我们从Python开源项目中,提取了以下3个代码示例,用于说明如何使用models.get_models()。
def load_model(name): '''Creates and returns an instance of the model given its class name. The created model has a single placeholder node for feeding images. ''' # Find the model class from its name all_models = models.get_models() lut = {model.__name__: model for model in all_models} if name not in lut: print('Invalid model index. Options are:') # Display a list of valid model names for model in all_models: print('\t* {}'.format(model.__name__)) return None NetClass = lut[name] # Create a placeholder for the input image spec = models.get_data_spec(model_class=NetClass) data_node = tf.placeholder(tf.float32, shape=(None, spec.crop_size, spec.crop_size, spec.channels)) # Construct and return the model return NetClass({'data': data_node})
def main(): logging.basicConfig( level=logging.INFO, format="%(asctime)s : " + "%(module)s (%(lineno)s) - %(levelname)s - %(message)s") conf = ConfigParser(os.environ) conf.read(sys.argv[1]) logging.warning('loading datasets...') datasets = get_data(conf) logging.warning('loaded these: {0}'.format(datasets.keys())) logging.warning('loading models...') models = get_models(conf) logging.warning('evaluating...') for data_type, data in datasets.iteritems(): logging.warning('data: {0}'.format(data_type)) r = Regression(conf) r.featurize_data(data, models) r.evaluate()