Python network 模块,Network() 实例源码

我们从Python开源项目中,提取了以下24个代码示例,用于说明如何使用network.Network()

项目:python-machine-learning    作者:sho-87    | 项目源码 | 文件源码
def basic_conv(n=3, epochs=60):
    nets = []  # list of networks (for ensemble, if desired)
    for j in range(n):
        net = Network([
            ConvLayer(image_shape=(mini_batch_size, 1, 64, 512),
                      filter_shape=(20, 1, 3, 3), stride=(1, 1), activation_fn=relu),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 64, 512),
                          filter_shape=(40, 20, 3, 3), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            ConvPoolLayer(image_shape=(mini_batch_size, 40, 32, 256),
                          filter_shape=(80, 40, 3, 3), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            FullyConnectedLayer(n_in=80*16*128, n_out=100),
            SoftmaxLayer(n_in=100, n_out=2)],
            mini_batch_size, 50)

        net.SGD(train_data, epochs, mini_batch_size, 0.1,
                validation_data, test_data, lmbda=0.0)

        nets.append(net)  # Add current network to list
    return nets
项目:python-machine-learning    作者:sho-87    | 项目源码 | 文件源码
def basic_conv(n=3, epochs=60):
    nets = []  # list of networks (for ensemble, if desired)
    for j in range(n):
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 3, 32, 32), 
                          filter_shape=(32, 3, 3, 3), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            ConvPoolLayer(image_shape=(mini_batch_size, 32, 16, 16), 
                          filter_shape=(80, 32, 3, 3), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            ConvPoolLayer(image_shape=(mini_batch_size, 80, 8, 8), 
                          filter_shape=(128, 80, 3, 3), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            FullyConnectedLayer(n_in=128*4*4, n_out=100),
            SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

        net.SGD(train_data, epochs, mini_batch_size, 0.01,
                validation_data, test_data)

        nets.append(net)  # Add current network to list
    return nets
项目:python-machine-learning    作者:sho-87    | 项目源码 | 文件源码
def basic_conv(n=3, epochs=60):
    nets = []  # list of networks (for ensemble, if desired)
    for j in range(n):
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                          filter_shape=(20, 1, 5, 5), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 14, 14), 
                          filter_shape=(40, 20, 5, 5), stride=(1, 1),
                          poolsize=(2, 2), activation_fn=relu),
            FullyConnectedLayer(n_in=40*7*7, n_out=100),
            SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

        net.SGD(training_data, epochs, mini_batch_size, 0.1,
                validation_data, test_data)

        nets.append(net)  # Add current network to list
    return nets
项目:mnist-multi-gpu    作者:normanheckscher    | 项目源码 | 文件源码
def create_population(self, count):
        """Create a population of random networks.

        Args:
            count (int): Number of networks to generate, aka the
                size of the population

        Returns:
            (list): Population of network objects

        """
        pop = []
        for _ in range(0, count):
            # Create a random network.
            network = Network(self.nn_param_choices)
            network.create_random()

            # Add the network to our population.
            pop.append(network)

        return pop
项目:mnist-multi-gpu    作者:normanheckscher    | 项目源码 | 文件源码
def mutate(self, network):
        """Randomly mutate one part of the network.

        Args:
            network (dict): The network parameters to mutate

        Returns:
            (Network): A randomly mutated network object

        """
        # Choose a random key.
        mutation = random.choice(list(self.nn_param_choices.keys()))

        # Mutate one of the params.
        network.network[mutation] = random.choice(self.nn_param_choices[mutation])

        return network
项目:Neural-Architecture-Search-with-RL    作者:dhruvramani    | 项目源码 | 文件源码
def __init__(self, config):
        self.config = config
        self.data = DataSet(self.config)
        self.add_placeholders()
        self.summarizer = tf.summary
        self.net = Network(config)
        self.saver = tf.train.Saver()
        self.epoch_count, self.second_epoch_count = 0, 0
        self.outputs, self.prob = self.net.neural_search()
        self.hyperparams = self.net.gen_hyperparams(self.outputs)
        self.hype_list = [1 for i in range(self.config.hyperparams)] #[7, 7, 24, 5, 5, 36, 3, 3, 48, 64]
        self.reinforce_loss = self.net.REINFORCE(self.prob)
        self.tr_cont_step = self.net.train_controller(self.reinforce_loss, self.val_accuracy)
        self.cNet, self.y_pred = self.init_child(self.hype_list)
        self.cross_loss, self.accuracy, self.tr_model_step = self.grow_child()
        self.init = tf.global_variables_initializer()
        self.local_init = tf.local_variables_initializer()
项目:gmdh    作者:parrt    | 项目源码 | 文件源码
def BBPSO():
    #initialize the particles
    particles = [Particle(Network([784,30,10])) for i in range(SWARM_SIZE)]
    for it in range(ITERATIONS):
        # update global best with best of all particles
        gbest = particles[0].best
        gbest_score = particles[0].best_score
        for i in range(SWARM_SIZE):
            p = particles[i]
            if p.best_score > gbest_score:
                gbest = p.best
                gbest_score = p.best_score
        if it % 100 == 0:
            print str(it)+": global best score " + str(gbest_score)

        for i in range(SWARM_SIZE):
            p = particles[i]
            pmu = p.best.biases + gbest.biases, \
                  p.best.weights + gbest.weights
            pmu = pmu[0] / 2.0, pmu[1] / 2.0
            psigma = np.abs(p.best.biases - gbest.biases), \
                     np.abs(p.best.weights - gbest.weights)
            pos = Network([784,30,10], mu=pmu, sigma=psigma)
            p.pos = pos
            fit = pos.fitness(X, labels)
            if fit > p.best_score:
                p.best = pos
                p.best_score = fit
项目:gmdh    作者:parrt    | 项目源码 | 文件源码
def BBPSO_cost(ITERATIONS, SWARM_SIZE):
    # initialize the particles
    particles = [Particle(Network([784, 30, 10])) for i in range(SWARM_SIZE)]
    for p in particles: p.best_score = 1e20
    gbest = None
    for it in range(ITERATIONS):
        # update global best with best of all particles
        gbest = particles[0].best
        gbest_score = particles[0].best_score
        for i in range(SWARM_SIZE):
            p = particles[i]
            if p.best_score < gbest_score:
                gbest = p.best
                gbest_score = p.best_score
        fit = gbest.fitness(X, labels)
        if it % 100 == 0:
            print str(it)+": global best score " + str(gbest_score)+" correct "+str(fit)

        for i in range(SWARM_SIZE):
            p = particles[i]
            pmu = p.best.biases + gbest.biases, \
                  p.best.weights + gbest.weights
            pmu = pmu[0] / 2.0, pmu[1] / 2.0
            psigma = np.abs(p.best.biases - gbest.biases), \
                     np.abs(p.best.weights - gbest.weights)
            pos = Network([784,30,10], mu=pmu, sigma=psigma)
            p.pos = pos
            c = pos.cost(X, labels)
            if c < p.best_score:
                p.best = pos
                p.best_score = c
    print "final best score " + str(gbest_score) + " correct " + str(fit)
    return gbest

# BBPSO()
项目:deeplearning    作者:turiphro    | 项目源码 | 文件源码
def __init__(self, **hyperparas):
        self.hyperparas = hyperparas
        sizes = self.hyperparas.get('sizes', [784, 10])
        self.model = Network(sizes)
项目:IM2TXT    作者:aayushP    | 项目源码 | 文件源码
def build_network(self):
      print 'Building network...'
      self.nn_network = Network(self.__options)
      return self.nn_network.build_training_graph(self.__options)
项目:flapai    作者:justinglibert    | 项目源码 | 文件源码
def __init__(self,network=0):
        if network==0:
            self.network = Network(self.networkArchitecture)
        else:
            self.network = network

        self.genes = self.network.togenes()
项目:flapai    作者:justinglibert    | 项目源码 | 文件源码
def load(filename):
    """Load a neural network from the file ``filename``.  Returns an
    instance of Network.
    """
    f = open(filename, "r")
    data = json.load(f)
    f.close()
    net = Network(data["sizes"])
    net.weights = [np.array(w) for w in data["weights"]]
    net.biases = [np.array(b) for b in data["biases"]]
    return net
项目:flapai    作者:justinglibert    | 项目源码 | 文件源码
def generateRandomGenome():
    net = Network(Config.networkArchitecture)
    genome = Genome(net)
    return genome
项目:mnist-multi-gpu    作者:normanheckscher    | 项目源码 | 文件源码
def generate_network_list(nn_param_choices):
    """Generate a list of all possible networks.

    Args:
        nn_param_choices (dict): The parameter choices

    Returns:
        networks (list): A list of network objects

    """
    networks = []

    # This is silly.
    for nbn in nn_param_choices['nb_neurons']:
        for nbl in nn_param_choices['nb_layers']:
            for a in nn_param_choices['activation']:
                for o in nn_param_choices['optimizer']:

                    # Set the parameters.
                    network = {
                        'nb_neurons': nbn,
                        'nb_layers': nbl,
                        'activation': a,
                        'optimizer': o,
                    }

                    # Instantiate a network object with set parameters.
                    network_obj = Network()
                    network_obj.create_set(network)

                    networks.append(network_obj)

    return networks
项目:mnist-multi-gpu    作者:normanheckscher    | 项目源码 | 文件源码
def breed(self, mother, father):
        """Make two children as parts of their parents.

        Args:
            mother (dict): Network parameters
            father (dict): Network parameters

        Returns:
            (list): Two network objects

        """
        children = []
        for _ in range(2):

            child = {}

            # Loop through the parameters and pick params for the kid.
            for param in self.nn_param_choices:
                child[param] = random.choice(
                    [mother.network[param], father.network[param]]
                )

            # Now create a network object.
            network = Network(self.nn_param_choices)
            network.create_set(child)

            children.append(network)

        return children
项目:python-go-hello-to-the-world    作者:crazcalm    | 项目源码 | 文件源码
def setUp(self):
        self.close_friends = set(["David", "Christy", "Carmela", "Evelyn"])
        self.not_so_close_friends = set(["Tony", "Ivan", "Alex", "Julie"])
        self.strangers = set(["UnknownGuy", "UnknownGirl"])
        self.dislike = set(["Marcus"])

        self.Group = namedtuple("Data", ["group_name", "value"])
        self.Data = namedtuple("Errors", ["error", "group"])
        self.new_group = self.Group("haters", set(["Willock"]))
        self.existing_group = self.Group("strangers", set(["J.Cole"]))
        self.bad_value_group = self.Group("love", None)
        self.bad_groups = [self.Data(NameError, self.existing_group),
                           self.Data(TypeError, self.bad_value_group)]

        self.a_group_name = "strangers"
        self.not_a_group_name = "power_rangers"

        self.network = Network(self.close_friends, 
                               self.not_so_close_friends,
                               self.strangers,
                               self.dislike)

        self.print_network_lines = ["Social Network:",
                                    "close_friends: {",
                                    "people_i_dislike: {'Marcus'}",
                                    "not_so_close_friends: {",
                                    "strangers: {"]
项目:gated-pixel-cnn    作者:jakebelew    | 项目源码 | 文件源码
def main(_):
  model_dir = util.get_model_dir(conf, 
      ['data_dir', 'sample_dir', 'max_epoch', 'test_step', 'save_step',
       'is_train', 'random_seed', 'log_level', 'display', 'runtime_base_dir', 
       'occlude_start_row', 'num_generated_images'])
  util.preprocess_conf(conf)
  validate_parameters(conf)

  data = 'mnist' if conf.data == 'color-mnist' else conf.data 
  DATA_DIR = os.path.join(conf.runtime_base_dir, conf.data_dir, data)
  SAMPLE_DIR = os.path.join(conf.runtime_base_dir, conf.sample_dir, conf.data, model_dir)

  util.check_and_create_dir(DATA_DIR)
  util.check_and_create_dir(SAMPLE_DIR)

  dataset = get_dataset(DATA_DIR, conf.q_levels)

  with tf.Session() as sess:
    network = Network(sess, conf, dataset.height, dataset.width, dataset.channels)

    stat = Statistic(sess, conf.data, conf.runtime_base_dir, model_dir, tf.trainable_variables())
    stat.load_model()

    if conf.is_train:
      train(dataset, network, stat, SAMPLE_DIR)
    else:
      generate(network, dataset.height, dataset.width, SAMPLE_DIR)
项目:ERL    作者:NoListen    | 项目源码 | 文件源码
def get_network(dens_scope):
    util.preprocess_conf(conf)
    network = Network(conf, 42, 42, 1, dens_scope)
    return network
项目:ERL    作者:NoListen    | 项目源码 | 文件源码
def get_network():
    util.preprocess_conf(conf)
    network = Network(conf, 42, 42, 1)
    return network
项目:nfvbench    作者:opnfv    | 项目源码 | 文件源码
def _get_network(self, traffic_port, index=None, reverse=False):
        interfaces = [self.clients['traffic'].get_interface(traffic_port)]
        interfaces.extend(self.worker.get_network_interfaces(index))
        return Network(interfaces, reverse)
项目:Neural-Architecture-Search-with-RL    作者:dhruvramani    | 项目源码 | 文件源码
def fit(self, sess, summarizer):
        sess.run(self.init)
        sess.run(self.local_init)
        max_epochs = self.config.max_epochs
        self.epoch_count, val_accuracy, reward = 0, 0.0, 1.0
        while self.epoch_count < max_epochs:
            # Creation of new Child Network from new Hyperparameters
            self.hype_list = sess.run(self.hyperparams)
            hyperfoo = {"Filter Row 1": self.hype_list[0], "Filter Column 1": self.hype_list[1], "No Filter 1": self.hype_list[2], "Filter Row 2": self.hype_list[3], "Filter Column 2": self.hype_list[4], "No Filter 2": self.hype_list[5], "Filter Row 3": self.hype_list[6], "Filter Column 3": self.hype_list[7], "No Filter 3": self.hype_list[8], "No Neurons": self.hype_list[9]}
            output = ""
            for key in hyperfoo:
                output += "{} : {}\n".format(key, hyperfoo[key])
            with open("../stdout/hyperparams.log", "a+") as f:
                f.write(output + "\n\n")
            print(sess.run(self.outputs))
            print(output + "\n")
            self.second_epoch_count = 0
            while self.second_epoch_count < max_epochs :
                average_loss, tr_step = self.run_model_epoch(sess, "train", summarizer['train'], self.second_epoch_count)
                if not self.config.debug:
                    val_loss, val_accuracy = self.run_model_eval(sess, "validation", summarizer['val'], tr_step)
                    reward = sum(val_accuracy[-5:]) ** 3
                    output =  "=> Training : Loss = {:.3f} | Validation : Loss = {:.3f}, Accuracy : {:.3f}".format(average_loss, val_loss, val_accuracy[-1])
                    with open("../stdout/validation.log", "a+") as f:
                        f.write(output)
                    print(output)
                self.second_epoch_count += 1
            _ = sess.run(self.tr_cont_step, feed_dict={self.val_accuracy : reward})
            test_loss, test_accuracy = self.run_model_eval(sess, "test", summarizer['test'], tr_step)
            self.epoch_count += 1
            self.cNet, self.y_pred = self.init_child(self.hype_list)
            self.cross_loss, self.accuracy, self.tr_model_step = self.grow_child()
        returnDict = {"test_loss" : test_loss, "test_accuracy" : test_accuracy}
        self.saver.save(sess, self.config.ckptdir_path + "/model_best.ckpt")        
        return returnDict
项目:lib9    作者:Jumpscale    | 项目源码 | 文件源码
def __init__(self, con=None):
        self._con = con
        self._dns = DNS(self)
        self._dhcp = DHCP(self)
        self._ftp = PureFTP(self)
        self._network = Network(self)
        self._firewall = Firewall(self)
项目:lib9    作者:Jumpscale    | 项目源码 | 文件源码
def _getFactoryEnabledClasses(self):
        return (("", "UCI", UCI()), ("", "DNS", DNS()), ("", "DHCP", DHCP()), ("", "PureFTP", PureFTP()),
                ("", "Network", Network()), ("", "Firewall", Firewall()), ("", "OpenWRTManager", OpenWRTManager()))
项目:policy_search_bb-alpha    作者:siemens    | 项目源码 | 文件源码
def __init__(self, layer_sizes, n_samples, alpha, learning_rate, v_prior, batch_size, X_train, y_train, N_train):

        layer_sizes = copy.copy(layer_sizes)
        layer_sizes[ 0 ] = layer_sizes[ 0 ] + 1
        print layer_sizes
        self.batch_size = batch_size
        self.N_train = N_train
        self.X_train = X_train
        self.y_train = y_train

        self.rate = learning_rate

        # We create the network

        self.network = network.Network(layer_sizes, n_samples, v_prior, N_train)

        # index to a batch

        index = T.lscalar()  
        self.indexes = T.vector('index', dtype = 'int32')
        indexes_train = theano.shared(value = np.array(range(0, N_train), dtype = np.int32), borrow = True)

        self.x = T.tensor3('x',dtype=theano.config.floatX)
        self.y = T.matrix('y', dtype =theano.config.floatX)
        self.lr = T.fscalar()

        # The logarithm of the values for the likelihood factors
        sampl = T.bscalar()
        self.fwpass = theano.function(outputs=self.network.output(self.x,False,samples=sampl,use_indices=False), inputs=[self.x,sampl],allow_input_downcast=True)

        ll_train = self.network.log_likelihood_values(self.x, self.y, self.indexes, 0.0, 1.0)


        self.estimate_marginal_ll = (-1.0 * N_train / (self.x.shape[ 1 ] * alpha) * \
            T.sum(LogSumExp(alpha * (T.sum(ll_train, 2) - self.network.log_f_hat() - self.network.log_f_hat_z()), 0)+ \
                T.log(1.0 / n_samples)) - self.network.log_normalizer_q() - 1.0 * N_train / self.x.shape[ 1 ] * self.network.log_normalizer_q_z() + \
            self.network.log_Z_prior())

        # We create a theano function for updating q
        upd = adam(self.estimate_marginal_ll, self.network.params,indexes_train[index*batch_size:(index+1)*batch_size],self.rate,rescale_local=np.float32(N_train/batch_size))

        self.process_minibatch = theano.function([ index], self.estimate_marginal_ll, \
            updates = upd, \
            givens = { self.x: T.tile(self.X_train[ index * batch_size: (index + 1) * batch_size] , [ n_samples, 1, 1 ]),
            self.y: self.y_train[ index * batch_size: (index + 1) * batch_size ],
            self.indexes: indexes_train[ index * batch_size : (index + 1) * batch_size ] })

        # We create a theano function for making predictions


        self.error_minibatch_train = theano.function([ index ],
            T.sum((T.mean(self.network.output(self.x,self.indexes), 0, keepdims = True)[ 0, :, : ] - self.y)**2) / layer_sizes[ -1 ],
            givens = { self.x: T.tile(self.X_train[ index * batch_size: (index + 1) * batch_size ], [ n_samples, 1, 1 ]),
            self.y: self.y_train[ index * batch_size: (index + 1) * batch_size ],
            self.indexes: indexes_train[ index * batch_size : (index + 1) * batch_size ] })

        self.ll_minibatch_train = theano.function([ index ], T.sum(LogSumExp(T.sum(ll_train, 2), 0) + T.log(1.0 / n_samples)), \

            givens = { self.x: T.tile(self.X_train[ index * batch_size: (index + 1) * batch_size ], [ n_samples, 1, 1 ]),
            self.y: self.y_train[ index * batch_size: (index + 1) * batch_size ],
            self.indexes: indexes_train[ index * batch_size : (index + 1) * batch_size ] })