Python matplotlib 模块,pyplot() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot()

项目:IgDiscover    作者:NBISweden    | 项目源码 | 文件源码
def plot_counts(counts, gene_type):
    """Plot expression counts. Return a Figure object"""
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np

    fig = plt.figure(figsize=((50 + len(counts) * 5) / 25.4, 210/25.4))
    matplotlib.rcParams.update({'font.size': 14})
    ax = fig.gca()
    ax.set_title('{} gene usage'.format(gene_type))
    ax.set_xlabel('{} gene'.format(gene_type))
    ax.set_ylabel('Count')
    ax.set_xticks(np.arange(len(counts)) + 0.5)
    ax.set_xticklabels(counts.index, rotation='vertical')
    ax.grid(axis='x')
    ax.set_xlim((-0.25, len(counts)))
    ax.bar(np.arange(len(counts)), counts['count'])
    fig.set_tight_layout(True)
    return fig
项目:a-nice-mc    作者:ermongroup    | 项目源码 | 文件源码
def visualize(self, zv, path):
        self.ax1.clear()
        self.ax2.clear()
        z, v = zv
        if path:
            np.save(path + '/trajectory.npy', z)

        z = np.reshape(z, [-1, 2])
        self.ax1.hist2d(z[:, 0], z[:, 1], bins=400)
        self.ax1.set(xlim=self.xlim(), ylim=self.ylim())

        v = np.reshape(v, [-1, 2])
        self.ax2.hist2d(v[:, 0], v[:, 1], bins=400)
        self.ax2.set(xlim=self.xlim(), ylim=self.ylim())

        if self.display:
            import matplotlib.pyplot as plt
            plt.show()
            plt.pause(0.1)
        elif path:
            self.fig.savefig(path + '/visualize.png')
项目:PyBASC    作者:AkiNikolaidis    | 项目源码 | 文件源码
def test_cluster_matrix_average():

    import utils
    import basc
    import matplotlib.pyplot as plt


    blobs = generate_blobs()
    ism = utils.individual_stability_matrix(blobs, 100, 3)
    y_predict = utils.cluster_timeseries(blobs, 3, similarity_metric = 'correlation', affinity_threshold=0.0)
    cluster_voxel_scores, K_mask = utils.cluster_matrix_average(ism, y_predict)

    plt.imshow(K_mask)


#%% TEST BASC.PY
#Remaining Tests to write:
    #Join_group_stability
    #cluster_selection
    #individual_group_clustered_maps
    #ndarray_to_vol
项目:pyro    作者:uber    | 项目源码 | 文件源码
def plot_tsne(z_mu, classes, name):
    import numpy as np
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    from sklearn.manifold import TSNE
    model_tsne = TSNE(n_components=2, random_state=0)
    z_states = z_mu.data.cpu().numpy()
    z_embed = model_tsne.fit_transform(z_states)
    classes = classes.data.cpu().numpy()
    fig666 = plt.figure()
    for ic in range(10):
        ind_vec = np.zeros_like(classes)
        ind_vec[:, ic] = 1
        ind_class = classes[:, ic] == 1
        color = plt.cm.Set1(ic)
        plt.scatter(z_embed[ind_class, 0], z_embed[ind_class, 1], s=10, color=color)
        plt.title("Latent Variable T-SNE per Class")
        fig666.savefig('./vae_results/'+str(name)+'_embedding_'+str(ic)+'.png')
    fig666.savefig('./vae_results/'+str(name)+'_embedding.png')
项目:ngraph    作者:NervanaSystems    | 项目源码 | 文件源码
def save_plot(niters, loss, args):
    print('Saving training loss-iteration figure...')
    try:
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt

        name = 'Train-{}_hs-{}_lr-{}_bs-{}'.format(args.train_file, args.hs,
                                                   args.lr, args.batch_size)
        plt.title(name)
        plt.plot(niters, loss)
        plt.xlabel('iteration')
        plt.ylabel('loss')
        plt.savefig(name + '.jpg')
        print('{} saved!'.format(name + '.jpg'))

    except ImportError:
        print('matplotlib not installed and no figure is saved.')
项目:Tacotron_pytorch    作者:root20    | 项目源码 | 文件源码
def saveAttention(input_sentence, attentions, outpath):
    # Set up figure with colorbar
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker

    fig = plt.figure(figsize=(24,10), )
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.cpu().numpy(), cmap='bone')
    fig.colorbar(cax)

    if input_sentence:
        # Set up axes
        ax.set_yticklabels([' '] + list(input_sentence) + [' '])
        # Show label at every tick
        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.tight_layout()
    plt.savefig(outpath)
    plt.close('all')
项目:ModelFlow    作者:yuezPrincetechs    | 项目源码 | 文件源码
def heatmap(data,ax,xlabel=None,ylabel=None,xticklabels=None,yticklabels=None,title=None,fontsize=12):
    '''
    ??matplotlib.pyplot.pcolor?????
    ?????(pc,ax)???pc????matplotlib.pyplot.colorbar??????mappable?
    '''
    pc=ax.pcolor(data,cmap=plt.cm.Blues)
    if xlabel is not None:
        ax.set_xlabel(xlabel,fontsize=fontsize)
    if ylabel is not None:
        ax.set_ylabel(ylabel,fontsize=fontsize)
    ax.set_xticks(np.arange(data.shape[1])+0.5,minor=False)
    if xticklabels is not None:
        ax.set_xticklabels(xticklabels,minor=False,fontsize=fontsize)
    ax.set_yticks(np.arange(data.shape[0])+0.5,minor=False)
    if yticklabels is not None:
        ax.set_yticklabels(yticklabels,minor=False,fontsize=fontsize)
    if title is not None:
        ax.set_title(title,fontsize=fontsize)
    return pc,ax


#????X?Y????
项目:finite_volume_seismic_model    作者:cjvogl    | 项目源码 | 文件源码
def plot_dZ_contours(x, y, dZ, axes=None, dZ_interval=0.5, verbose=False,
                               fig_kwargs={}):
    r"""For plotting seafloor deformation dZ"""
    import matplotlib.pyplot as plt

    dZ_max = max(dZ.max(), -dZ.min()) + dZ_interval
    clines1 = numpy.arange(dZ_interval, dZ_max, dZ_interval)
    clines = list(-numpy.flipud(clines1)) + list(clines1)

    # Create axes if needed
    if axes is None:
        fig = plt.figure(**fig_kwargs)
        axes = fig.add_subplot(111)

    if len(clines) > 0:
        if verbose:
            print "Plotting contour lines at: ",clines
        axes.contour(x, y, dZ, clines, colors='k')
    else:
        print "No contours to plot"

    return axes
项目:finite_volume_seismic_model    作者:cjvogl    | 项目源码 | 文件源码
def plot_dZ_contours(x, y, dZ, axes=None, dZ_interval=0.5, verbose=False,
                               fig_kwargs={}):
    r"""For plotting seafloor deformation dZ"""
    import matplotlib.pyplot as plt

    dZ_max = max(dZ.max(), -dZ.min()) + dZ_interval
    clines1 = numpy.arange(dZ_interval, dZ_max, dZ_interval)
    clines = list(-numpy.flipud(clines1)) + list(clines1)

    # Create axes if needed
    if axes is None:
        fig = plt.figure(**fig_kwargs)
        axes = fig.add_subplot(111)

    if len(clines) > 0:
        if verbose:
            print "Plotting contour lines at: ",clines
        axes.contour(x, y, dZ, clines, colors='k')
    else:
        print "No contours to plot"

    return axes
项目:terra    作者:UW-Hydro    | 项目源码 | 文件源码
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
项目:leetcode    作者:thomasyimgit    | 项目源码 | 文件源码
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
项目:leetcode    作者:thomasyimgit    | 项目源码 | 文件源码
def activate_matplotlib(backend):
    """Activate the given backend and set interactive to True."""

    import matplotlib
    matplotlib.interactive(True)

    # Matplotlib had a bug where even switch_backend could not force
    # the rcParam to update. This needs to be set *before* the module
    # magic of switch_backend().
    matplotlib.rcParams['backend'] = backend

    import matplotlib.pyplot
    matplotlib.pyplot.switch_backend(backend)

    # This must be imported last in the matplotlib series, after
    # backend/interactivity choices have been made
    import matplotlib.pyplot as plt

    plt.show._needmain = False
    # We need to detect at runtime whether show() is called by the user.
    # For this, we wrap it into a decorator which adds a 'called' flag.
    plt.draw_if_interactive = flag_calls(plt.draw_if_interactive)
项目:sockeye    作者:awslabs    | 项目源码 | 文件源码
def plot_attention(attention_matrix: np.ndarray, source_tokens: List[str], target_tokens: List[str], filename: str):
    """
    Uses matplotlib for creating a visualization of the attention matrix.

    :param attention_matrix: The attention matrix.
    :param source_tokens: A list of source tokens.
    :param target_tokens: A list of target tokens.
    :param filename: The file to which the attention visualization will be written to.
    """
    import matplotlib
    matplotlib.use("Agg")
    import matplotlib.pyplot as plt
    assert attention_matrix.shape[0] == len(target_tokens)

    plt.imshow(attention_matrix.transpose(), interpolation="nearest", cmap="Greys")
    plt.xlabel("target")
    plt.ylabel("source")
    plt.gca().set_xticks([i for i in range(0, len(target_tokens))])
    plt.gca().set_yticks([i for i in range(0, len(source_tokens))])
    plt.gca().set_xticklabels(target_tokens, rotation='vertical')
    plt.gca().set_yticklabels(source_tokens)
    plt.tight_layout()
    plt.savefig(filename)
    logger.info("Saved alignment visualization to " + filename)
项目:temci    作者:parttimenerd    | 项目源码 | 文件源码
def _store_as_pdf(self, filename: str, fig_width: float, fig_height: float) -> str:
        """
        Stores the current figure in a pdf file.

        :param filename: name of the pdf file
        :param fig_width: width of the figure in cm
        :param fig_height: height of the figure in cm
        :warning: modifies the current figure
        """
        import matplotlib.pyplot as plt
        if not filename.endswith(".pdf"):
            filename += ".pdf"
        self.reset_plt()
        self._latexify(fig_width, fig_height)
        try:
            plt.tight_layout()
        except ValueError:
            pass
        self._format_axes(plt.gca())
        plt.savefig(filename)
        self.reset_plt()
        return os.path.realpath(filename)
项目:temci    作者:parttimenerd    | 项目源码 | 文件源码
def boxplot(self, fig_width: Number, fig_height: Number = None):
        """
        Creates a (horizontal) box plot comparing all single object for a given property.

        :param fig_width: width of the figure in cm
        :param fig_height: height of the figure in cm, if None it is calculated from the figure width using the
                           aesthetic ratio
        """
        import seaborn as sns
        import matplotlib.pyplot as plt
        self.reset_plt()
        if fig_height is None:
            fig_height = self._height_for_width(fig_width)
        self._fig = plt.figure(figsize=self._fig_size_cm_to_inch(fig_width, fig_height))
        df = self.get_data_frame()
        sns.boxplot(data=df, orient="h")
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def run(self, fig):
        """
        Run the exporter on the given figure

        Parmeters
        ---------
        fig : matplotlib.Figure instance
            The figure to export
        """
        # Calling savefig executes the draw() command, putting elements
        # in the correct place.
        fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)
        if self.close_mpl:
            import matplotlib.pyplot as plt
            plt.close(fig)
        self.crawl_fig(fig)
项目:autoreject    作者:autoreject    | 项目源码 | 文件源码
def test_viz():
    """Test viz."""
    import matplotlib.pyplot as plt

    events = mne.find_events(raw)
    picks = mne.pick_channels(raw.info['ch_names'],
                              ['MEG 2443', 'MEG 2442', 'MEG 2441'])
    epochs = mne.Epochs(raw, events, picks=picks, baseline=(None, 0),
                        reject=None, preload=True,
                        event_id={'1': 1, '2': 2, '3': 3, '4': 4})
    bad_epochs_idx = [0, 1, 3]
    n_epochs, n_channels, _ = epochs.get_data().shape
    fix_log = np.zeros((n_epochs, n_channels))

    print(bad_epochs_idx)
    plot_epochs(epochs, bad_epochs_idx=bad_epochs_idx, fix_log=fix_log)
    plot_epochs(epochs, bad_epochs_idx=bad_epochs_idx)
    plot_epochs(epochs, fix_log=fix_log)
    assert_raises(ValueError, plot_epochs, epochs[:2],
                  bad_epochs_idx=bad_epochs_idx, fix_log=fix_log)
    plt.close('all')
项目:autoreject    作者:autoreject    | 项目源码 | 文件源码
def set_matplotlib_defaults(plt, style='ggplot'):
    """Set publication quality defaults for matplotlib.

    Parameters
    ----------
    plt : instance of matplotlib.pyplot
        The plt instance.
    """
    import matplotlib
    matplotlib.style.use(style)

    fontsize = 17
    params = {'axes.labelsize': fontsize + 2,
              'text.fontsize': fontsize,
              'legend.fontsize': fontsize,
              'xtick.labelsize': fontsize,
              'ytick.labelsize': fontsize,
              'axes.titlesize': fontsize + 2}
    plt.rcParams.update(params)
项目:spotlight    作者:maciejkula    | 项目源码 | 文件源码
def plot(dims, sequence, factorization):

    import matplotlib
    matplotlib.use('Agg')  # NOQA
    import matplotlib.pyplot as plt
    import seaborn as sns

    sns.set_style("darkgrid")

    plt.ylabel("Speed improvement")
    plt.xlabel("Size of embedding layers")
    plt.title("Fitting speed (1.0 = no change)")
    plt.xscale('log')

    plt.plot(dims,
             1.0 / sequence,
             label='Sequence model')
    plt.plot(dims,
             1.0 / factorization,
             label='Factorization model')
    plt.legend(loc='lower right')
    plt.savefig('speed.png')
    plt.close()
项目:openai_lab    作者:kengz    | 项目源码 | 文件源码
def scoped_mpl_import():
    import matplotlib
    matplotlib.rcParams['backend'] = MPL_BACKEND

    import matplotlib.pyplot as plt
    plt.rcParams['toolbar'] = 'None'  # mute matplotlib toolbar

    import seaborn as sns
    sns.set(style="whitegrid", color_codes=True, font_scale=1.0,
            rc={'lines.linewidth': 1.0,
                'backend': matplotlib.rcParams['backend']})
    palette = sns.color_palette("Blues_d")
    palette.reverse()
    sns.set_palette(palette)

    return (matplotlib, plt, sns)
项目:pytorch-geometric-gan    作者:lim0606    | 项目源码 | 文件源码
def save_image(real_data, fake_data, filename):
    assert real_data.shape == fake_data.shape

    import warnings
    warnings.filterwarnings("ignore", category=FutureWarning)
    import numpy as np
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    fig, ax = plt.subplots()
    plt.scatter(fake_data[:,0], fake_data[:,1], color='red', label='noise (fake, sampled)')
    plt.scatter(real_data[:,0], real_data[:,1], color='blue', label='hidden (real, inferred)')
    #plt.axis('equal')
    plt.legend(loc='upper right', fancybox=True, shadow=True, fontsize=11)
    plt.grid(True)
    plt.xlim(-5, 5)
    plt.ylim(-5, 5)
    plt.minorticks_on()
    plt.xlabel('x', fontsize=14, color='black')
    plt.ylabel('y', fontsize=14, color='black')
    plt.title('z samples (of first two dimensions)')
    plt.savefig(filename)
    plt.close()
项目:pytorch-geometric-gan    作者:lim0606    | 项目源码 | 文件源码
def save_image_fake(fake_data, filename):
    #import warnings
    #warnings.filterwarnings("ignore", category=FutureWarning)
    #import numpy as np
    #import matplotlib
    #matplotlib.use('Agg')
    #import matplotlib.pyplot as plt

    fig, ax = plt.subplots()
    #plt.scatter(real_data[:,0], real_data[:,1], color='blue', label='real')
    plt.scatter(fake_data[:,0], fake_data[:,1], color='red', label='fake')
    plt.axis('equal')
    #plt.legend(loc='upper right', fancybox=True, shadow=True, fontsize=11)
    plt.grid(True)
    plt.xlim(-25, 25)
    plt.ylim(-25, 25)
    plt.minorticks_on()
    plt.xlabel('x', fontsize=14, color='black')
    plt.ylabel('y', fontsize=14, color='black')
    #plt.title('Toy dataset')
    plt.savefig(filename)
    plt.close()
项目:pytorch-geometric-gan    作者:lim0606    | 项目源码 | 文件源码
def save_image_real(real_data, filename):
    #import warnings
    #warnings.filterwarnings("ignore", category=FutureWarning)
    #import numpy as np
    #import matplotlib
    #matplotlib.use('Agg')
    #import matplotlib.pyplot as plt

    fig, ax = plt.subplots()
    plt.scatter(real_data[:,0], real_data[:,1], color='blue', label='real')
    #plt.scatter(fake_data[:,0], fake_data[:,1], color='red', label='fake')
    plt.axis('equal')
    #plt.legend(loc='upper right', fancybox=True, shadow=True, fontsize=11)
    plt.grid(True)
    plt.xlim(-25, 25)
    plt.ylim(-25, 25)
    plt.minorticks_on()
    plt.xlabel('x', fontsize=14, color='black')
    plt.ylabel('y', fontsize=14, color='black')
    #plt.title('Toy dataset')
    plt.savefig(filename)
    plt.close()
项目:pytorch-geometric-gan    作者:lim0606    | 项目源码 | 文件源码
def save_image(real_data, fake_data, filename):
    #import warnings
    #warnings.filterwarnings("ignore", category=FutureWarning)
    #import numpy as np
    #import matplotlib
    #matplotlib.use('Agg')
    #import matplotlib.pyplot as plt

    fig, ax = plt.subplots()
    plt.scatter(real_data[:,0], real_data[:,1], color='blue', label='real')
    plt.scatter(fake_data[:,0], fake_data[:,1], color='red', label='fake')
    #plt.axis('equal')
    plt.legend(loc='upper right', fancybox=True, shadow=True, fontsize=11)
    plt.grid(True)
    plt.xlim(-25, 25)
    plt.ylim(-25, 25)
    plt.minorticks_on()
    plt.xlabel('x', fontsize=14, color='black')
    plt.ylabel('y', fontsize=14, color='black')
    plt.title('Toy dataset')
    plt.savefig(filename)
    plt.close()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_idw(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import IDW

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = IDW(p=2)
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_rbf(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import RBF

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = RBF(d0=5)
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_rmtb(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import RMTB

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        xlimits = np.array([[0., 4.]])

        sm = RMTB(xlimits=xlimits, order=4, num_ctrl_pts=20, energy_weight=1e-15, regularization_weight=0.)
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_rmtc(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import RMTC

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        xlimits = np.array([[0., 4.]])

        sm = RMTC(xlimits=xlimits, num_elements=20, energy_weight=1e-15, regularization_weight=0.)
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_ls(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import LS

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = LS()
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_krg(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import KRG

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = KRG(theta0=[1e-2])
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_kpls(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import KPLS

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = KPLS(theta0=[1e-2])
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_kplsk(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.methods import KPLSK

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = KPLSK(theta0=[1e-2])
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)
        yy = sm.predict_derivatives(xt,0)
        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_random(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.sampling import Random

        xlimits = np.array([
            [0., 4.],
            [0., 3.],
        ])
        sampling = Random(xlimits=xlimits)

        num = 50
        x = sampling(num)

        print(x.shape)

        plt.plot(x[:, 0], x[:, 1], 'o')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_lhs(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.sampling import LHS

        xlimits = np.array([
            [0., 4.],
            [0., 3.],
        ])
        sampling = LHS(xlimits=xlimits)

        num = 50
        x = sampling(num)

        print(x.shape)

        plt.plot(x[:, 0], x[:, 1], 'o')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.show()
项目:smt    作者:SMTorg    | 项目源码 | 文件源码
def test_full_factorial(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.sampling import FullFactorial

        xlimits = np.array([
            [0., 4.],
            [0., 3.],
        ])
        sampling = FullFactorial(xlimits=xlimits)

        num = 50
        x = sampling(num)

        print(x.shape)

        plt.plot(x[:, 0], x[:, 1], 'o')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.show()
项目:MarksPredictor-AzureMachineLearning    作者:keshav123456    | 项目源码 | 文件源码
def auto_scatter_outlier(df, plot_cols):
    import matplotlib.pyplot as plt
    outlier = [0,0,1,1] # Vector of outlier indicators
    color = ['DarkBlue','DarkBlue','Red','Red'] # vector of color choices for plot
    marker = ['x','o','o','x'] # vector of shape choices for plot
    for col in plot_cols: # loop over the columns
        fig = plt.figure(figsize=(6, 6))
        ax = fig.gca()
        ## Loop over the zip of the four vectors an subset the data and
        ## create the plot using the aesthetics provided
        for o, c, m in zip(outlier, color, marker):
            temp = df.ix[(df['outlier'] == o)]           
            if temp.shape[0] > 0:                    
                temp.plot(kind = 'scatter', x = col, y = 'Marks' , 
                           ax = ax, color = c, marker = m)                                 
        ax.set_title('Scatter plot of marks vs. ' + col)
        fig.savefig('scatter_' + col + '.png')
    return plot_cols
项目:Repobot    作者:Desgard    | 项目源码 | 文件源码
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
项目:Repobot    作者:Desgard    | 项目源码 | 文件源码
def activate_matplotlib(backend):
    """Activate the given backend and set interactive to True."""

    import matplotlib
    matplotlib.interactive(True)

    # Matplotlib had a bug where even switch_backend could not force
    # the rcParam to update. This needs to be set *before* the module
    # magic of switch_backend().
    matplotlib.rcParams['backend'] = backend

    import matplotlib.pyplot
    matplotlib.pyplot.switch_backend(backend)

    # This must be imported last in the matplotlib series, after
    # backend/interactivity choices have been made
    import matplotlib.pyplot as plt

    plt.show._needmain = False
    # We need to detect at runtime whether show() is called by the user.
    # For this, we wrap it into a decorator which adds a 'called' flag.
    plt.draw_if_interactive = flag_calls(plt.draw_if_interactive)
项目:tf-Faster-RCNN    作者:kevinjliang    | 项目源码 | 文件源码
def vis_detections(self, im, class_name, gt_boxes, dets):
        """Visual debugging of detections."""
        import matplotlib
        matplotlib.use('TkAgg')  # For Mac OS
        import matplotlib.pyplot as plt
        import matplotlib.patches as patches
        fig, ax = plt.subplots(1)
        for i in range(np.minimum(10, dets.shape[0])):
            bbox = dets[i,1:]
            print(bbox)
            ax.imshow(np.squeeze(im), cmap="gray")
            self.plot_patch(ax, patches, bbox, gt=False)
        plt.title(class_name)
        self.plot_patch(ax, patches, gt_boxes[0][:4], gt=True)

        # Display Final composite image
        plt.show()
项目:pyembedding    作者:cobeylab    | 项目源码 | 文件源码
def plot_func(cause, effect, seasonal, different, heatmap_func, title):
    heatmap = numpy.zeros((len(sigma01_vals), len(sd_proc_vals)))

    eps = eps_vals[seasonal]
    beta00 = beta00_vals[different]

    for i, sigma01 in enumerate(sigma01_vals):
        for j, sd_proc in enumerate(sd_proc_vals):
            heatmap[i,j] = heatmap_func(cause, effect, eps, beta00, sigma01, sd_proc)
    print heatmap

    plot_heatmap(heatmap,
        'sd_proc', ['{0:.2g}'.format(x) for x in sd_proc_vals],
        'sigma01', ['{0:.2g}'.format(y) for y in sigma01_vals],
        vmin=0, vmax=1
    )
    pyplot.title('{}: {} causes {}'.format(title, cause, effect))
项目:cryptoverse-probe    作者:Cryptoverse    | 项目源码 | 文件源码
def render_systems(params=None):
    figure = pyplot.figure()
    axes = figure.add_subplot(111, projection='3d')

    for currentSystem in database.get_star_log_hashes(from_highest=True):
        current_position = util.get_cartesian(currentSystem)
        xs = [current_position[0], current_position[0]]
        ys = [current_position[1], current_position[1]]
        zs = [0, current_position[2]]
        axes.plot(xs, ys, zs)
        axes.scatter(current_position[0], current_position[1], current_position[2], label=util.get_system_name(currentSystem))

    axes.legend()
    axes.set_title('Systems')
    axes.set_xlabel('X')
    axes.set_ylabel('Y')
    axes.set_zlabel('Z')

    pyplot.show()
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def Plot(obj, ys=None, style='', **options):
    """Plots a line.

    Args:
      obj: sequence of x values, or Series, or anything with Render()
      ys: sequence of y values
      style: style string passed along to pyplot.plot
      options: keyword args passed to pyplot.plot
    """
    options = _UnderrideColor(options)
    label = getattr(obj, 'label', '_nolegend_')
    options = _Underride(options, linewidth=3, alpha=0.8, label=label)

    xs = obj
    if ys is None:
        if hasattr(obj, 'Render'):
            xs, ys = obj.Render()
        if isinstance(obj, pandas.Series):
            ys = obj.values
            xs = obj.index

    if ys is None:
        pyplot.plot(xs, style, **options)
    else:
        pyplot.plot(xs, ys, style, **options)
项目:iota    作者:amaneureka    | 项目源码 | 文件源码
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
    """Makes a pseudocolor plot.

    xs:
    ys:
    zs:
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    options: keyword args passed to pyplot.pcolor and/or pyplot.contour
    """
    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    X, Y = np.meshgrid(xs, ys)
    Z = zs

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = pyplot.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        pyplot.pcolormesh(X, Y, Z, **options)

    if contour:
        cs = pyplot.contour(X, Y, Z, **options)
        pyplot.clabel(cs, inline=1, fontsize=10)
项目:mathpy    作者:aschleg    | 项目源码 | 文件源码
def ensure_pyplot(self):
        """
        Ensures that pyplot has been imported into the embedded IPython shell.

        Also, makes sure to set the backend appropriately if not set already.

        """
        # We are here if the @figure pseudo decorator was used. Thus, it's
        # possible that we could be here even if python_mplbackend were set to
        # `None`. That's also strange and perhaps worthy of raising an
        # exception, but for now, we just set the backend to 'agg'.

        if not self._pyplot_imported:
            if 'matplotlib.backends' not in sys.modules:
                # Then ipython_matplotlib was set to None but there was a
                # call to the @figure decorator (and ipython_execlines did
                # not set a backend).
                #raise Exception("No backend was set, but @figure was used!")
                import matplotlib
                matplotlib.use('agg')

            # Always import pyplot into embedded shell.
            self.process_input_line('import matplotlib.pyplot as plt',
                                    store_history=False)
            self._pyplot_imported = True
项目:PaddleDNN    作者:fty8788    | 项目源码 | 文件源码
def feature_range(maximums, minimums):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    feature_num = len(maximums)
    ax.bar(range(feature_num), maximums - minimums, color='r', align='center')
    ax.set_title('feature scale')
    plt.xticks(range(feature_num), feature_names)
    plt.xlim([-1, feature_num])
    fig.set_figheight(6)
    fig.set_figwidth(10)
    if not os.path.exists('./image'):
        os.makedirs('./image')
    fig.savefig('image/ranges.png', dpi=48)
    plt.close(fig)
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def _prepare_trellis(n_cells, max_col):
    """Aux function
    """
    import matplotlib.pyplot as plt
    if n_cells == 1:
        nrow = ncol = 1
    elif n_cells <= max_col:
        nrow, ncol = 1, n_cells
    else:
        nrow, ncol = int(math.ceil(n_cells / float(max_col))), max_col

    fig, axes = plt.subplots(nrow, ncol, figsize=(7.4, 1.5 * nrow + 1))
    axes = [axes] if ncol == nrow == 1 else axes.flatten()
    for ax in axes[n_cells:]:  # hide unused axes
        # XXX: Previously done by ax.set_visible(False), but because of mpl
        # bug, we just hide the frame.
        from .topomap import _hide_frame
        _hide_frame(ax)
    return fig, axes
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def figure_nobar(*args, **kwargs):
    """Make matplotlib figure with no toolbar"""
    from matplotlib import rcParams, pyplot as plt
    old_val = rcParams['toolbar']
    try:
        rcParams['toolbar'] = 'none'
        fig = plt.figure(*args, **kwargs)
        # remove button press catchers (for toolbar)
        cbs = list(fig.canvas.callbacks.callbacks['key_press_event'].keys())
        for key in cbs:
            fig.canvas.callbacks.disconnect(key)
    except Exception as ex:
        raise ex
    finally:
        rcParams['toolbar'] = old_val
    return fig
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def plot_clicks(self, **kwargs):
        """Plot the x/y positions stored in self.coords.

        Parameters
        ----------
        **kwargs : dict
            Arguments are passed to imshow in displaying the bg image.
        """
        from matplotlib.pyplot import subplots
        f, ax = subplots()
        ax.imshow(self.imdata, extent=(0, self.xmax, 0, self.ymax), **kwargs)
        xlim, ylim = [ax.get_xlim(), ax.get_ylim()]
        xcoords, ycoords = zip(*self.coords)
        ax.scatter(xcoords, ycoords, c='r')
        ann_text = np.arange(len(self.coords)).astype(str)
        for txt, coord in zip(ann_text, self.coords):
            ax.annotate(txt, coord, fontsize=20, color='r')
        ax.set_xlim(xlim)
        ax.set_ylim(ylim)
        plt_show()
项目:IgDiscover    作者:NBISweden    | 项目源码 | 文件源码
def plot_clustermap(sequences, title, plotpath, size=300, dpi=200):
    """
    Plot a clustermap of the given sequences

    size -- Downsample to this many sequences
    title -- plot title

    Return the number of clusters.
    """
    logger.info('Clustering %d sequences (downsampled to at most %d)', len(sequences), size)
    sequences = downsampled(sequences, size)
    df, linkage, clusters = cluster_sequences(sequences)

    palette = sns.color_palette([(0.15, 0.15, 0.15)])
    palette += sns.color_palette('Spectral', n_colors=max(clusters), desat=0.9)
    row_colors = [ palette[cluster_id] for cluster_id in clusters ]
    cm = sns.clustermap(df,
            row_linkage=linkage,
            col_linkage=linkage,
            row_colors=row_colors,
            linewidths=None,
            linecolor='none',
            figsize=(210/25.4, 210/25.4),
            cmap='Blues',
            xticklabels=False,
            yticklabels=False
    )
    if title is not None:
        cm.fig.suptitle(title)
    cm.savefig(plotpath, dpi=dpi)

    # free the memory used by the plot
    import matplotlib.pyplot as plt
    plt.close('all')

    return len(set(clusters))
项目:pi_gcs    作者:lbusoni    | 项目源码 | 文件源码
def _savePlot(self, data, filename):
        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt

        plt.plot(data)
        plt.savefig(filename)