我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用msgpack.load()。
def load(cls, f): h = cls() magic = f.read(8) if len(magic) != 8 or magic != cls._MAGIC: raise InvalidModelFormatError('invalid magic value: {0}'.format(str(magic))) for (key, fmt, _) in cls.fields(): size = struct.calcsize(fmt) raw = f.read(size) if len(raw) != size: raise InvalidModelFormatError('failed to read {0} in header (expected {1} bytes, got {2} bytes)'.format(key, size, len(raw))) try: value = struct.unpack(fmt, raw)[0] except ValueError: raise InvalidModelFormatError('failed to parse {0} value {1} as {2}'.format(key, str(raw), fmt)) setattr(h, key, value) return h
def load_object(path, build_fn, *args, **kwargs): """ load from serialized form or build an object, saving the built object; kwargs provided to `build_fn`. """ save = False obj = None if path is not None and os.path.isfile(path): with open(path, 'rb') as obj_f: obj = msgpack.load(obj_f, use_list=False, encoding='utf-8') else: save = True if obj is None: obj = build_fn(*args, **kwargs) if save and path is not None: with open(path, 'wb') as obj_f: msgpack.dump(obj, obj_f) return obj
def load_data(opt): with open('SQuAD/meta.msgpack', 'rb') as f: meta = msgpack.load(f, encoding='utf8') embedding = torch.Tensor(meta['embedding']) opt['pretrained_words'] = True opt['vocab_size'] = embedding.size(0) opt['embedding_dim'] = embedding.size(1) opt['pos_size'] = len(meta['vocab_tag']) opt['ner_size'] = len(meta['vocab_ent']) with open(args.data_file, 'rb') as f: data = msgpack.load(f, encoding='utf8') train = data['train'] data['dev'].sort(key=lambda x: len(x[1])) dev = [x[:-1] for x in data['dev']] dev_y = [x[-1] for x in data['dev']] return train, dev, dev_y, embedding, opt
def read(self, stream): """Given a readable file descriptor object (something `load`able by msgpack or json), read the data, and return the Python representation of the contents. One-shot reader. """ return self.reader.load(stream)
def load(self, stream): return self.decoder.decode(json.load(stream, object_pairs_hook=OrderedDict))
def load(self, stream): return self.decoder.decode(msgpack.load(stream, object_pairs_hook=OrderedDict))
def load_data(opt): with open('SQuAD/meta.msgpack', 'rb') as f: meta = msgpack.load(f, encoding='utf8') embedding = torch.Tensor(meta['embedding']) opt['pretrained_words'] = True opt['vocab_size'] = embedding.size(0) opt['embedding_dim'] = embedding.size(1) if not opt['fix_embeddings']: embedding[1] = torch.normal(means=torch.zeros(opt['embedding_dim']), std=1.) with open(args.data_file, 'rb') as f: data = msgpack.load(f, encoding='utf8') train_orig = pd.read_csv('SQuAD/train.csv') dev_orig = pd.read_csv('SQuAD/dev.csv') train = list(zip( data['trn_context_ids'], data['trn_context_features'], data['trn_context_tags'], data['trn_context_ents'], data['trn_question_ids'], train_orig['answer_start_token'].tolist(), train_orig['answer_end_token'].tolist(), data['trn_context_text'], data['trn_context_spans'] )) dev = list(zip( data['dev_context_ids'], data['dev_context_features'], data['dev_context_tags'], data['dev_context_ents'], data['dev_question_ids'], data['dev_context_text'], data['dev_context_spans'] )) dev_y = dev_orig['answers'].tolist()[:len(dev)] dev_y = [eval(y) for y in dev_y] return train, dev, dev_y, embedding, opt
def load_json(cls, f): """ Loads model file saved as JSON file from text stream ``f``. """ m = cls() record = json.load(f) # Load header if 'header' not in record: raise InvalidModelFormatError('header section does not exist') m.header.set(record['header']) # Load system_data if 'system' not in record: raise InvalidModelFormatError('system section does not exist') m.system.set(record['system']) # Load user_data if 'user_raw' in record: if 'user' in record: printe('Notice: using "user_raw" record from JSON; "user" record is ignored') raw = base64.b64decode(record['user_raw']) try: m.user = cls.UserContainer.loads(raw) except UnicodeDecodeError: printe('Warning: model contains non UTF-8 strings; cannot be loaded') m.user = cls.UserContainer() m.user.user_data = None m._user_raw = raw elif 'user' in record: m.user.set(record['user']) else: raise InvalidModelFormatError('user or user_raw section does not exist') return m
def load(cls, f, *args, **kwargs): # Must be implemented in sub classes. raise NotImplementedError
def loads(cls, data, *args, **kwargs): return cls.load(BytesIO(data), *args, **kwargs)
def load_data(folder=data_folder): opt = {} with open(folder+"meta.msgpack", 'rb') as f: meta = msgpack.load(f, encoding='utf8') embedding = meta['embedding'] opt['pretrained_words'] = True opt['vocab_size'] = len(embedding) opt['embedding_dim'] = len(embedding[0]) with open(folder+"data.msgpack", 'rb') as f: data = msgpack.load(f, encoding='utf8') with open(folder+ 'dev.csv', 'rb') as f: charResult = chardet.detect(f.read()) train_orig = pd.read_csv(folder+ 'train.csv', encoding=charResult['encoding']) dev_orig = pd.read_csv(folder+'dev.csv', encoding=charResult['encoding']) train = list(zip( data['trn_context_ids'],data['trn_context_features'], data['trn_context_tags'],data['trn_context_ents'],data['trn_question_ids'], train_orig['answer_start_token'].tolist(), train_orig['answer_end_token'].tolist(), data['trn_context_text'],data['trn_context_spans'] )) dev = list(zip( data['dev_context_ids'],data['dev_context_features'],data['dev_context_tags'], data['dev_context_ents'],data['dev_question_ids'],data['dev_context_text'],data['dev_context_spans'] )) dev_y = dev_orig['answers'].tolist()[:len(dev)] dev_y = [eval(y) for y in dev_y] # discover lengths opt['context_len'] = get_max_len(data['trn_context_ids'], data['dev_context_ids']) opt['feature_len'] = get_max_len(data['trn_context_features'][0], data['dev_context_features'][0]) opt['question_len'] = get_max_len(data['trn_question_ids'], data['dev_question_ids']) print(train_orig['answer_start_token'].tolist()[:10]) return train, dev, dev_y, embedding, opt
def load_data(opt): with open(opt["squad_dir"]+'meta.msgpack', 'rb') as f: meta = msgpack.load(f, encoding='utf8') embedding = meta['embedding'] opt['pretrained_words'] = True opt['vocab_size'] = len(embedding) opt['embedding_dim'] = len(embedding[0]) with open(args.data_file, 'rb') as f: data = msgpack.load(f, encoding='utf8') #with open(opt["squad_dir"]+ 'train.csv', 'rb') as f: # charResult = chardet.detect(f.read()) train_orig = pd.read_csv(opt["squad_dir"]+ 'train.csv')#, encoding=charResult['encoding']) dev_orig = pd.read_csv(opt["squad_dir"]+'dev.csv')#, encoding=charResult['encoding']) train = list(zip( data['trn_context_ids'],data['trn_context_features'], data['trn_context_tags'],data['trn_context_ents'],data['trn_question_ids'], train_orig['answer_start_token'].tolist(), train_orig['answer_end_token'].tolist(), data['trn_context_text'],data['trn_context_spans'] )) dev = list(zip( data['dev_context_ids'],data['dev_context_features'],data['dev_context_tags'], data['dev_context_ents'],data['dev_question_ids'],data['dev_context_text'],data['dev_context_spans'] )) dev_y = dev_orig['answers'].tolist()[:len(dev)] dev_y = [eval(y) for y in dev_y] # discover lengths opt['context_len'] = get_max_len(data['trn_context_ids'], data['dev_context_ids']) opt['feature_len'] = get_max_len(data['trn_context_features'][0], data['dev_context_features'][0]) opt['question_len'] = get_max_len(data['trn_question_ids'], data['dev_question_ids']) print(train_orig['answer_start_token'].tolist()[:10]) return train, dev, dev_y, embedding, opt
def load_binary(cls, f, validate=True): """ Loads Jubatus binary model file from binary stream ``f``. When ``validate`` is ``True``, the model file format is strictly validated. """ m = cls() checksum = 0 # Load header h = cls.Header.load(f) m.header = h if validate: checksum = crc32(h.dumps(False), checksum) # Load system_data buf = f.read(h.system_data_size) m.system = cls.SystemContainer.loads(buf) if validate: if h.system_data_size != len(buf): raise InvalidModelFormatError( 'EOF detected while reading system_data: ' + 'expected {0} bytes, got {1} bytes'.format(h.system_data_size, len(buf))) checksum = crc32(buf, checksum) # Load user_data buf = f.read(h.user_data_size) m.user = cls.UserContainer.loads(buf) m._user_raw = buf if validate: if h.user_data_size != len(buf): raise InvalidModelFormatError( 'EOF detected while reading user_data: ' + 'expected {0} bytes, got {1} bytes'.format(h.user_data_size, len(buf))) checksum = crc32(buf, checksum) if validate: # Convert the checksum into 32-bit unsigned integer (for Python 2/3 compatibility) checksum = checksum & 0xffffffff # Check CRC if checksum != h.crc32: raise InvalidModelFormatError( 'CRC32 mismatch: expected {0}, got {1}'.format(checksum, h.crc32)) return m