我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用mpl_toolkits.axes_grid1.AxesGrid()。
def plot_weight_matrix(Z, outname, save=True): num = Z.shape[0] fig = plt.figure(1, (80, 80)) fig.subplots_adjust(left=0.05, right=0.95) grid = AxesGrid(fig, (1, 4, 2), # similar to subplot(142) nrows_ncols=(int(np.ceil(num / 10.)), 10), axes_pad=0.04, share_all=True, label_mode="L", ) for i in range(num): im = grid[i].imshow(Z[i, :, :, :].mean( axis=0), cmap='gray') for i in range(grid.ngrids): grid[i].axis('off') for cax in grid.cbar_axes: cax.toggle_label(False) if save: fig.savefig(outname, bbox_inches='tight') fig.clear()
def plot3(self): fig = pylab.figure(figsize=(8,4)) axes = AxesGrid(fig, 111,nrows_ncols = (1, 3),axes_pad=0.1, cbar_mode='each',cbar_pad=0,cbar_size='5%', cbar_location='top',share_all=True) for ax in axes: ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) self.drawImage(axes[0]) self.drawTS(axes[1]) #self.drawStellarDensity(axes[1]) self.drawMask(axes[2]) return fig,axes
def plot4(self): fig = pylab.figure(figsize=(8,8)) axes = AxesGrid(fig, 111,nrows_ncols = (2, 2),axes_pad=0.25, cbar_mode='each',cbar_pad=0,cbar_size='5%', share_all=True,aspect=True, label_mode='L') #fig,axes = plt.subplots(2,2) #axes = axes.flatten() #for ax in axes: # ax.get_xaxis().set_visible(False) # ax.get_yaxis().set_visible(False) #plt.sca(axes[0]); self.drawImage(axes[0]) #plt.sca(axes[1]); self.drawStellarDensity(axes[1]) #plt.sca(axes[2]); self.drawMask(axes[2]) #plt.sca(axes[3]); self.drawTS(axes[3]) try: plt.sca(axes[0]); self.drawImage() except IOError as e: logger.warn(str(e)) plt.sca(axes[1]); self.drawStellarDensity() plt.sca(axes[2]); self.drawMask() try: plt.sca(axes[3]); self.drawTS() except IOError as e: logger.warn(str(e)) axes[0].set_xlim(self.radius,-self.radius) axes[0].set_ylim(-self.radius,self.radius) return fig,axes
def plotKernel(kernel): fig = plt.figure() axes = AxesGrid(fig, 111, nrows_ncols = (1,1), cbar_mode='none',cbar_pad=0,cbar_size='5%', cbar_location='top', share_all=True) drawKernel(axes[0],kernel)
def plotDistance(self): filename = self.config.mergefile logger.debug("Opening %s..."%filename) f = pyfits.open(filename) pixels,values = f[1].data['PIXEL'],2*f[1].data['LOG_LIKELIHOOD'] if values.ndim == 1: values = values.reshape(-1,1) distances = f[2].data['DISTANCE_MODULUS'] if distances.ndim == 1: distances = distances.reshape(-1,1) ts_map = healpy.UNSEEN * numpy.ones(healpy.nside2npix(self.nside)) ndim = len(distances) nrows = int(numpy.sqrt(ndim)) ncols = ndim // nrows + (ndim%nrows > 0) fig = pylab.figure() axes = AxesGrid(fig, 111, nrows_ncols = (nrows, ncols),axes_pad=0, label_mode='1', cbar_mode='single',cbar_pad=0,cbar_size='5%', share_all=True,add_all=False) images = [] for i,val in enumerate(values.T): ts_map[pixels] = val im = healpy.gnomview(ts_map,**self.gnom_kwargs) pylab.close() images.append(im) data = numpy.array(images); mask = (data == healpy.UNSEEN) images = numpy.ma.array(data=data,mask=mask) vmin = numpy.ma.min(images) vmax = numpy.ma.max(images) for i,val in enumerate(values.T): ax = axes[i] im = ax.imshow(images[i],origin='bottom',vmin=vmin,vmax=vmax) ax.cax.colorbar(im) #ax.annotate(r"$\mu = %g$"%distances[i],**self.label_kwargs) ax.annotate(r"$d = %.0f$ kpc"%mod2dist(distances[i]),**self.label_kwargs) ax.axis["left"].major_ticklabels.set_visible(False) ax.axis["bottom"].major_ticklabels.set_visible(False) fig.add_axes(ax) fig.add_axes(ax.cax) return fig,axes