Python matplotlib 模块,use() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.use()

项目:IgDiscover    作者:NBISweden    | 项目源码 | 文件源码
def plot_counts(counts, gene_type):
    """Plot expression counts. Return a Figure object"""
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np

    fig = plt.figure(figsize=((50 + len(counts) * 5) / 25.4, 210/25.4))
    matplotlib.rcParams.update({'font.size': 14})
    ax = fig.gca()
    ax.set_title('{} gene usage'.format(gene_type))
    ax.set_xlabel('{} gene'.format(gene_type))
    ax.set_ylabel('Count')
    ax.set_xticks(np.arange(len(counts)) + 0.5)
    ax.set_xticklabels(counts.index, rotation='vertical')
    ax.grid(axis='x')
    ax.set_xlim((-0.25, len(counts)))
    ax.bar(np.arange(len(counts)), counts['count'])
    fig.set_tight_layout(True)
    return fig
项目:StochOPy    作者:keurfonluu    | 项目源码 | 文件源码
def main():
    """
    Start StochOPy Viewer window.
    """
    import matplotlib
    matplotlib.use("TkAgg")
    from sys import platform as _platform

    root = tk.Tk()
    root.resizable(0, 0)
    StochOGUI(root)
    s = ttk.Style()
    if _platform == "win32":
        s.theme_use("vista")
    elif _platform in [ "linux", "linux2" ]:
        s.theme_use("alt")
    elif _platform == "darwin":
        s.theme_use("aqua")
    root.mainloop()
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def nice_labels ( numbers ):
    suffixes = ['', 'K', 'M', 'G']
    suff_len = []
    ## figure out which suffix gives us the shortest label length
    for i, suff in enumerate( suffixes ):
        test   = [float(y)/(1000.0**i) for y in numbers]
        labels = ["%d%s"% (int(y), suff) for y in test]
        ## make sure that in the new representation there are no
        ## degenerate cases
        if len(set(labels)) == len(labels):
            suff_len.append( (sum(map(len, labels)), i) )
    ## if we fail to find any satisfactory suffixes, just use defaults
    if len(suff_len) == 0:
        return map(str, numbers), 0
    else:
        suff_len.sort()
        i = suff_len[0][1]
        labels = ["%d%s"% (int(float(y)/(1000.0**i)), suffixes[i]) for y in numbers]
    return labels, i
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def format(self, content: Optional[QqTag],
               blanks_to_pars=True,
               keep_end_pars=True) -> str:
        """
        :param content: could be QqTag or any iterable of QqTags
        :param blanks_to_pars: use blanks_to_pars (True or False)
        :param keep_end_pars: keep end paragraphs
        :return: str: text of tag
        """
        if content is None:
            return ""

        out = []

        for child in content:
            if isinstance(child, str):
                if blanks_to_pars:
                    out.append(self.blanks_to_pars(html_escape(
                        child, keep_end_pars)))
                else:
                    out.append(html_escape(child))
            else:
                out.append(self.handle(child))
        return "".join(out)
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def url_for_chapter(self, index=None, label=None,
                        fromindex=None) -> str:
        """
        Returns url for chapter. Either index or label of
        the target chapter have to be provided.
        Optionally, fromindex can be provided. In this case
        function will return empty string if
        target chapter coincides with current one.

        You can inherit from QqHTMLFormatter and override
        url_for_chapter_by_index and url_for_chapter_by_label too
        use e.g. Flask's url_for.
        """
        assert index is not None or label is not None
        if index is None:
            index = self.label_to_chapter[label]
        if fromindex is not None and fromindex == index:
            # we are already on the right page
            return ""
        if label is None:
            label = self.chapters[index].heading.find("label")
        if not label:
            return self.url_for_chapter_by_index(index)
        return self.url_for_chapter_by_label(label.value)
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def word_cloud(word_embedding_matrix, vocab, s, save_file='scatter.png'):
    words = [(i, vocab[i]) for i in s]
    model = TSNE(n_components=2, random_state=0)
    #Note that the following line might use a good chunk of RAM
    tsne_embedding = model.fit_transform(word_embedding_matrix)
    words_vectors = tsne_embedding[np.array([item[1] for item in words])]

    plt.subplots_adjust(bottom = 0.1)
    plt.scatter(
        words_vectors[:, 0], words_vectors[:, 1], marker='o', cmap=plt.get_cmap('Spectral'))

    for label, x, y in zip(s, words_vectors[:, 0], words_vectors[:, 1]):
        plt.annotate(
            label,
            xy=(x, y), xytext=(-20, 20),
            textcoords='offset points', ha='right', va='bottom',
            fontsize=20,
            # bbox=dict(boxstyle='round,pad=1.', fc='yellow', alpha=0.5),
            arrowprops=dict(arrowstyle = '<-', connectionstyle='arc3,rad=0')
            )
    plt.show()
    # plt.savefig(save_file)
项目:pauvre    作者:conchoecia    | 项目源码 | 文件源码
def fix_query_reflength(sequence_length, queries, doubled):
    """
    arguments:
     <sequence_length> This is the reference fasta length. It should be 2x the actual
               length of the reference since this program takes a sam file from
               a concatenated reference.
     <queries> This is a list of SQL-type query strings. This is generated
                from argparse.

    purpose:
     This function takes in a list of queries to use for read filtering
     for the redwood plot. It is often not advisable to plot all mapped reads
     since many of them are too small relative to the reference length. Also,
     the point of a death star plot is to show continuity of a circular
     reference, so short reads aren't very helpful there either.

     Currently, this function only recognizes the keyword argument 'reflength'.
    """
    if not doubled:
        sequence_length = int(sequence_length * 2)
    for i in range(len(queries)):
        if 'reflength' in queries[i].split():
            queries[i] = queries[i].replace('reflength', str(int(sequence_length/2)))
项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def fast_run(args):
    model = Model(args)
    feed = {}
    #feed[model.train_batch]=False
    xx,ss,yy=model.inputs(args.input_path)

    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    tf.train.start_queue_runners(sess=sess)
    xxx,sss,yyy=sess.run([xx,ss,yy])
    #print(yyy)
    #print(yyy[1])
    print('len:',xxx.shape)
    import matplotlib.cm as cm
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    plt.figure(figsize=(16,4))
    #plt.imshow()
    plt.imshow(np.asarray(xxx[0]).reshape((36,90))+0.5, interpolation='nearest', aspect='auto', cmap=cm.jet)
    plt.savefig("img.jpg")
    plt.clf() ; plt.cla()
项目:pyro    作者:uber    | 项目源码 | 文件源码
def plot_tsne(z_mu, classes, name):
    import numpy as np
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    from sklearn.manifold import TSNE
    model_tsne = TSNE(n_components=2, random_state=0)
    z_states = z_mu.data.cpu().numpy()
    z_embed = model_tsne.fit_transform(z_states)
    classes = classes.data.cpu().numpy()
    fig666 = plt.figure()
    for ic in range(10):
        ind_vec = np.zeros_like(classes)
        ind_vec[:, ic] = 1
        ind_class = classes[:, ic] == 1
        color = plt.cm.Set1(ic)
        plt.scatter(z_embed[ind_class, 0], z_embed[ind_class, 1], s=10, color=color)
        plt.title("Latent Variable T-SNE per Class")
        fig666.savefig('./vae_results/'+str(name)+'_embedding_'+str(ic)+'.png')
    fig666.savefig('./vae_results/'+str(name)+'_embedding.png')
项目:zgtoolkits    作者:xuzhougeng    | 项目源码 | 文件源码
def _set_matplotlib_default_backend():
    """
    matplotlib will try to print to a display if it is available, but don't want
    to run it in interactive mode. we tried setting the backend to 'Agg'' before
    importing, but it was still resulting in issues. we replace the existing
    backend with 'agg' in the default matplotlibrc. This is a hack until we can
    find a better solution
    """
    if _matplotlib_installed():
        import matplotlib
        matplotlib.use('Agg', force=True)
        config = matplotlib.matplotlib_fname()
        with file_transaction(config) as tx_out_file:
            with open(config) as in_file, open(tx_out_file, "w") as out_file:
                for line in in_file:
                    if line.split(":")[0].strip() == "backend":
                        out_file.write("backend: agg\n")
                    else:
                        out_file.write(line)
项目:TensorFlow-Time-Series-Examples    作者:hzy46    | 项目源码 | 文件源码
def __init__(self, num_units, num_features, dtype=tf.float32):
    """Initialize/configure the model object.
    Note that we do not start graph building here. Rather, this object is a
    configurable factory for TensorFlow graphs which are run by an Estimator.
    Args:
      num_units: The number of units in the model's LSTMCell.
      num_features: The dimensionality of the time series (features per
        timestep).
      dtype: The floating point data type to use.
    """
    super(_LSTMModel, self).__init__(
        # Pre-register the metrics we'll be outputting (just a mean here).
        train_output_names=["mean"],
        predict_output_names=["mean"],
        num_features=num_features,
        dtype=dtype)
    self._num_units = num_units
    # Filled in by initialize_graph()
    self._lstm_cell = None
    self._lstm_cell_run = None
    self._predict_from_lstm_output = None
项目:TensorFlow-Time-Series-Examples    作者:hzy46    | 项目源码 | 文件源码
def __init__(self, num_units, num_features, dtype=tf.float32):
    """Initialize/configure the model object.
    Note that we do not start graph building here. Rather, this object is a
    configurable factory for TensorFlow graphs which are run by an Estimator.
    Args:
      num_units: The number of units in the model's LSTMCell.
      num_features: The dimensionality of the time series (features per
        timestep).
      dtype: The floating point data type to use.
    """
    super(_LSTMModel, self).__init__(
        # Pre-register the metrics we'll be outputting (just a mean here).
        train_output_names=["mean"],
        predict_output_names=["mean"],
        num_features=num_features,
        dtype=dtype)
    self._num_units = num_units
    # Filled in by initialize_graph()
    self._lstm_cell = None
    self._lstm_cell_run = None
    self._predict_from_lstm_output = None
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def save_plot(niters, loss, args):
    print('Saving training loss-iteration figure...')
    try:
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt

        name = 'Train-{}_hs-{}_lr-{}_bs-{}'.format(args.train_file, args.hs,
                                                   args.lr, args.batch_size)
        plt.title(name)
        plt.plot(niters, loss)
        plt.xlabel('iteration')
        plt.ylabel('loss')
        plt.savefig(name + '.jpg')
        print('{} saved!'.format(name + '.jpg'))

    except ImportError:
        print('matplotlib not installed and no figure is saved.')
项目:PandasDataFrameGUI    作者:bluenote10    | 项目源码 | 文件源码
def redraw(self):
        column_index1 = self.combo_box1.GetSelection()
        column_index2 = self.combo_box2.GetSelection()
        if column_index1 != wx.NOT_FOUND and column_index1 != 0 and \
           column_index2 != wx.NOT_FOUND and column_index2 != 0:
            # subtract one to remove the neutral selection index
            column_index1 -= 1
            column_index2 -= 1
            df = self.df_list_ctrl.get_filtered_df()

            # It looks like using pandas dataframe.plot causes something weird to
            # crash in wx internally. Therefore we use plain axes.plot functionality.
            # column_name1 = self.columns[column_index1]
            # column_name2 = self.columns[column_index2]
            # df.plot(kind='scatter', x=column_name1, y=column_name2)

            if len(df) > 0:
                self.axes.clear()
                self.axes.plot(df.iloc[:, column_index1].values, df.iloc[:, column_index2].values, 'o', clip_on=False)

                self.canvas.draw()
项目:Tacotron_pytorch    作者:root20    | 项目源码 | 文件源码
def saveAttention(input_sentence, attentions, outpath):
    # Set up figure with colorbar
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker

    fig = plt.figure(figsize=(24,10), )
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.cpu().numpy(), cmap='bone')
    fig.colorbar(cax)

    if input_sentence:
        # Set up axes
        ax.set_yticklabels([' '] + list(input_sentence) + [' '])
        # Show label at every tick
        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.tight_layout()
    plt.savefig(outpath)
    plt.close('all')
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def __init__(self, gulp_size=1048576, core=-1):
        """
        @param[in] input_ring Ring containing a 1d
            timeseries
        @param[out] output_ring Ring will contain a 1d
            timeseries that will be cleaned of RFI
        @param[in] core Which OpenMP core to use for
            this block. (-1 is any)
        """
        super(KurtosisBlock, self).__init__()
        self.gulp_size = gulp_size
        self.core = core
        self.output_header = {}
        self.settings = {}
        self.nchan = 1
        self.dtype = np.uint8
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def __init__(
            self, bins, period=1e-3,
            gulp_size=4096 * 256, dispersion_measure=0,
            core=-1):
        """
        @param[in] bins The total number of bins to fold into
        @param[in] period Period to fold over (s)
        @param[in] gulp_size How many bytes of the ring to
            read at once.
        @param[in] dispersion_measure DM of the desired
            source (pc cm^-3)
        @param[in] core Which OpenMP core to use for
            this block. (-1 is any)
        """
        super(FoldBlock, self).__init__()
        self.bins = bins
        self.gulp_size = gulp_size
        self.period = period
        self.dispersion_measure = dispersion_measure
        self.core = core
        self.data_settings = {}
项目:bifrost    作者:ledatelescope    | 项目源码 | 文件源码
def __init__(
            self, ring, imagename,
            core=-1, gulp_nframe=4096):
        """
        @param[in] ring Ring containing a multichannel
            timeseries
        @param[in] imagename Filename to store the
            waterfall image
        @param[in] core Which OpenMP core to use for
            this block. (-1 is any)
        @param[in] gulp_size How many bytes of the ring to
            read at once.
        """
        self.ring = ring
        self.imagename = imagename
        self.core = core
        self.gulp_nframe = gulp_nframe
        self.header = {}
项目:coquery    作者:gkunter    | 项目源码 | 文件源码
def get_palette(self):
        """
        Return a palette that is suitable for the data.
        """
        # choose the "Paired" palette if the number of grouping factor
        # levels is even and below 13, or the "Set3" palette otherwise:
        if len(self._levels) == 0:
            if len(self._groupby) == 1:
                return sns.color_palette("Paired")[0]
            else:
                palette_name = "Paired"
        elif len(self._levels[-1]) in (2, 4, 6):
            palette_name = "Paired"
        else:
            # use 'Set3', a quantitative palette, if there are two grouping
            # factors, or a palette diverging from Red to Purple otherwise:
            palette_name = "Paired" if len(self._groupby) == 2 else "RdPu"
        return sns.color_palette(palette_name)
项目:Chalutier    作者:LaBaleineFr    | 项目源码 | 文件源码
def optimiz(currencies, debug):
    currencies = sorted(currencies)
    if len(currencies) < 2 or len(currencies) > 10:
        return {"error": "2 to 10 currencies"}
    max_workers = 4 if sys.version_info[1] < 5 else None
    executor = ThreadPoolExecutor(max_workers)
    data = dict(future.result() for future in wait([executor.submit(get_ochl, cur) for cur in currencies]).done)
    data = [data[cur] for cur in currencies]
    errors = [x['error'] for x in data if 'error' in x]
    if errors:
        return {"error": "Currencies not found : " + str(errors)}
    weights, m, s, a, b = markowitz_optimization(data, debug)
    if debug:
        import matplotlib as mpl
        mpl.use('Agg')
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots()
        plt.plot(s, m, 'o', markersize=1)
        plt.plot(b, a, 'or')
        fig.savefig("chalu.png")
    result = dict()
    for i, cur in enumerate(currencies):
        result[cur] = weights[i]
    return {"result": result}
项目:lorelei-speech-evaluation    作者:usc-sail    | 项目源码 | 文件源码
def frame_similarity(frame1,frame2):
    similarity = 1
    if 'Type' in frame1:
        if frame1['Type'] != frame2['Type']:
            similarity = 0.0
    if similarity == 1:
        if 'PlaceMention' in frame1:
            # if PlaceMention is normalized use simple string comparison
            if not Levenshtein_arg:
                if frame1['PlaceMention']  != frame2['PlaceMention']:
                    similarity = 0.0
            else:
                # PlaceMention is not normalized so use Levinshtein distance
                similarity = Levenshtein.ratio(frame1['PlaceMention'], frame2['PlaceMention'])
    #print("similarity: ", similarity)
    return similarity


# evaluate at the document level -----------------------------------------------
项目:terra    作者:UW-Hydro    | 项目源码 | 文件源码
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        default='VGGnet_test')
    parser.add_argument('--model', dest='model', help='Model path',
                        default=' ')
    parser.add_argument('--imdb', dest='imdb', default='voc_2007_test')

    args = parser.parse_args()

    return args
项目:leetcode    作者:thomasyimgit    | 项目源码 | 文件源码
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
项目:sockeye    作者:awslabs    | 项目源码 | 文件源码
def plot_attention(attention_matrix: np.ndarray, source_tokens: List[str], target_tokens: List[str], filename: str):
    """
    Uses matplotlib for creating a visualization of the attention matrix.

    :param attention_matrix: The attention matrix.
    :param source_tokens: A list of source tokens.
    :param target_tokens: A list of target tokens.
    :param filename: The file to which the attention visualization will be written to.
    """
    import matplotlib
    matplotlib.use("Agg")
    import matplotlib.pyplot as plt
    assert attention_matrix.shape[0] == len(target_tokens)

    plt.imshow(attention_matrix.transpose(), interpolation="nearest", cmap="Greys")
    plt.xlabel("target")
    plt.ylabel("source")
    plt.gca().set_xticks([i for i in range(0, len(target_tokens))])
    plt.gca().set_yticks([i for i in range(0, len(source_tokens))])
    plt.gca().set_xticklabels(target_tokens, rotation='vertical')
    plt.gca().set_yticklabels(source_tokens)
    plt.tight_layout()
    plt.savefig(filename)
    logger.info("Saved alignment visualization to " + filename)
项目:multi-diffusion    作者:chemical-diffusion    | 项目源码 | 文件源码
def extract_thumbnail_number(text):
    """ Pull out the thumbnail image number specified in the docstring. """

    # check whether the user has specified a specific thumbnail image
    pattr = re.compile(
        r"^\s*#\s*sphinx_gallery_thumbnail_number\s*=\s*([0-9]+)\s*$",
        flags=re.MULTILINE)
    match = pattr.search(text)

    if match is None:
        # by default, use the first figure created
        thumbnail_number = 1
    else:
        thumbnail_number = int(match.groups()[0])

    return thumbnail_number
项目:keras_experiments    作者:avolkov1    | 项目源码 | 文件源码
def parser_(desc):
    parser = ap.ArgumentParser(description=desc)

    parser.add_argument(
        '--mgpu', action='store', nargs='?', type=int,
        const=-1,  # if mgpu is specified but value not provided then -1
        # if mgpu is not specified then defaults to 0 - single gpu
        # mgpu = 0 if getattr(args, 'mgpu', None) is None else args.mgpu
        default=ap.SUPPRESS,
        help='Run on multiple-GPUs using all available GPUs on a system.\n'
        'If not passed does not use multiple GPU. If passed uses all GPUs.\n'
        'Optionally specify a number to use that many GPUs. Another\n'
        'approach is to specify CUDA_VISIBLE_DEVICES=0,1,... when calling\n'
        'script and specify --mgpu to use this specified device list.\n'
        'This option is only supported with TensorFlow backend.\n')

    parser.add_argument('--epochs', type=int, default=5,
                        help='Number of epochs to run training for.')

    args = parser.parse_args()

    return args
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def plot(self, filename):
        r"""Save an image file of the transfer function.

        This function loads up matplotlib, plots the transfer function and saves.

        Parameters
        ----------
        filename : string
            The file to save out the plot as.

        Examples
        --------

        >>> tf = TransferFunction( (-10.0, -5.0) )
        >>> tf.add_gaussian(-9.0, 0.01, 1.0)
        >>> tf.plot("sample.png")
        """
        import matplotlib
        matplotlib.use("Agg")
        import pylab
        pylab.clf()
        pylab.plot(self.x, self.y, 'xk-')
        pylab.xlim(*self.x_bounds)
        pylab.ylim(0.0, 1.0)
        pylab.savefig(filename)
项目:dxf2gcode    作者:cnc-club    | 项目源码 | 文件源码
def get_nearest_point(self, points):
        """ 
        If there are more then 1 intersection points then use the nearest one to
        be the intersection Point.
        @param points: A list of points to be checked for nearest
        @return: Returns the nearest Point
        """
        if len(points) == 1:
            Point = points[0]
        else:
            mindis = points[0].distance(self)
            Point = points[0]
            for i in range(1, len(points)):
                curdis = points[i].distance(self)
                if curdis < mindis:
                    mindis = curdis
                    Point = points[i]

        return Point
项目:autoreject    作者:autoreject    | 项目源码 | 文件源码
def _prepare_projectors(params):
    """ Helper for setting up the projectors for epochs browser """
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    epochs = params['epochs']
    projs = params['projs']
    if len(projs) > 0 and not epochs.proj:
        ax_button = plt.subplot2grid((10, 15), (9, 14))
        opt_button = mpl.widgets.Button(ax_button, 'Proj')
        callback_option = partial(_toggle_options, params=params)
        opt_button.on_clicked(callback_option)
        params['opt_button'] = opt_button
        params['ax_button'] = ax_button

    # As here code is shared with plot_evoked, some extra steps:
    # first the actual plot update function
    params['plot_update_proj_callback'] = _plot_update_epochs_proj
    # then the toggle handler
    callback_proj = partial(_toggle_proj, params=params)
    # store these for use by callbacks in the options figure
    params['callback_proj'] = callback_proj
    callback_proj('none')
项目:c3d_ucf101_siamese_yilin    作者:fxing328    | 项目源码 | 文件源码
def create_tensor(file1,mean_array):
    video_1 = cv2.VideoCapture(file1)
    # use cv to get frame number is not correct
    len_1 = int(video_1.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT))

    tensor_1 = np.zeros([3,len_1,112,112])
    count = 0
    ret = True
    while True:
    ret, frame_1 = video_1.read()
        if frame_1 is not None:
        tensor_1[:,count,:,:] = np.swapaxes(cv2.resize(cropImg(frame_1),(112,112)),0,2) - mean_array
            count = count+1
        print count 
    else:
        break
    pdb.set_trace()
    tensor = tensor_1[:,:count,:,:] 
    return tensor
项目:dyfunconn    作者:makism    | 项目源码 | 文件源码
def _get_data(url):
    """Helper function to get data over http or from a local file"""
    if url.startswith('http://'):
        # Try Python 2, use Python 3 on exception
        try:
            resp = urllib.urlopen(url)
            encoding = resp.headers.dict.get('content-encoding', 'plain')
        except AttributeError:
            resp = urllib.request.urlopen(url)
            encoding = resp.headers.get('content-encoding', 'plain')
        data = resp.read()
        if encoding == 'plain':
            pass
        elif encoding == 'gzip':
            data = StringIO(data)
            data = gzip.GzipFile(fileobj=data).read()
        else:
            raise RuntimeError('unknown encoding')
    else:
        with open(url, 'r') as fid:
            data = fid.read()
        fid.close()

    return data
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def SExtractorCat2fits(sextractorfiles,stringcols=[1],header=73,verbose=True):
    """
    Converting an ascii catalog with columns defined in header in the SExtractor format, i.e. one column
    name per row preceeded by a "#" and a column numner, and followed by a description (or any ascii file
    with the given setup) to a fits binary table

    --- INPUT ---
    sextractorfiles   List of ascii files to convert to fits
    stringcols        Columns to use a string format for (all other columns will be set to double float)
    header            Header containing the column names of the catalogs following the "SExtractor notation"
    verbose           Toggle verbosity

    --- EXAMPLE OF USE ---
    import glob
    import tdose_utilities as tu
    catalogs = glob.glob('/Volumes/DATABCKUP2/MUSE-Wide/catalogs_photometry/catalog_photometry_candels-cdfs-*.cat')
    tu.SExtractorCat2fits(catalogs,stringcols=[1],header=73,verbose=True)

    """
    for sexcat_ascii in sextractorfiles:
        asciiinfo = open(sexcat_ascii,'r')
        photcols = []
        for line in asciiinfo:
            if line.startswith('#'):
                colname = line.split()[2]
                photcols.append(colname)

        photfmt = ['D']*len(photcols)
        for stringcol in stringcols:
            photfmt[stringcol] = 'A60'

        sexcat_fits   = tu.ascii2fits(sexcat_ascii,asciinames=photcols,skip_header=header,fitsformat=photfmt,verbose=verbose)

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:TDOSE    作者:kasperschmidt    | 项目源码 | 文件源码
def galfit_getcentralcoordinate(modelfile,coordorigin=1,verbose=True):
    """
    Return the central coordinates of a GALFIT model extracted using the reference image WCS and the FITSECT keyword

    --- INPUT ---
    modelfile       Path and name to GALFIT model fits file to retrieve central coordinates for
    coordorigin     Origin of coordinates in reference image to use when converting pixels to degrees (skycoord)
    verbose         Toggle verbosity

    --- EXAMPLE OF USE ---
    fileG   = '/Volumes/DATABCKUP2/TDOSEextractions/models_cutouts/model8685multicomponent/model_acs_814w_candels-cdfs-02_cut_v1.0_id8685_cutout7p0x7p0arcsec.fits' # Gauss components
    fileS   = '/Volumes/DATABCKUP2/TDOSEextractions/models_cutouts/model8685multicomponent/model_acs_814w_candels-cdfs-02_cut_v1.0_id9262_cutout2p0x2p0arcsec.fits' # Sersic components

    xpix, ypix, ra_model, dec_model = tu.galfit_getcentralcoordinate(fileG,coordorigin=1)

    """
    if verbose: print ' - Will extract central coordinates from '+modelfile
    refimg_hdr     = pyfits.open(modelfile)[1].header
    model_hdr      = pyfits.open(modelfile)[2].header
    imgwcs         = wcs.WCS(tu.strip_header(refimg_hdr.copy()))

    fit_region     = model_hdr['FITSECT']
    cutrange_low_x = int(float(fit_region.split(':')[0].split('[')[-1]))
    cutrange_low_y = int(float(fit_region.split(',')[-1].split(':')[0]))
    xsize          = model_hdr['NAXIS1']
    ysize          = model_hdr['NAXIS2']

    xpix           = cutrange_low_x + int(xsize/2.)
    ypix           = cutrange_low_y + int(ysize/2.)

    if verbose: print ' - Converting pixel position to coordinates using a pixel origin='+str(coordorigin)
    skycoord    = wcs.utils.pixel_to_skycoord(xpix,ypix,imgwcs,origin=coordorigin)

    ra_model    = skycoord.ra.value
    dec_model   = skycoord.dec.value

    return xpix,ypix,ra_model,dec_model
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
项目:A3C    作者:go2sea    | 项目源码 | 文件源码
def actor_loss(self):
        if self.config.mode == 'discrete':
            log_prob = tf.reduce_sum(tf.log(self.a_prob) * tf.one_hot(self.action_input, self.action_dim, dtype=tf.float32),
                                     axis=1, keep_dims=True)
            # use entropy to encourage exploration
            exp_v = log_prob * self.TD_loss
            entropy = -tf.reduce_sum(self.a_prob * tf.log(self.a_prob), axis=1, keep_dims=True)  # encourage exploration
            exp_v = self.config.ENTROPY_BETA * entropy + exp_v
            return tf.reduce_mean(-exp_v)  # ????????log_prb????????????????????TD_loss
        elif self.config.mode == 'continuous':
            log_prob = self.action_normal_dist.log_prob(self.action_input)
            exp_v = log_prob * self.TD_loss
            # use entropy to encourage exploration
            exp_v = self.config.ENTROPY_BETA * self.action_normal_dist.entropy() + exp_v
            return tf.reduce_mean(-exp_v)
项目:A3C    作者:go2sea    | 项目源码 | 文件源码
def v(self):
        with tf.variable_scope('critic'):
            w_i = tf.random_uniform_initializer(0., 0.1)
            b_i = tf.zeros_initializer()
            with tf.variable_scope('dense1'):
                dense1 = dense(self.state_input, 100, [100], w_i, activation=tf.nn.relu6)
            with tf.variable_scope('dense2'):
                dense2 = dense(dense1, 1, [1], w_i, b_i, activation=None)
            return dense2

    # Note: We need 2 return value here: mu & sigma. So it is not suitable to use lazy_property.
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def do_all():
    raise RuntimeError("all is broken, don't use")
    accuracy_against_sempre()
    recall()
    correct_function()
    different_training_sets()
    learning()
项目:core-framework    作者:RedhawkSDR    | 项目源码 | 文件源码
def _deferred_imports():
    # Importing PyQt4 and matplotlib may take a long time--more than a second
    # worst case--but neither one is needed at import time (or possibly ever).
    # By deferring the import until required (at creation of a plot), the cost
    # is much less apparent.
    try:
        from PyQt4 import QtCore, QtGui

        import matplotlib
        matplotlib.use('Qt4Agg')
        from matplotlib import pyplot, mlab, pylab
        from matplotlib.backends.backend_agg import FigureCanvasAgg
        import numpy

        from bulkio.bulkioInterfaces import BULKIO__POA

        # Rebind the function to do nothing in future calls
        def _deferred_imports():
            pass

        globals().update(locals())
    except ImportError, e:
        import platform
        if 'el5' in platform.release() and 'PyQt4' in str(e):
            raise RuntimeError("matplotlib-based plots are not available by default on Red Hat Enterprise Linux 5 (missing PyQt4 dependency)")
        else:
            raise RuntimeError("Missing required package for sandbox plots: '%s'" % e)
项目:core-framework    作者:RedhawkSDR    | 项目源码 | 文件源码
def _getSampleRate(self, sri):
        if sri.xdelta > 0.0:
            # Round sample rate to an integral value to account for the fact
            # that there is typically some rounding error in the xdelta value.
            return round(1.0 / sri.xdelta)
        else:
            # Bad SRI xdelta, use normalized value.
            return 1.0
项目:core-framework    作者:RedhawkSDR    | 项目源码 | 文件源码
def _formatData(self, data, sri):
        # Image data cannot be complex; just use the real component.
        if sri.mode:
            return [x.real for x in data]
        else:
            return data
项目:IgDiscover    作者:NBISweden    | 项目源码 | 文件源码
def add_arguments(parser):
    arg = parser.add_argument
    group = parser.add_mutually_exclusive_group()
    group.add_argument('--real-cdr3', action='store_true', default=False,
        help='In addition to barcode, group sequences by real CDR3 (detected with regex).')
    group.add_argument('--pseudo-cdr3', nargs='?', default=None,
        type=slice_arg, const=slice(-80, -60), metavar='START:END',
        help='In addition to barcode, group sequences by pseudo CDR3. '
            'If START:END is omitted, use -80:-60.')
    arg('--groups-output', metavar='FILE', default=None,
        help='Write tab-separated table with groups to FILE')
    arg('--plot-sizes', metavar='FILE', default=None,
        help='Plot group sizes to FILE (.png or .pdf)')
    arg('--limit', default=None, type=int, metavar='N',
        help='Limit processing to the first N reads')
    arg('--trim-g', action='store_true', default=False,
        help="Trim 'G' nucleotides at 5' end")
    arg('--minimum-length', '-l', type=int, default=0,
        help='Minimum sequence length')
    arg('--barcode-length', '-b', type=int, default=12,
        help="Length of barcode. Positive for 5' barcode, negative for 3' barcode. Default: %(default)s")
    arg('fastx', metavar='FASTA/FASTQ',
        help='FASTA or FASTQ file (can be gzip-compressed) with sequences')
项目:Homology_BG    作者:jyotikab    | 项目源码 | 文件源码
def diffD1D2(Flags):
    # To check if the difference between D1 and D2 amplifies downstream
    # First decide which model to use
    delay = 1
    if Flags == "Allsym":
        (d1,d2,fsi,ti,ta,stn,gpi,ipctx,A,B,params) = calcRates(Flags,delay)
        # D = Direct pathway, ID = Indirect pathway, HD = Hyperdirect pathway
        # Reducing a full recurrent matrix leads to postive and negative contributions in ID and HD instead of pure just positive contributions
        D = params['gpid1']
        print "Direct",D

        de1 = 1. + (params['d1d1']*params['fsifsi']) - (params['stnti']*params['stnstn'])
        Ex1 = (params['stnti']*params['d1d1']*params['fsifsi']*params['gpistn'])/de1        
        Ex2 = (params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi'])/de1        
        IDpos = params['stnti']*params['tid2']*(params['d1ta']*params['gpid1']*params['tistn']+ Ex1 + Ex2)

        print "IDpos",IDpos

        Ex3 = (params['d1ta']+params['d1ta']*params['tata']+((params['stnta']*params['fsiti']*params['d1fsi'])/de1))
        IDneg = params['gpid1']+params['gpiti']*params['tid2']+params['gpid1']*params['stnstn']*params['tid2']*Ex3  
        print "IDneg",IDneg

        HDpos = (params['jstnctx']*params['gpid1']*params['stnstn']*params['fsiti']*params['d1fsi'])/de1
        print "HDpos",HDpos
        Ex4 = params['jstnctx']*params['d1d1']*params['fsifsi']*params['stnti']*params['gpistn']
        Ex5 = params['jstnctx']*params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi']
        HDneg = (Ex4 + Ex5)/de1 
        print "HDneg",HDneg

        d1fix = np.mean(d1[:-10])
        d2fix = np.mean(d2[:-10])
        DelMSN = d1fix - d2fix
        DelGpi = (D*d1fix) + ((IDpos - IDneg)*d2fix)

    return (DelMSN,DelGpi)
项目:Homology_BG    作者:jyotikab    | 项目源码 | 文件源码
def diffD1D2(Flags):
    # To check if the difference between D1 and D2 amplifies downstream
    # First decide which model to use
    delay = 1
    if Flags == "Allsym":
        (d1,d2,fsi,ti,ta,stn,gpi,ipctx,A,B,params) = calcRates(Flags,delay)
        # D = Direct pathway, ID = Indirect pathway, HD = Hyperdirect pathway
        # Reducing a full recurrent matrix leads to postive and negative contributions in ID and HD instead of pure just positive contributions
        D = params['gpid1']
        print "Direct",D

        de1 = 1. + (params['d1d1']*params['fsifsi']) - (params['stnti']*params['stnstn'])
        Ex1 = (params['stnti']*params['d1d1']*params['fsifsi']*params['gpistn'])/de1        
        Ex2 = (params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi'])/de1        
        IDpos = params['stnti']*params['tid2']*(params['d1ta']*params['gpid1']*params['tistn']+ Ex1 + Ex2)

        print "IDpos",IDpos

        Ex3 = (params['d1ta']+params['d1ta']*params['tata']+((params['stnta']*params['fsiti']*params['d1fsi'])/de1))
        IDneg = params['gpid1']+params['gpiti']*params['tid2']+params['gpid1']*params['stnstn']*params['tid2']*Ex3  
        print "IDneg",IDneg

        HDpos = (params['jstnctx']*params['gpid1']*params['stnstn']*params['fsiti']*params['d1fsi'])/de1
        print "HDpos",HDpos
        Ex4 = params['jstnctx']*params['d1d1']*params['fsifsi']*params['stnti']*params['gpistn']
        Ex5 = params['jstnctx']*params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi']
        HDneg = (Ex4 + Ex5)/de1 
        print "HDneg",HDneg

        d1fix = np.mean(d1[:-10])
        d2fix = np.mean(d2[:-10])
        DelMSN = d1fix - d2fix
        DelGpi = (D*d1fix) + ((IDpos - IDneg)*d2fix)

    return (DelMSN,DelGpi)
项目:Homology_BG    作者:jyotikab    | 项目源码 | 文件源码
def diffD1D2(Flags):
    # To check if the difference between D1 and D2 amplifies downstream
    # First decide which model to use
    delay = 1
    if Flags == "Allsym":
        (d1,d2,fsi,ti,ta,stn,gpi,ipctx,A,B,params) = calcRates(Flags,delay)
        # D = Direct pathway, ID = Indirect pathway, HD = Hyperdirect pathway
        # Reducing a full recurrent matrix leads to postive and negative contributions in ID and HD instead of pure just positive contributions
        D = params['gpid1']
        print "Direct",D

        de1 = 1. + (params['d1d1']*params['fsifsi']) - (params['stnti']*params['stnstn'])
        Ex1 = (params['stnti']*params['d1d1']*params['fsifsi']*params['gpistn'])/de1        
        Ex2 = (params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi'])/de1        
        IDpos = params['stnti']*params['tid2']*(params['d1ta']*params['gpid1']*params['tistn']+ Ex1 + Ex2)

        print "IDpos",IDpos

        Ex3 = (params['d1ta']+params['d1ta']*params['tata']+((params['stnta']*params['fsiti']*params['d1fsi'])/de1))
        IDneg = params['gpid1']+params['gpiti']*params['tid2']+params['gpid1']*params['stnstn']*params['tid2']*Ex3  
        print "IDneg",IDneg

        HDpos = (params['jstnctx']*params['gpid1']*params['stnstn']*params['fsiti']*params['d1fsi'])/de1
        print "HDpos",HDpos
        Ex4 = params['jstnctx']*params['d1d1']*params['fsifsi']*params['stnti']*params['gpistn']
        Ex5 = params['jstnctx']*params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi']
        HDneg = (Ex4 + Ex5)/de1 
        print "HDneg",HDneg

        d1fix = np.mean(d1[:-10])
        d2fix = np.mean(d2[:-10])
        DelMSN = d1fix - d2fix
        DelGpi = (D*d1fix) + ((IDpos - IDneg)*d2fix)

    return (DelMSN,DelGpi)
项目:Homology_BG    作者:jyotikab    | 项目源码 | 文件源码
def diffD1D2(Flags):
    # To check if the difference between D1 and D2 amplifies downstream
    # First decide which model to use
    delay = 1
    if Flags == "Allsym":
        (d1,d2,fsi,ti,ta,stn,gpi,ipctx,A,B,params) = calcRates(Flags,delay)
        # D = Direct pathway, ID = Indirect pathway, HD = Hyperdirect pathway
        # Reducing a full recurrent matrix leads to postive and negative contributions in ID and HD instead of pure just positive contributions
        D = params['gpid1']
        print "Direct",D

        de1 = 1. + (params['d1d1']*params['fsifsi']) - (params['stnti']*params['stnstn'])
        Ex1 = (params['stnti']*params['d1d1']*params['fsifsi']*params['gpistn'])/de1        
        Ex2 = (params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi'])/de1        
        IDpos = params['stnti']*params['tid2']*(params['d1ta']*params['gpid1']*params['tistn']+ Ex1 + Ex2)

        print "IDpos",IDpos

        Ex3 = (params['d1ta']+params['d1ta']*params['tata']+((params['stnta']*params['fsiti']*params['d1fsi'])/de1))
        IDneg = params['gpid1']+params['gpiti']*params['tid2']+params['gpid1']*params['stnstn']*params['tid2']*Ex3  
        print "IDneg",IDneg

        HDpos = (params['jstnctx']*params['gpid1']*params['stnstn']*params['fsiti']*params['d1fsi'])/de1
        print "HDpos",HDpos
        Ex4 = params['jstnctx']*params['d1d1']*params['fsifsi']*params['stnti']*params['gpistn']
        Ex5 = params['jstnctx']*params['gpid1']*params['stnstn']*params['d1ta']*params['fsifsi']
        HDneg = (Ex4 + Ex5)/de1 
        print "HDneg",HDneg

        d1fix = np.mean(d1[:-10])
        d2fix = np.mean(d2[:-10])
        DelMSN = d1fix - d2fix
        DelGpi = (D*d1fix) + ((IDpos - IDneg)*d2fix)

    return (DelMSN,DelGpi)
项目:pi_gcs    作者:lbusoni    | 项目源码 | 文件源码
def _savePlot(self, data, filename):
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt

        plt.plot(data)
        plt.savefig(filename)
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def url_for_figure(self, s: str):
        """
        Override it to use flask.url_for
        :param s:
        :return:
        """
        return "/fig/" + s
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def url_for_snippet(self, label: str) -> str:
        """
        Returns url for snippet by label.

        Override this method to use Flask's url_for

        :param label:
        :return:
        """
        return "/snippet/"+label
项目:sampleRNN_ICLR2017    作者:soroushmehr    | 项目源码 | 文件源码
def search(node, critereon):
    """
    Traverse the Theano graph starting at `node` and return a list of all nodes
    which match the `critereon` function. When optimizing a cost function, you
    can use this to get a list of all of the trainable params in the graph, like
    so:

    `lib.search(cost, lambda x: hasattr(x, "param"))`
    or
    `lib.search(cost, lambda x: hasattr(x, "param") and x.param==True)`
    """

    def _search(node, critereon, visited):
        if node in visited:
            return []
        visited.add(node)

        results = []
        if isinstance(node, T.Apply):
            for inp in node.inputs:
                results += _search(inp, critereon, visited)
        else: # Variable node
            if critereon(node):
                results.append(node)
            if node.owner is not None:
                results += _search(node.owner, critereon, visited)
        return results

    return _search(node, critereon, set())
项目:a-nice-mc    作者:ermongroup    | 项目源码 | 文件源码
def __init__(self, name='expression', display=True):
        super(Expression, self).__init__()
        self.name = name
        self.display = display
        if display:
            import matplotlib.pyplot as plt
            plt.ion()
        else:
            import matplotlib
            matplotlib.use('Agg')
            import matplotlib.pyplot as plt
        self.fig, (self.ax1, self.ax2) = plt.subplots(nrows=2, ncols=1)