis.set_major_formatter(FormatStrFormatter('%.01f'))
        ax.set_xlabel('x (m)',fontsize=14)
        ax.set_ylabel('y (m)',fontsize=14)
        ax.set_zlabel('Electric potential (V)',fontsize=14)
        ax.set_title('Potential near capacitor',fontsize=18)
项目:TensorFlow_DCIGN    作者:yselivonchyk    | 项目源码 | 文件源码
def _plot_single_cross_section_3d(data, select, subplot):
  data = data[:, select]
  # subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
  subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)
  subplot.plot(data[[-1, 0], 0], data[[-1, 0], 1], data[[-1, 0], 2], lw=1, alpha=0.8, color='red')
  subplot.scatter(data[:, 0], data[:, 1], data[:, 2], s=4, alpha=1.0, lw=0.5,
                  c=_build_radial_colors(len(data)),
                  marker=".",
                  cmap=plt.cm.Spectral)
  data = data[0::10]
  # subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=2, alpha=0.8)

  # data = np.vstack((data, np.asarray([data[0, :]])))
  # subplot.plot(data[:, 0], data[:, 1], alpha=0.4)

  subplot.set_xlabel('feature %d' % select[0], labelpad=-12)
  subplot.set_ylabel('feature %d' % select[1], labelpad=-12)
  subplot.set_zlabel('feature %d' % select[2], labelpad=-12)
  subplot.set_xlim([-0.01, 1.01])
  subplot.set_ylim([-0.01, 1.01])
  subplot.set_zlim([-0.01, 1.01])
  subplot.xaxis.set_ticks([0, 1])
  subplot.yaxis.set_ticks([0, 1])
  subplot.zaxis.set_ticks([0, 1])
  subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
  subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
项目:bolib    作者:ibaidev    | 项目源码 | 文件源码
def plot_3d(objective_function, length=20):
    """
    Plot 3D functions

    :param objective_function:
    :type objective_function:
    :param length:
    :type length:
    :return:
    :rtype:
    """
    bounds = objective_function.get_bounds()

    if len(bounds) != 2:
        return

    x_grid = np.linspace(bounds[0][0], bounds[0][1], length)
    y_grid = np.linspace(bounds[1][0], bounds[1][1], length)
    x_grid, y_grid = np.meshgrid(x_grid, y_grid)
    grid = np.vstack((x_grid.flatten(), y_grid.flatten())).T
    z_points = objective_function.evaluate(grid)
    z_points = z_points.reshape(length, length)

    fig = pyplot.figure()
    axis = fig.gca(projection='3d')

    surf = axis.plot_surface(x_grid, y_grid,
                             z_points, rstride=1, cstride=1,
                             cmap=cm.cool, linewidth=0, antialiased=False,
                             alpha=0.3)
    axis.contour(x_grid.tolist(), y_grid.tolist(), z_points.tolist(),
                 zdir='z', offset=z_points.min(), cmap=cm.cool)

    axis.set_xlim(bounds[0][0], bounds[0][1])
    axis.set_ylim(bounds[1][0], bounds[1][1])
    pyplot.title(objective_function.__class__.__name__)
    axis.zaxis.set_major_locator(LinearLocator(10))
    axis.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    fig.colorbar(surf, shrink=0.5, aspect=5)

    pyplot.show()
项目:em_examples    作者:geoscixyz    | 项目源码 | 文件源码
def InteractivePlaneProfile():
    srcLoc = 0.
    orientation = "X"
    nRx = 100

    def foo(Field, Sigma, Scale, Time):

        fig = plt.figure(figsize=(8,4))
        ax1 = plt.subplot(111)

        r = np.linspace(-1000., 0., nRx)
        val_ex, val_hy = PlaneEHfield(r, t=Time, sig=Sigma)

        if Field == "Ex":
            val = val_ex.flatten()
            label = "Ex-field (V/m)"

        elif Field == "Hy":
            val = val_hy.flatten()
            label = "Hy-field (A/m)"

        if Scale == "log":
            val_p, val_n = DisPosNegvalues(val)
            ax1.plot(r, val_p, 'k-', lw=2)
            ax1.plot(r, val_n, 'k--', lw=2)
            ax1.set_yscale(Scale)

        elif Scale == "linear":
            ax1.plot(r, val, 'k-', lw=2)
            ax1.set_yscale(Scale)
            y = ax1.yaxis.get_majorticklocs()
            yticksa = np.linspace(y.min(), y.max(), 3)
            ax1.yaxis.set_ticks(yticksa)
            ax1.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.1e"))

        ax1.set_xlim(0, -1000)
        ax1.set_ylabel(label, color='k')
        ax1.set_xlabel("Z (m)")

        ax1.grid(True)
        plt.show()

    Q2 = widgets.interactive (foo
                    ,Field=widgets.ToggleButtons(options=['Ex','Hy'], value='Ex')
                    ,Sigma=widgets.FloatText(value=1, continuous_update=False, description='$\sigma$ (S/m)') \
                    ,Scale=widgets.ToggleButtons(options=['log','linear'], value="linear") \
                    ,Time=widgets.FloatSlider(min=0.01, max=1., step=0.01, value=0., description='$t$ (s)')
                    )
    return Q2
项目:F_UNCLE    作者:fraserphysics    | 项目源码 | 文件源码
def plot_fisher_data(self, fisher_data, axes=None, fig=None,
                         linestyles=[], labels=[]):
        """

        Args:
            fisher_dat(tuple): Data from the fisher_decomposition function
                               *see docscring for definition*

        Keyword Args:
            axes(plt.Axes): *Ignored*
            fig(plt.Figure): A valid figure to plot on
            linestyles(list): A list of valid linestyles *Ignored*
            labels(list): A list of labels *Ignored*
        """

        if fig is None:
            fig = plt.Figure()
        else:
            pass
        # end

        ax1 = plt.subplot(211)
        ax2 = plt.subplot(212)

        eigs = fisher_data[0]
        eig_vects = fisher_data[1]
        eig_func = fisher_data[2]
        indep = fisher_data[3]

#        ax1.bar(np.arange(eigs.shape[0]), eigs, width=0.9, color='black',
#                edgecolor='none', orientation='vertical')
        ax1.semilogy(eigs, 'sk')
        ax1.set_xlabel("Eigenvalue number")
        ax1.set_ylabel(r"Eigenvalue / Pa$^{-2}$")
        ax1.set_xlim(-0.5, len(eigs) - 0.5)
        ax1.set_ylim([0.1 * min(eigs[np.nonzero(eigs)]), 10 * max(eigs)])
        ax1.xaxis.set_major_locator(MultipleLocator(1))
        ax1.xaxis.set_major_formatter(FormatStrFormatter('%d'))

        styles = ['-g', '-.b', '--m', ':k', '-c', '-.y', '--r'] *\
            int(math.ceil(eig_func.shape[0] / 7.0))

        for i in range(eig_func.shape[0]):
            ax2.plot(indep, eig_func[i], styles[i],
                     label="{:d}".format(i))
        # end

        ax2.legend(loc='best')
        ax2.get_legend().set_title("Eigen-\nfunctions", prop={'size': 7})
        ax2.set_xlabel(r"Specific volume / cm$^3$ g$^{-1}$")
        ax2.set_ylabel("Eigenfunction response / Pa")

        fig.tight_layout()

        return fig
项目:F_UNCLE    作者:fraserphysics    | 项目源码 | 文件源码
def plot_convergence(self, hist, axes=None, linestyles=['-k'], labels=[]):
        """

        Args:
            hist(tuple): Convergence history, elements
                0. (list): MAP history
                1. (list): DOF history

        Keyword Args:
            axes(plt.Axes): The axes on which to plot the figure, if None,
                creates a new figure object on which to plot.
            linestyles(list): Strings for the linestyles
            labels(list): Strings for the labels

        """

        if axes is None:
            fig = plt.figure()
            ax1 = fig.gca()
        else:
            fig = None
            ax1 = axes
        # end

        ax1.semilogy(-np.array(hist[0]), linestyles[0])

        ax1.xaxis.set_major_locator(MultipleLocator(1))
        ax1.xaxis.set_major_formatter(FormatStrFormatter('%d'))

        ax1.set_xlabel('Iteration number')
        ax1.set_ylabel('Negative a posteriori log likelihood')

        # fig = plt.figure()
        # ax1 = fig.add_subplot(121)
        # ax2 = fig.add_subplot(122)
        # for i in range(dof_hist.shape[1]):
        #     ax1.plot(dof_hist[:, i]/dof_hist[0, i])
        # # end
        # fig.suptitle('Convergence of iterative process')
        # ax1.set_ylabel('Spline knot value')
        # ax1.set_xlabel('Iteration number')
        # fig.savefig('EOS_convergence.pdf')
项目:F_UNCLE    作者:fraserphysics    | 项目源码 | 文件源码
def plot_fisher_matrix(sens_matrix, exp, model, fig, lines=None):
    """
    """

    fisher = exp.get_fisher_matrix(sens_matrix)

    fisher_data = Bayesian.fisher_decomposition(fisher, model, tol=1E-3)

    ax1 = fig.add_subplot(211)
    ax2 = fig.add_subplot(212)

    eigs = fisher_data[0]
    eig_vects = fisher_data[1]
    eig_func = fisher_data[2]
    indep = fisher_data[3]

    ax1.semilogy(eigs, 'sk')
    ax1.set_xlabel("Eigenvalue number")
    ax1.set_ylabel(r"Eigenvalue / Pa$^{-2}$")
    ax1.set_xlim(-0.5, len(eigs) - 0.5)
    ax1.set_ylim([0.1 * min(eigs[np.nonzero(eigs)]), 10 * max(eigs)])
    ax1.xaxis.set_major_locator(MultipleLocator(1))
    ax1.xaxis.set_major_formatter(FormatStrFormatter('%d'))

    styles = ['-g', '-.b', '--m', ':k', '-c', '-.y', '--r'] *\
        int(math.ceil(eig_func.shape[0] / 7.0))

    for i in range(eig_func.shape[0]):
        ax2.plot(indep, eig_func[i], styles[i],
                 label="{:d}".format(i))
    # end

    # find rho=25.77 gpa
    for line, name in lines:
        ax2.axvline(line)
    # end
    ax2.legend(loc='best')
    ax2.get_legend().set_title("Eigen-\nfunctions", prop={'size': 7})
    ax2.set_xlabel(r"Density / g cm$^{-3}$ ")
    ax2.set_ylabel("Eigenfunction response / Pa")

    fig.tight_layout()

    return fig
项目:pyspc    作者:carlosqsilva    | 项目源码 | 文件源码
def plot_chart(self, ax, values, center, lcl, ucl, title, newvalues=None):

        ax.yaxis.tick_right()
        ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.3f'))

        num = len(values)
        if isinstance(values[0], list):
            num = len(values[0])

        if newvalues:
            ax.plot([num - 0.5] * 2, [lcl, ucl], 'k--')
            ax.plot(values + newvalues, 'bo--')
            num += len(newvalues)

        newx = list(range(num))
        newx[0] = -0.3
        newx[-1] = num - 0.6

        if isinstance(lcl, list) and isinstance(ucl, list):
            ax.yaxis.set_ticks([center])
            ax.plot([-0.3, num], [center, center], 'k-')
            ax.plot(values, 'bo--')
            ax.fill_between(newx, lcl, ucl, facecolor='green', alpha=0.4, step='mid')
            ax.step(newx, lcl, 'r:', where='mid')
            ax.step(newx, ucl, 'r:', where='mid')

        else:
            ax.fill_between([-0.3, num], [lcl, lcl], [ucl, ucl], facecolor='green', alpha=0.4)
            ax.yaxis.set_ticks([lcl, center, ucl])
            ax.plot([0, num], [center, center], 'k-')
            ax.plot([0, num], [lcl, lcl], 'r:')
            ax.plot([0, num], [ucl, ucl], 'r:')

            if isinstance(values[0], list):
                ax.plot(values[0], 'bo--')
                ax.plot(values[1], 'bo--')
            else:
                ax.plot(values, 'bo--')

        # Set the title
        ax.set_title(title)

        # Change de y limits of the graph
        ylim = ax.get_ylim()
        factor = 0.2
        new_ylim = (ylim[0] + ylim[1]) / 2 + np.array((-0.5, 0.5)) * (ylim[1] - ylim[0]) * (1 + factor)
        if lcl == 0:
            ax.set_ylim([0, new_ylim[1]])
        else:
            ax.set_ylim(new_ylim)

        # Change x ticks
        new_xlim = [0, num]
        ax.set_xlim([0, num] + np.array((-0.3, -0.6)))
        ax.xaxis.set_ticks(np.arange(*new_xlim, 2))
项目:SwarmPackagePy    作者:SISDevelop    | 项目源码 | 文件源码
def animation3D(agents, function, lb, ub, sr=False):

    side = np.linspace(lb, ub, 45)
    X, Y = np.meshgrid(side, side)
    zs = np.array([function([x, y]) for x, y in zip(np.ravel(X), np.ravel(Y))])
    Z = zs.reshape(X.shape)

    fig = plt.figure()

    ax = Axes3D(fig)
    surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='jet',
                           linewidth=0, antialiased=False)
    ax.set_xlim(lb, ub)
    ax.set_ylim(lb, ub)

    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    fig.colorbar(surf, shrink=0.5, aspect=5)

    iter = len(agents)
    n = len(agents[0])
    t = np.array([np.ones(n) * i for i in range(iter)]).flatten()
    b = []
    [[b.append(agent) for agent in epoch] for epoch in agents]
    c = [function(x) for x in b]
    a = np.asarray(b)
    df = pd.DataFrame({"time": t, "x": a[:, 0], "y": a[:, 1], "z": c})

    def update_graph(num):
        data = df[df['time'] == num]
        graph._offsets3d = (data.x, data.y, data.z)
        title.set_text(function.__name__ + " " * 45 + 'iteration: {}'.format(
            num))

    title = ax.set_title(function.__name__ + " " * 45 + 'iteration: 0')

    data = df[df['time'] == 0]
    graph = ax.scatter(data.x, data.y, data.z, color='black')

    ani = matplotlib.animation.FuncAnimation(fig, update_graph, iter,
                                             interval=50, blit=False)

    if sr:

        ani.save('result.mp4')

    plt.show()
项目:PokemonGo-TSP    作者:tnlin    | 项目源码 | 文件源码
def plot(path, points, costs):
    '''
    path: List of the different orders in which the nodes are visited
    points: coordinates for the different nodes
    costs: Cost of each iteration
    '''

    # Change figure size
    plt.figure(figsize=(15,6))

    '''
    Plot Cost Function
    '''
    plt.subplot(121)
    curve, = plt.plot(np.array(costs), label='Distance(m)')
    plt.ylabel("Distance")
    plt.xlabel("Iteration")
    plt.grid(True)
    plt.legend()
    cost =  str("%.2f" % round(costs[-1], 2))
    plt.title("Final Distance: " + cost)

    '''
    Plot TSP Route
    '''
    plt.subplot(122)
    # Transform back to longitude/latitude
    points = (points / 111000).tolist()

    # Unpack the primary path and transform it into a list of ordered coordinates
    x = []; y = []
    for i in path:
        x.append(points[i][1])
        y.append(points[i][0])
    x.append(points[path[0]][1])
    y.append(points[path[0]][0])

    # Plot line
    plt.plot(x, y, 'c-', label='Route')

    # Plot dot
    plt.plot(x, y, 'bo', label='Location')

    # Avoid scientific notation
    ax = plt.gca()
    ax.xaxis.set_major_formatter(FormatStrFormatter('%.3f'))
    ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))

    # Set axis too slightly larger than the set of x and y
    plt.xlim(min(x)*0.99999, max(x)*1.00001)
    plt.ylim(min(y)*0.99999, max(y)*1.00001)
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.title("TSP Route Visualization")
    plt.grid(True)
    plt.show()
项目:Detection-algorithm-for-seismological-recordings    作者:MammutimEis    | 项目源码 | 文件源码
def recursiveStaLtaCharacteristicParameters(trace):
    '''
    Plot a trace and the corresponding characteristic functions of the recursive STA/LTA trigger
    for different STA and LTA window lengths.

    :param trace: The recorded trace
    :type trace: obspy.core.trace.Trace
    :param staDur: STA duration in seconds
    :param ltaDur: LTA duration in seconds
    :param thrOn: Trigger on threshold
    :parm thrOff: Trigger off threshold
    '''
    df = trace.stats.sampling_rate
    npts = trace.stats.npts
    t = np.arange(npts, dtype=np.float32) / df
    cft = []

    # STA LTA duration parameter variation
    staLta = [
        (1, 3),
        (1, 10),
        (1, 20),
        (0.01, 1),
        (0.1, 10),
        (0.5, 10),
        (0.5, 5),
        (2, 20),
        (4, 20)]

    for i in range(9):
        cft.append(obs.signal.trigger.recursive_sta_lta(trace.data, int(staLta[i][0]*df), int(staLta[i][1]*df)))
    fig, axes = plt.subplots(10, 1, figsize=(20, 20), subplot_kw={'yticks': []})

    # plot recorded trace
    axes[0].plot(t, trace.data, 'k')
    axes[0].yaxis.set_ticks(np.linspace(-2e-5, 2e-5, 3))
    axes[0].set_ylim(-0.00003, 0.00003)
    axes[0].yaxis.set_major_formatter(FormatStrFormatter('%.E'))
    axes[0].set_ylabel('m/s')

    # plot chracteristic functions
    i = 0
    for ax in axes[1:]:
        #ax.add_subplot(10, 1, i)
        ax.plot(t, cft[i], 'k')
        ax.text(0.075, 0.8, 'sta='+ str(staLta[i][0]) + ', lta=' + str(staLta[i][1]), ha='center', va='center', transform=ax.transAxes)
        ax.yaxis.set_ticks(np.linspace(0, int(np.floor(np.max(cft[i]))), 3))
        ax.set_ylim(0, np.max(cft[i]+1))
        i += 1

    axes[9].set_xlabel("Time after %s [s]" % trace.stats.starttime.isoformat())

    # no x ticks
    for i in range(9):
        axes[i].get_xaxis().set_ticks([])

    fig.suptitle(trace.id)
    plt.draw()
项目:sensor_fusion    作者:datascopeanalytics    | 项目源码 | 文件源码
def __init__(self, time_array, truth, reading_array, estimate_array):

        self.fig, (self.ax2, self.ax1) = plt.subplots(
            1, 2, sharey=True,
            gridspec_kw={"width_ratios":[3, 1]},
            figsize=(8, 4)
        )
        plt.tight_layout(pad=2.0)

        self.time_array = time_array
        self.estimate_array = estimate_array

        self.ax1.set_ylim(0, 120)
        self.ax1.set_xlim(0, 20)
        self.ax1.set_xlabel("Probability")
        self.ax1.xaxis.set_major_formatter(FormatStrFormatter('%d%%'))

        self.estimate_line = self.ax1.plot(
            [], [], color='purple', label='estimate')
        self.lines = []
        for sensor in reading_array:
            self.lines += self.ax1.plot(
                [], [], color=sensor.color, label=sensor.name)

        self.truth_line = self.ax1.hlines(truth[0], 0, 20, color='red', label='Occupancy')
        self.ax1.legend()

        self.ax2.plot(time_array, truth, color='red', label='Occupancy')
        # self.ax2.set_ylim(0, 150)
        self.ax2.set_title("Train car occupancy over time")
        self.ax2.set_xlabel("Time (minutes)")
        self.ax2.set_ylabel("Occupants")
        self.estimate_ts = self.ax2.plot(
            [], [], color='purple', label='estimate')
        self.fill_lines = self.ax2.fill_between(
            [], [], color='purple', alpha=0.5)

        self.truth = truth
        self.reading_array = reading_array

        super().__init__(
            self.fig, self.update,
            frames=len(time_array),
            blit=True
        )
项目:Quantitative-Trading-System    作者:carlche15    | 项目源码 | 文件源码
def plot_price(self,ax):
      ax=ax

      for i in self.price_data:
          index = self.price_data[i].index
          data = self.price_data[i].values
          ind = np.arange(len(index))  #
          formatter = MyFormatter(index)  #

          ax.xaxis.set_major_formatter(formatter)  #
          ax.plot(ind, data)  #
          formatter = ticker.FormatStrFormatter('$%1.2f')
          ax.yaxis.set_major_formatter(formatter)
          min_temp = np.min(data)
          max_temp=np.max(data)
          plt.xticks()

          ######designed for equally display codes!!!!!!!
          date_min = np.min(ind)
          date_max = np.max(ind)
          plt.xlim([date_min, date_max])
          density_temp = len(ind) / 20
          zip = np.arange(date_min, date_max, density_temp + 1)

          plt.xticks(zip)


          #start text
          tickerr="AAPL"
          current_price = Share(tickerr).get_price()  # latest
          open_price = Share(tickerr).get_open()
          high_price=Share(tickerr).get_days_high()
          low_price=Share(tickerr).get_days_low()
          change_price = Share(tickerr).get_change()
          current_time = Share(tickerr).get_trade_datetime()
          Last_price=Share(tickerr).get_prev_close()
          volume=Share(tickerr).get_volume()


          current_price="Current: "+current_price
          open_price="Open: "+open_price
          high_price="High: "+high_price
          low_price="Low: "+low_price
          Last_price="Last: "+Last_price
          change_price="Chg: "+change_price
          volume="Volume: "+volume
          ss=current_time+'    '+ current_price+"    "+open_price+"    "+high_price+"    "+low_price+"    "+Last_price+"    "+volume+"    "\
          +change_price

          plt.text(date_min+2,max_temp+12,ss,fontsize=15)




          ax.fill_between(ind, min_temp - 10.0, data, color="lightsteelblue")
          # fig.autofmt_xdate()
          cursor1 = Cursor_haunter(ax, ind, data, "Close price", 1)