我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用networkx.read_gpickle()。
def load_models(self): now = datetime.now() self.rec_candidates = [] if self.last_model_update is None or (now - self.last_model_update).days >= 1: print('loading model', now) model_path = '{0}/it-topics'.format(settings.PORTRAIT_FOLDER) lda_filename = os.readlink('{0}/current_lda_model.gensim'.format(model_path)) self.lda_model = gensim.models.ldamulticore.LdaMulticore.load(lda_filename) self.topic_graph = nx.read_gpickle('{0}/current_topic_graph.nx'.format(model_path)) with gzip.open('{0}/current_candidates.json.gz'.format(model_path), 'rt') as f: self.rec_candidates = json.load(f) print('loaded', len(self.rec_candidates), 'candidates') self.last_model_update = datetime.now()
def graph2png(infile, outdir, fname=None): ''' infile: input .gpickle or .graphml file outdir: path to directory to store output png files ''' # if file is .gpickle, otherwise load .graphml try: graph = nx.read_gpickle(infile) except: graph = nx.read_graphml(infile) # get numpy array equivalent of adjacency matrix g = nx.adj_matrix(graph).todense() fig = plt.figure(figsize=(7, 7)) # plot adjacency matrix p = plt.imshow(g, interpolation='None', cmap='jet') if fname is None: fname = os.path.split(infile)[1].split('.')[0] + '.png' save_location = outdir + fname plt.savefig(save_location, format='png') print(fname + ' done!')
def loadGraphs(filenames, verb=False): """ Given a list of files, returns a dictionary of graphs Required parameters: filenames: - List of filenames for graphs Optional parameters: verb: - Toggles verbose output statements """ # Initializes empty dictionary if type(filenames) is not list: filenames = [filenames] gstruct = OrderedDict() for idx, files in enumerate(filenames): if verb: print("Loading: " + files) # Adds graphs to dictionary with key being filename fname = os.path.basename(files) try: gstruct[fname] = nx.read_graphml(files) except: gstruct[fname] = nx.read_gpickle(files) return gstruct
def load_saved_pickle(cls, graph_path): """Loads a graph saved as pickle Parameters ---------- graph_path: The path of the graph that should be loaded Returns ------- NxGraph: Graph object Examples -------- >>> g.load_saved_pickle("graph.bz2") """ return cls(graph_obj=nx.read_gpickle(graph_path))
def call_exps(params, data_set): print('Dataset: %s' % data_set) model_hyp = json.load( open('gem/experiments/config/%s.conf' % data_set, 'r') ) if bool(params["node_labels"]): node_labels = cPickle.load( open('gem/data/%s/node_labels.pickle' % data_set, 'rb') ) else: node_labels = None di_graph = nx.read_gpickle('gem/data/%s/graph.gpickle' % data_set) for d, meth in itertools.product(params["dimensions"], params["methods"]): dim = int(d) MethClass = getattr( importlib.import_module("gem.embedding.%s" % meth), methClassMap[meth] ) hyp = {"d": dim} hyp.update(model_hyp[meth]) MethObj = MethClass(hyp) run_exps(MethObj, di_graph, data_set, node_labels, params)
def from_pickle(path, check_version=True): """Reads a graph from a gpickle file. :param file or str path: File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed. :param bool check_version: Checks if the graph was produced by this version of PyBEL :return: A BEL graph :rtype: BELGraph """ graph = read_gpickle(path) raise_for_not_bel(graph) if check_version: raise_for_old_graph(graph) return graph
def read_graph(self, infile): self.graph = nx.read_gpickle(infile)
def compare_graph_outputs(generated_output, stored_output_file_name): expected_output = nx.read_gpickle(expected_output_directory+stored_output_file_name) if(nx.is_isomorphic(generated_output, expected_output)): return True return False
def loadSBMGraph(file_prefix): graph_file = file_prefix + '_graph.gpickle' G = nx.read_gpickle(graph_file) node_file = file_prefix + '_node.pkl' with open(node_file, 'rb') as fp: node_community = pickle.load(fp) return (G, node_community)
def loadRealGraphSeries(file_prefix, startId, endId): graphs = [] for file_id in range(startId, endId + 1): graph_file = file_prefix + str(file_id) + '_graph.gpickle' graphs.append(nx.read_gpickle(graph_file)) return graphs
def loadDynamicSBmGraph(file_perfix, length): graph_files = ['%s_%d_graph.gpickle' % (file_perfix, i) for i in xrange(length)] info_files = ['%s_%d_node.pkl' % (file_perfix, i) for i in xrange(length)] graphs = [nx.read_gpickle(graph_file) for graph_file in graph_files] nodes_comunities = [] perturbations = [] for info_file in info_files: with open(info_file, 'rb') as fp: node_infos = pickle.load(fp) nodes_comunities.append(node_infos['community']) perturbations.append(node_infos['perturbation']) return zip(graphs, nodes_comunities, perturbations)
def cache_read(self, cache_folder): self.contentProvider = pickle.load( open(cache_folder + '/contentProvider.cache', 'rb') ) self.contentNodes = pickle.load( open(cache_folder + '/contentNodes.cache', 'rb') ) self.accessNodes = pickle.load( open(cache_folder + '/accessNodes.cache', 'rb') ) self.netGraph = nx.read_gpickle(cache_folder + '/asGraph.cache') self.as2ip = pickle.load( open(cache_folder + '/as2ip.cache', 'rb') ) return None
def load_verb_res(): ''' Load verb semantics related resources. ''' global G, w2v_model, w2v_model_gf sys.stderr.write('Loading graph...') G=nx.read_gpickle('../../sdewac_graph/verbs_and_args_no_subcat.gpickle') sys.stderr.write(' done.\nLoading word2vec models...') w2v_model_gf=gensim.models.Word2Vec.load('../../word2vec/vectors_sdewac_gf_skipgram_min50_new.gensim') sys.stderr.write(' done.\n')