我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用networkx.info()。
def generateGraph(nnodes, edgeprob, directed, pathtosave): if os.path.exists(pathtosave): matrix = np.loadtxt(pathtosave) else: shape = (nnodes,nnodes) G = nx.fast_gnp_random_graph(n=nnodes, p=edgeprob, directed=directed) matrix = nx.adjacency_matrix(G) if pathtosave is not None: np.savetxt(pathtosave, matrix.toarray(), fmt='%d',) print nx.info(G) matrix = matrix.toarray() return matrix ####################################################################### # Main #######################################################################
def draw_overlaid_graphs(original, new_graphs, print_text=False): """ Draws the new_graphs as graphs overlaid on the original topology :type new_graphs: list[nx.Graph] """ import matplotlib.pyplot as plt layout = nx.spring_layout(original) nx.draw_networkx(original, pos=layout) # want to overlay edges in different colors and progressively thinner # so that we can see what edges are in a tree line_colors = 'rbgycm' line_width = 2.0 ** (min(len(new_graphs), len(line_colors)) - 1) # use this for visualising on screen # line_width = 3.0 ** (min(len(new_graphs), len(line_colors)) - 1) # use this for generating diagrams for i, g in enumerate(new_graphs): if print_text: log.info(nx.info(g)) log.info("edges:", list(g.edges())) nx.draw_networkx(g, pos=layout, edge_color=line_colors[i % len(line_colors)], width=line_width) # advance to next line width line_width /= 1.7 # use this for visualising on screen # line_width /= 2.0 # use this for generating diagrams plt.show()
def add_nodal_positions(graph, centroids): "Adds the x, y, z attributes to each node in graph." # adding position info to nodes (for visualization later) for roi in centroids: graph.node[roi]['x'] = float(centroids[roi][0]) graph.node[roi]['y'] = float(centroids[roi][1]) graph.node[roi]['z'] = float(centroids[roi][2]) return
def save_summary_graph(graph, out_dir, subject, str_suffix=None, summary_descr='summary'): "Saves the features to disk." if out_dir is not None: # get outpath returned from hiwenet, based on dist name and all other parameters # choose out_dir name based on dist name and all other parameters out_subject_dir = pjoin(out_dir, subject) if not pexists(out_subject_dir): os.mkdir(out_subject_dir) if str_suffix is not None: out_file_name = '{}_{}_multigraph_graynet.graphml'.format(str_suffix,summary_descr) else: out_file_name = '_{}_multigraph_graynet.graphml'.format(summary_descr) out_weights_path = pjoin(out_subject_dir, out_file_name) try: nx.info(graph) nx.write_graphml(graph, out_weights_path, encoding='utf-8') print('\nSaved the summary multi-graph to \n{}'.format(out_weights_path)) except: print('\nUnable to save summary multi-graph to \n{}'.format(out_weights_path)) traceback.print_exc() return
def save_graph(graph_nx, out_dir, subject, str_suffix=None): "Saves the features to disk." if out_dir is not None: # get outpath returned from hiwenet, based on dist name and all other parameters # choose out_dir name based on dist name and all other parameters out_subject_dir = pjoin(out_dir, subject) if not pexists(out_subject_dir): os.mkdir(out_subject_dir) if str_suffix is not None: out_file_name = '{}_graynet.graphml'.format(str_suffix) else: out_file_name = 'graynet.graphml' out_weights_path = pjoin(out_subject_dir, out_file_name) try: nx.info(graph_nx) nx.write_graphml(graph_nx, out_weights_path, encoding='utf-8') print('\nSaved the graph to \n{}'.format(out_weights_path)) except: print('\nUnable to save graph to \n{}'.format(out_weights_path)) traceback.print_exc() return
def summary(self): """ User friendly wrapping and display of graph properties """ print("\n Graph Summary:") print(nx.info(self.g)) pass
def get_info(self): return nx.info(self.topo)