Python mxnet 模块,Symbols() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用mxnet.Symbols()

项目:nimo    作者:wolfram2012    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    assert not use_batchnorm, "batchnorm not yet supported"
    bias = mx.symbol.Variable(name="conv{}_bias".format(name),
        init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
    conv = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="conv{}".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}{}".format(act_type, name))
    if use_batchnorm:
        relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name))
    return conv, relu
项目:mxnet-ssd    作者:zhreshold    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    bias = mx.symbol.Variable(name="{}_conv_bias".format(name),   
        init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="{}_conv".format(name), bias=bias)
    if use_batchnorm:
        conv = mx.symbol.BatchNorm(data=conv, name="{}_bn".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}_{}".format(name, act_type))
    return relu
项目:mxnet-ssd    作者:zhreshold    | 项目源码 | 文件源码
def legacy_conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    assert not use_batchnorm, "batchnorm not yet supported"
    bias = mx.symbol.Variable(name="conv{}_bias".format(name),
        init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
    conv = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="conv{}".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}{}".format(act_type, name))
    if use_batchnorm:
        relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name))
    return conv, relu
项目:mxnet-101    作者:burness    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    assert not use_batchnorm, "batchnorm not yet supported"
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="conv{}".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}{}".format(act_type, name))
    if use_batchnorm:
        relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name))
    return conv, relu
项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="{}_conv".format(name))
    if use_batchnorm:
        conv = mx.symbol.BatchNorm(data=conv, name="{}_bn".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}_{}".format(name, act_type))
    return relu
项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def legacy_conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    assert not use_batchnorm, "batchnorm not yet supported"
    bias = mx.symbol.Variable(name="conv{}_bias".format(name),
        init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
    conv = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="conv{}".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}{}".format(act_type, name))
    if use_batchnorm:
        relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name))
    return conv, relu
项目:mxnet-yolo    作者:zhreshold    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
    stride=(1,1), act_type="relu", use_batchnorm=False):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="conv{}".format(name))
    if use_batchnorm:
        conv = mx.symbol.BatchNorm(data=conv, name="bn{}".format(name))
    relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}{}".format(act_type, name))
    return relu
项目:mxnet-ssd    作者:zhreshold    | 项目源码 | 文件源码
def multi_layer_feature(body, from_layers, num_filters, strides, pads, min_filter=128):
    """Wrapper function to extract features from base network, attaching extra
    layers and SSD specific layers

    Parameters
    ----------
    from_layers : list of str
        feature extraction layers, use '' for add extra layers
        For example:
        from_layers = ['relu4_3', 'fc7', '', '', '', '']
        which means extract feature from relu4_3 and fc7, adding 4 extra layers
        on top of fc7
    num_filters : list of int
        number of filters for extra layers, you can use -1 for extracted features,
        however, if normalization and scale is applied, the number of filter for
        that layer must be provided.
        For example:
        num_filters = [512, -1, 512, 256, 256, 256]
    strides : list of int
        strides for the 3x3 convolution appended, -1 can be used for extracted
        feature layers
    pads : list of int
        paddings for the 3x3 convolution, -1 can be used for extracted layers
    min_filter : int
        minimum number of filters used in 1x1 convolution

    Returns
    -------
    list of mx.Symbols

    """
    # arguments check
    assert len(from_layers) > 0
    assert isinstance(from_layers[0], str) and len(from_layers[0].strip()) > 0
    assert len(from_layers) == len(num_filters) == len(strides) == len(pads)

    internals = body.get_internals()
    layers = []
    for k, params in enumerate(zip(from_layers, num_filters, strides, pads)):
        from_layer, num_filter, s, p = params
        if from_layer.strip():
            # extract from base network
            layer = internals[from_layer.strip() + '_output']
            layers.append(layer)
        else:
            # attach from last feature layer
            assert len(layers) > 0
            assert num_filter > 0
            layer = layers[-1]
            num_1x1 = max(min_filter, num_filter // 2)
            conv_1x1 = conv_act_layer(layer, 'multi_feat_%d_conv_1x1' % (k),
                num_1x1, kernel=(1, 1), pad=(0, 0), stride=(1, 1), act_type='relu')
            conv_3x3 = conv_act_layer(conv_1x1, 'multi_feat_%d_conv_3x3' % (k),
                num_filter, kernel=(3, 3), pad=(p, p), stride=(s, s), act_type='relu')
            layers.append(conv_3x3)
    return layers
项目:mxnet-yolo    作者:zhreshold    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(3, 3), pad=(1, 1), \
    stride=(1,1), act_type="relu", use_batchnorm=True):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="{}".format(name))
    if use_batchnorm:
        conv = mx.symbol.BatchNorm(data=conv, name="bn_{}".format(name))
    if act_type in ['elu', 'leaky', 'prelu', 'rrelu']:
        relu = mx.symbol.LeakyReLU(data=conv, act_type=act_type,
        name="{}_{}".format(act_type, name), slope=0.1)
    elif act_type in ['relu', 'sigmoid', 'softrelu', 'tanh']:
        relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}_{}".format(act_type, name))
    else:
        assert isinstance(act_type, str)
        raise ValueError("Invalid activation type: " + str(act_type))
    return relu
项目:mxnet-yolo    作者:zhreshold    | 项目源码 | 文件源码
def conv_act_layer(from_layer, name, num_filter, kernel=(3, 3), pad=(1, 1), \
    stride=(1,1), act_type="relu", use_batchnorm=True):
    """
    wrapper for a small Convolution group

    Parameters:
    ----------
    from_layer : mx.symbol
        continue on which layer
    name : str
        base name of the new layers
    num_filter : int
        how many filters to use in Convolution layer
    kernel : tuple (int, int)
        kernel size (h, w)
    pad : tuple (int, int)
        padding size (h, w)
    stride : tuple (int, int)
        stride size (h, w)
    act_type : str
        activation type, can be relu...
    use_batchnorm : bool
        whether to use batch normalization

    Returns:
    ----------
    (conv, relu) mx.Symbols
    """
    conv = mx.symbol.Convolution(data=from_layer, kernel=kernel, pad=pad, \
        stride=stride, num_filter=num_filter, name="{}".format(name))
    if use_batchnorm:
        conv = mx.symbol.BatchNorm(data=conv, name="bn_{}".format(name))
    if act_type in ['elu', 'leaky', 'prelu', 'rrelu']:
        relu = mx.symbol.LeakyReLU(data=conv, act_type=act_type,
        name="{}_{}".format(act_type, name), slope=0.1)
    elif act_type in ['relu', 'sigmoid', 'softrelu', 'tanh']:
        relu = mx.symbol.Activation(data=conv, act_type=act_type, \
        name="{}_{}".format(act_type, name))
    else:
        assert isinstance(act_type, str)
        raise ValueError("Invalid activation type: " + str(act_type))
    return relu