Python networkx 模块,draw_spectral() 实例源码

我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用networkx.draw_spectral()

项目:GOApy    作者:leopepe    | 项目源码 | 文件源码
def plot_graph(self, file_name: str='graph.png', label_nodes: bool=True, label_edges: bool=True):
        import matplotlib.pyplot as plt
        # pos = nx.spring_layout(self.graph)
        pos = nx.shell_layout(self.graph, dim=1024, scale=0.5)
        # pos = nx.random_layout(self.graph, dim=1024, scale=0.5)

        if label_edges:
            edge_labels = {
                (edge[0], edge[1]): edge[2]['object'] for edge in self.graph.edges(data=True)
            }
            nx.draw_networkx_edge_labels(self.graph, pos, edge_labels, font_size=5)

        if label_nodes:
            labels = {node[0]: node[1] for node in self.graph.nodes(data=True)}
            nx.draw_networkx_labels(self.graph, pos, labels, font_size=5, alpha=0.8)

        # nx.draw(self.graph, with_labels=True, arrows=True, node_size=80)
        nx.draw_spectral(self.graph, with_labels=True, arrows=True, node_size=80)
        plt.savefig(file_name, dpi=1024)
项目:twitter-social-affiliation-network    作者:zacharykstine    | 项目源码 | 文件源码
def draw_graph(G):
    d = nx.degree(G)
    nx.draw_spectral(G, nodelist=d.keys(), node_size=[v * 100 for v in d.values()])
    plt.show()
项目:pymake    作者:dtrckd    | 项目源码 | 文件源码
def draw_graph_spectral(y, clusters='blue', ns=30):
    G = nxG(y)
    pos = graphviz_layout(G, prog='twopi', args='')
    plt.figure()
    nx.draw_spectral(G, cmap = plt.get_cmap('jet'), node_color = clusters, node_size=30, with_labels=False)
项目:pymake    作者:dtrckd    | 项目源码 | 文件源码
def plot_ibp(model, target_dir=None, block=False, columns=[0], separate=False, K=4):

    G = nx.from_numpy_matrix(model.Y(), nx.DiGraph())
    F = model.leftordered()
    W = model._W

    # Plot Adjacency Matrix
    draw_adjmat(model._Y)
    # Plot Log likelihood
    plot_csv(target_dir=target_dir, columns=columns, separate=separate)
    #W[np.where(np.logical_and(W>-1.6, W<1.6))] = 0
    #W[W <= -1.6]= -1
    #W[W >= 1.6] = 1

    # KMeans test
    clusters = kmeans(F, K=K)
    nodelist_kmeans = [k[0] for k in sorted(zip(range(len(clusters)), clusters), key=lambda k: k[1])]
    adj_mat_kmeans = nx.adjacency_matrix(G, nodelist=nodelist_kmeans).A
    draw_adjmat(adj_mat_kmeans, title='KMeans on feature matrix')
    # Adjacency matrix generation
    draw_adjmat(model.generate(nodelist_kmeans), title='Generated Y from ILFRM')

    # training Rescal
    R = rescal(model._Y, K)
    R = R[nodelist_kmeans, :][:, nodelist_kmeans]
    draw_adjmat(R, 'Rescal generated')

    # Networks Plots
    f = plt.figure()

    ax = f.add_subplot(121)
    title = 'Features matrix, K = %d' % model._K
    ax.set_title(title)
    ColorMap(F, pixelspervalue=5, title=title, ax=ax)

    ax = f.add_subplot(122)
    ax.set_title('W')
    img = ax.imshow(W, interpolation='None')
    plt.colorbar(img)

    f = plt.figure()
    ax = f.add_subplot(221)
    ax.set_title('Spectral')
    nx.draw_spectral(G, axes=ax)
    ax = f.add_subplot(222)
    ax.set_title('Spring')
    nx.draw(G, axes=ax)
    ax = f.add_subplot(223)
    ax.set_title('Random')
    nx.draw_random(G, axes=ax)
    ax = f.add_subplot(224)
    ax.set_title('graphviz')
    try:
        nx.draw_graphviz(G, axes=ax)
    except:
        pass

    display(block=block)