Python mxnet 模块,ctx() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用mxnet.ctx()

项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def __init__(self, symbol, model_prefix, epoch, data_hw, mean_pixels,
                 img_stride=32, th_nms=0.3333, ctx=None):
        '''
        '''
        self.ctx = mx.cpu() if not ctx else ctx

        if isinstance(data_hw, int):
            data_hw = (data_hw, data_hw)
        assert data_hw[0] % img_stride == 0 and data_hw[1] % img_stride == 0
        self.data_hw = data_hw

        _, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, epoch)

        self.mod = mx.mod.Module(symbol, label_names=None, context=ctx)
        self.mod.bind(data_shapes=[('data', (1, 3, data_hw[0], data_hw[1]))])
        self.mod.set_params(arg_params, aux_params)

        self.mean_pixels = mean_pixels
        self.img_stride = img_stride
        self.th_nms = th_nms
项目:nimo    作者:wolfram2012    | 项目源码 | 文件源码
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
                 batch_size=1, ctx=None):
        self.ctx = ctx
        if self.ctx is None:
            self.ctx = mx.cpu()
        load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
        if symbol is None:
            symbol = load_symbol
        self.mod = mx.mod.Module(symbol, label_names=None, context=ctx)
        self.data_shape = data_shape
        self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))])
        self.mod.set_params(args, auxs)
        self.data_shape = data_shape
        self.mean_pixels = mean_pixels
项目:mxnet-ssd    作者:zhreshold    | 项目源码 | 文件源码
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
                 batch_size=1, ctx=None):
        self.ctx = ctx
        if self.ctx is None:
            self.ctx = mx.cpu()
        load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
        if symbol is None:
            symbol = load_symbol
        self.mod = mx.mod.Module(symbol, label_names=None, context=ctx)
        self.data_shape = data_shape
        self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))])
        self.mod.set_params(args, auxs)
        self.data_shape = data_shape
        self.mean_pixels = mean_pixels
项目:mxnet-ssd    作者:zhreshold    | 项目源码 | 文件源码
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx, num_class,
                 nms_thresh=0.5, force_nms=True, nms_topk=400):
    """
    wrapper for initialize a detector

    Parameters:
    ----------
    net : str
        test network name
    prefix : str
        load model prefix
    epoch : int
        load model epoch
    data_shape : int
        resize image shape
    mean_pixels : tuple (float, float, float)
        mean pixel values (R, G, B)
    ctx : mx.ctx
        running context, mx.cpu() or mx.gpu(?)
    num_class : int
        number of classes
    nms_thresh : float
        non-maximum suppression threshold
    force_nms : bool
        force suppress different categories
    """
    if net is not None:
        net = get_symbol(net, data_shape, num_classes=num_class, nms_thresh=nms_thresh,
            force_nms=force_nms, nms_topk=nms_topk)
    detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx)
    return detector
项目:mxnet-101    作者:burness    | 项目源码 | 文件源码
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
                 batch_size=1, ctx=None):
        self.ctx = ctx
        if self.ctx is None:
            self.ctx = mx.cpu()
        _, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
        self.mod = mx.mod.Module(symbol, context=ctx)
        self.data_shape = data_shape
        self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))])
        self.mod.set_params(args, auxs)
        self.data_shape = data_shape
        self.mean_pixels = mean_pixels
项目:mxnet-101    作者:burness    | 项目源码 | 文件源码
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx,
                 nms_thresh=0.5, force_nms=True):
    """
    wrapper for initialize a detector

    Parameters:
    ----------
    net : str
        test network name
    prefix : str
        load model prefix
    epoch : int
        load model epoch
    data_shape : int
        resize image shape
    mean_pixels : tuple (float, float, float)
        mean pixel values (R, G, B)
    ctx : mx.ctx
        running context, mx.cpu() or mx.gpu(?)
    force_nms : bool
        force suppress different categories
    """
    sys.path.append(os.path.join(os.getcwd(), 'symbol'))
    net = importlib.import_module("symbol_" + net) \
        .get_symbol(len(CLASSES), nms_thresh, force_nms)
    detector = Detector(net, prefix + "_" + str(data_shape), epoch, \
        data_shape, mean_pixels, ctx=ctx)
    return detector
项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
                 batch_size=1, ctx=None):
        self.ctx = ctx
        if self.ctx is None:
            self.ctx = mx.cpu()
        load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
        if symbol is None:
            symbol = load_symbol
        self.mod = mx.mod.Module(symbol, label_names=None, context=ctx)
        self.data_shape = data_shape
        self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))])
        self.mod.set_params(args, auxs)
        self.data_shape = data_shape
        self.mean_pixels = mean_pixels
        self.th_nms = cfg.valid['th_nms']
项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx, num_class,
                 nms_thresh=0.5, force_nms=True, nms_topk=400):
    """
    wrapper for initialize a detector

    Parameters:
    ----------
    net : str
        test network name
    prefix : str
        load model prefix
    epoch : int
        load model epoch
    data_shape : int
        resize image shape
    mean_pixels : tuple (float, float, float)
        mean pixel values (R, G, B)
    ctx : mx.ctx
        running context, mx.cpu() or mx.gpu(?)
    num_class : int
        number of classes
    nms_thresh : float
        non-maximum suppression threshold
    force_nms : bool
        force suppress different categories
    """
    if net is not None:
        net = get_symbol(net, data_shape, num_classes=num_class, nms_thresh=nms_thresh,
            force_nms=force_nms, nms_topk=nms_topk)
    detector = FaceDetector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx)
    return detector
项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx, num_class,
                 nms_thresh=0.5, force_nms=True, nms_topk=400):
    """
    wrapper for initialize a detector

    Parameters:
    ----------
    net : str
        test network name
    prefix : str
        load model prefix
    epoch : int
        load model epoch
    data_shape : int
        resize image shape
    mean_pixels : tuple (float, float, float)
        mean pixel values (R, G, B)
    ctx : mx.ctx
        running context, mx.cpu() or mx.gpu(?)
    num_class : int
        number of classes
    nms_thresh : float
        non-maximum suppression threshold
    force_nms : bool
        force suppress different categories
    """
    if net is not None:
        net = get_symbol(net, data_shape, num_classes=num_class, nms_thresh=nms_thresh,
            force_nms=force_nms, nms_topk=nms_topk)

    _, _ = estimate_mac(net, data_shape=(1, 3, data_shape, data_shape))
    detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx)
    return detector
项目:mxnet-yolo    作者:zhreshold    | 项目源码 | 文件源码
def __init__(self, symbol, model_prefix, epoch, data_shape, mean_pixels, \
                 batch_size=1, ctx=None):
        self.ctx = ctx
        if self.ctx is None:
            self.ctx = mx.cpu()
        load_symbol, args, auxs = mx.model.load_checkpoint(model_prefix, epoch)
        if symbol is None:
            symbol = load_symbol
        self.mod = mx.mod.Module(symbol, label_names=("yolo_output_label",), context=ctx)
        self.data_shape = data_shape
        self.mod.bind(data_shapes=[('data', (batch_size, 3, data_shape, data_shape))],
            label_shapes=[('yolo_output_label', (batch_size, 2, 5))])
        self.mod.set_params(args, auxs)
        self.data_shape = data_shape
        self.mean_pixels = mean_pixels
项目:mxnet-yolo    作者:zhreshold    | 项目源码 | 文件源码
def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx,
                 nms_thresh=0.5, force_nms=True):
    """
    wrapper for initialize a detector

    Parameters:
    ----------
    net : str
        test network name
    prefix : str
        load model prefix
    epoch : int
        load model epoch
    data_shape : int
        resize image shape
    mean_pixels : tuple (float, float, float)
        mean pixel values (R, G, B)
    ctx : mx.ctx
        running context, mx.cpu() or mx.gpu(?)
    force_nms : bool
        force suppress different categories
    """
    sys.path.append(os.path.join(os.getcwd(), 'symbol'))
    if net is not None:
        prefix = prefix + "_" + net.strip('_yolo') + '_' + str(416)
        net = importlib.import_module("symbol_" + net) \
            .get_symbol(len(CLASSES), nms_thresh, force_nms)
    detector = Detector(net, prefix, epoch, \
        data_shape, mean_pixels, ctx=ctx)
    return detector