我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用nltk.tokenize()。
def tokenize_text( sample_text ): global sequence_lengths processed_text = [] if cfg.remove_punctuation: cleaned = sample_text.lower().translate( t_table ) else: cleaned = sample_text if cfg.use_casual_tokenizer: tokens = tknzr.tokenize( cleaned ) else: tokens = nltk.word_tokenize( cleaned, language='english') if cfg.remove_stopwords: tokens = [w for w in tokens if not w in stopwords.words('english')] sequence_lengths.append( len( tokens ) ) processed_text.extend( tokens ) return processed_text
def demo_sent_subjectivity(text): """ Classify a single sentence as subjective or objective using a stored SentimentAnalyzer. :param text: a sentence whose subjectivity has to be classified. """ from nltk.classify import NaiveBayesClassifier from nltk.tokenize import regexp word_tokenizer = regexp.WhitespaceTokenizer() try: sentim_analyzer = load('sa_subjectivity.pickle') except LookupError: print('Cannot find the sentiment analyzer you want to load.') print('Training a new one using NaiveBayesClassifier.') sentim_analyzer = demo_subjectivity(NaiveBayesClassifier.train, True) # Tokenize and convert to lower case tokenized_text = [word.lower() for word in word_tokenizer.tokenize(text)] print(sentim_analyzer.classify(tokenized_text))
def get_sentences(text=''): tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') sentences = tokenizer.tokenize(text) return sentences
def get_input_sequence(sentence): """ Prepare chatbot's input by tokenizing the sentence and adding necessary punctuation marks. Input: "So what's up, buddy" Output: ["so", "what", "'", "s", "up", ",", "buddy", ".", "$$$"] """ if not sentence: return [START_TOKEN, EOS_SYMBOL] # add a dot to the end of the sent in case there is no punctuation mark if sentence[-1] not in _PUNKT_MARKS: sentence += '.' sequence = [START_TOKEN] + tokenize(sentence) + [EOS_SYMBOL] return sequence
def demo_liu_hu_lexicon(sentence, plot=False): """ Basic example of sentiment classification using Liu and Hu opinion lexicon. This function simply counts the number of positive, negative and neutral words in the sentence and classifies it depending on which polarity is more represented. Words that do not appear in the lexicon are considered as neutral. :param sentence: a sentence whose polarity has to be classified. :param plot: if True, plot a visual representation of the sentence polarity. """ from nltk.corpus import opinion_lexicon from nltk.tokenize import treebank tokenizer = treebank.TreebankWordTokenizer() pos_words = 0 neg_words = 0 tokenized_sent = [word.lower() for word in tokenizer.tokenize(sentence)] x = list(range(len(tokenized_sent))) # x axis for the plot y = [] for word in tokenized_sent: if word in opinion_lexicon.positive(): pos_words += 1 y.append(1) # positive elif word in opinion_lexicon.negative(): neg_words += 1 y.append(-1) # negative else: y.append(0) # neutral if pos_words > neg_words: print('Positive') elif pos_words < neg_words: print('Negative') elif pos_words == neg_words: print('Neutral') if plot == True: _show_plot(x, y, x_labels=tokenized_sent, y_labels=['Negative', 'Neutral', 'Positive'])
def handle_multiple_sentences(infile, outfile): titles = [] f = open(infile, "r") f2 = codecs.open(outfile, "w+", "utf-8") for line in f: line = line.decode("utf-8") sentences = sent_detector.tokenize(line.strip()) for i in range(len(sentences)): if i == 0: sentences[i] = sentences[i].replace(sentences[i].split()[0],sentences[i].split()[0].title()) else: sentences[i] = sentences[i].replace(sentences[i].split()[0],sentences[i].split()[0].title()) sentences[i-1] = sentences[i-1].replace(sentences[i-1].split()[-1][-1], " ::::") titles.append(" ".join(sentences)) title_set = set(titles) for l in title_set: print >> f2, l
def preprocess(s, max_tokens): #s = unicode(s, ignore="errors") s = s.lower() s = re.sub(r'[^\x00-\x7F]+',' ', s) s = re.sub("<s>", "", s) s = re.sub("<eos>", "", s) s = remove_punctuation(s) s = re.sub('\d','#',s) s = re.sub('\n',' ',s) s = re.sub(',',' ',s) tokens = WhitespaceTokenizer().tokenize(s) #s = replace_the_unfrequent(tokens) if (len(tokens) > max_tokens): tokens = tokens[:max_tokens] s = " ".join(tokens) return s, len(tokens)
def analysis(reviews_collection_text): with open('data/reviews_%s' % reviews_collection_text, 'r') as f: raw_data = f.read() with open('data/reviews_%s' % reviews_collection_text, 'r') as f: comments = f.readlines() data = raw_data.replace('\n', ' ') data_lower = data.lower() tokens_with_punc = word_tokenize(data_lower) tokens = RegexpTokenizer(r'\w+').tokenize(data_lower) print("--- Most frequent tokens ---\n", FreqDist(tokens_with_punc).most_common(15)) print("--- Tokens without punctuation ---\n", FreqDist(tokens).most_common(15)) stop = set(stopwords.words('english')) words = [word for word in tokens if word not in stop] print("--- Most frequent words ---\n", FreqDist(words).most_common(15)) tagged = pos_tag(words) nouns = [word for word, pos in tagged if (pos == 'NN')] print("--- Most frequent nouns ---\n", FreqDist(nouns).most_common(15)) adjts = [word for word, pos in tagged if (pos == 'JJ')] print("--- Most frequent adjective ---\n", FreqDist(adjts).most_common(15)) tokns = [RegexpTokenizer(r'\w+').tokenize(comment) for comment in comments] lxdst = [lexical_density(token) for token in tokns if len(token) > 0] avgld = sum(lxdst) / len(comments) print("--- Average lexical density ---\n", avgld)
def parts_of_speechtag(self, sentences=""): from nltk.corpus import state_union # for importing the already stored data, to be trained with from nltk.tokenize import PunktSentenceTokenizer # importing the already POS intelligent punkbuster tokenizer training_text = state_union.raw("2005-GWBUSH.txt") # Training set imported from the state union local repo. sample_text = sentences custom_sentence_tokenized = PunktSentenceTokenizer(train_text=training_text) # This is the unsupervised learning tokenization_unsupervised = custom_sentence_tokenized.tokenize(str(sample_text)) # tokenizing using unsupervised learning # print(tokenization_unsupervised) # just for hedebuggin purposes # print(type(tokenization_unsupervised)) # checking the type of the sentences self.processing_POS_tokenization(tokenization_unsupervised=tokenization_unsupervised) # Calling the Process content
def __init__(self): import nltk from nltk.tag import PerceptronTagger from nltk.tokenize import TreebankWordTokenizer tokenizer_fn = os.path.abspath(resource_filename('phrasemachine.data', 'punkt.english.pickle')) tagger_fn = os.path.abspath(resource_filename('phrasemachine.data', 'averaged_perceptron_tagger.pickle')) # Load the tagger self.tagger = PerceptronTagger(load=False) self.tagger.load(tagger_fn) # note: nltk.word_tokenize calls the TreebankWordTokenizer, but uses the downloader. # Calling the TreebankWordTokenizer like this allows skipping the downloader. # It seems the TreebankWordTokenizer uses PTB tokenization = regexes. i.e. no downloads # https://github.com/nltk/nltk/blob/develop/nltk/tokenize/treebank.py#L25 self.tokenize = TreebankWordTokenizer().tokenize self.sent_detector = nltk.data.load(tokenizer_fn) # http://www.nltk.org/book/ch05.html
def normalize(self, text): return [self.stemmer.stem(token) for token in self.tokenizer.tokenize(text.lower()) if token not in self.stop_words] ######### defining a default normalizer ##########
def normalize(self, text): return [token for token in self.tokenizer.tokenize(text.lower()) if token not in self.stop_words]
def preprocess(text): """ Preprocess text for encoder """ X = [] sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') for t in text: sents = sent_detector.tokenize(t) result = '' for s in sents: tokens = word_tokenize(s) result += ' ' + ' '.join(tokens) X.append(result) return X
def get_tweet_tags(tweet): """ Break up a tweet into individual word parts """ tknzr = TweetTokenizer() tokens = tknzr.tokenize(tweet) # replace handles with real names for n, tok in enumerate(tokens): if tok.startswith('@'): handle = tok.strip("@") if handle in user.students: # If we have a database entry for the mentioned user, we can # easily substitute a full name. usr = user.NPUser(handle) tokens[n] = usr.fullname else: # If there is no database entry, we use the user's alias. While # this is the full name in many cases, it is often not reliable usr = api.get_user(handle) tokens[n] = usr.name tagged = nltk.pos_tag(tokens) # In nltk, if a teacher's name is written with a period after an # abbreviated prefix, it is awkwardly broken up into 3 tags for n, tag in enumerate(tagged): # If there is the weird period after the prefix, if tag[1] == '.': # and it is in fact splitting up a person's name, if tagged[n - 1][1] == 'NNP' and tagged[n + 1][1] == 'NNP': if tagged[n - 1][0] in ['Mr', 'Ms', 'Mrs', 'Mx']: # combine it into the actual name, tagged[n - 1] = ('{}. {}'.format(tagged[n - 1][0], tagged[n + 1][0]), 'NNP') # and then remove the extra tags. del tagged[n + 1] del tagged[n] return tagged
def tokenize(data): sent_tokenize = nltk.tokenize.sent_tokenize tokenizer = nltk.tokenize.RegexpTokenizer(u"[\s\.,-?!'\"??\d·•—()׫»%\[\]|?*]+", gaps=True) word_tokenize = tokenizer.tokenize for text, blockname, textname in data: sentences = sent_tokenize(text.strip()) for sentence in sentences: words = word_tokenize(sentence) for word in words: if len(word) > 1: yield (word, sentence, blockname, textname)
def tokenize(self, text): """ tokenize text into a list of Token objects :param text: text to be tokenized (might contains several sentences) :type text: str :return: List of Token objects :rtype: list(Token) """ tokens = [] if self.tokenizer_type == "SpaceTokenizer": operator = RegexpTokenizer('\w+|\$[\d\.]+|\S+') for counter, span in enumerate(operator.span_tokenize(text)): new_token = Token(counter, text[span[0]:span[1]], span[0], span[1]) tokens.append(new_token) elif self.tokenizer_type == "NLTKWhiteSpaceTokenizer": operator = WhitespaceTokenizer() for counter, span in enumerate(operator.span_tokenize(text)): new_token = Token(counter, text[span[0]:span[1]], span[0], span[1]) tokens.append(new_token) elif self.tokenizer_type == "PTBTokenizer": ptb_tokens = word_tokenize(text) counter = 0 for token, span in self._penn_treebank_tokens_with_spans(text, ptb_tokens): new_token = Token(counter, token, span[0], span[1]) counter += 1 tokens.append(new_token) return tokens
def __tokenizeWords(sentence): return nltk.tokenize.word_tokenize(sentence) ## tests ########################################################################################
def __init__(self, itemId, questionType, answerType, question, answer, V, WordIDMap): self.itemId = itemId self.questionType = questionType self.answerType = answerType self.question = question self.answer = answer self.Question = [WordIDMap[stemmer.stem(word)] for word in tokenizer.tokenize(question) if stemmer.stem(word) in WordIDMap] self.Answer = [WordIDMap[stemmer.stem(word)] for word in tokenizer.tokenize(answer) if stemmer.stem(word) in WordIDMap] self.qFeature = {} self.aFeature = {} self.create_QAFeature()
def __init__(self, itemId, Review, V, WordIDMap, ReviewObj): self.itemId = itemId self.sent = Review self.rObj = ReviewObj self.Sent = [WordIDMap[stemmer.stem(word)] for word in tokenizer.tokenize(Review) if stemmer.stem(word) in WordIDMap] self.sFeature = {}
def sents(self, fileids=None, categories=None): """ Uses the built in sentence tokenizer to extract sentences from the paragraphs. Note that this method uses BeautifulSoup to parse HTML. """ for paragraph in self.paras(fileids, categories): for sentence in self._sent_tokenizer.tokenize(paragraph): yield sentence
def words(self, fileids=None, categories=None): """ Uses the built in word tokenizer to extract tokens from sentences. Note that this method uses BeautifulSoup to parse HTML content. """ for sentence in self.sents(fileids, categories): for token in self._word_tokenizer.tokenize(sentence): yield token
def describe(self, fileids=None, categories=None): """ Performs a single pass of the corpus and returns a dictionary with a variety of metrics concerning the state of the corpus. """ # Structures to perform counting. counts = nltk.FreqDist() tokens = nltk.FreqDist() started = time.time() # Perform single pass over paragraphs, tokenize and count for para in self.paras(fileids, categories): counts['paras'] += 1 for sent in self._sent_tokenizer.tokenize(para): counts['sents'] += 1 for word in self._word_tokenizer.tokenize(sent): counts['words'] += 1 tokens[word] += 1 # Compute the number of files and categories in the corpus n_fileids = len(self._resolve(fileids, categories) or self.fileids()) n_topics = len(self.categories(self._resolve(fileids, categories))) # Return data structure with information return { 'files': n_fileids, 'topics': n_topics, 'paras': counts['paras'], 'sents': counts['sents'], 'words': counts['words'], 'vocab': len(tokens), 'lexdiv': float(counts['words']) / float(len(tokens)), 'ppdoc': float(counts['paras']) / float(n_fileids), 'sppar': float(counts['sents']) / float(counts['paras']), 'secs': time.time() - started, }
def describe(self, fileids=None, categories=None): """ Performs a single pass of the corpus and returns a dictionary with a variety of metrics concerning the state of the corpus. """ # Structures to perform counting. counts = nltk.FreqDist() tokens = nltk.FreqDist() started = time.time() # Perform single pass over paragraphs, tokenize and count for para in self.paras(fileids, categories): counts['paras'] += 1 for sent in para: counts['sents'] += 1 for word, tag in sent: counts['words'] += 1 tokens[word] += 1 # Compute the number of files and categories in the corpus n_fileids = len(self._resolve(fileids, categories) or self.fileids()) n_topics = len(self.categories(self._resolve(fileids, categories))) # Return data structure with information return { 'files': n_fileids, 'topics': n_topics, 'paras': counts['paras'], 'sents': counts['sents'], 'words': counts['words'], 'vocab': len(tokens), 'lexdiv': float(counts['words']) / float(len(tokens)), 'ppdoc': float(counts['paras']) / float(n_fileids), 'sppar': float(counts['sents']) / float(counts['paras']), 'secs': time.time() - started, }
def stem_and_tokenize_text(text): sents = sent_tokenize(text) tokens = list(itertools.chain(*[TreebankWordTokenizer().tokenize(sent) for sent in sents])) terms = [Term(token) for token in tokens] return filter(lambda term: not term.is_punctuation(), terms)
def get_words(text=''): words = [] words = TOKENIZER.tokenize(text) filtered_words = [] for word in words: if word in SPECIAL_CHARS or word == " ": pass else: new_word = word.replace(",","").replace(".","") new_word = new_word.replace("!","").replace("?","") filtered_words.append(new_word) return filtered_words
def __init__(self, rtepair, stop=True, lemmatize=False): """ :param rtepair: a ``RTEPair`` from which features should be extracted :param stop: if ``True``, stopwords are thrown away. :type stop: bool """ self.stop = stop self.stopwords = set(['a', 'the', 'it', 'they', 'of', 'in', 'to', 'is', 'have', 'are', 'were', 'and', 'very', '.', ',']) self.negwords = set(['no', 'not', 'never', 'failed', 'rejected', 'denied']) # Try to tokenize so that abbreviations like U.S.and monetary amounts # like "$23.00" are kept as tokens. from nltk.tokenize import RegexpTokenizer tokenizer = RegexpTokenizer('([A-Z]\.)+|\w+|\$[\d\.]+') #Get the set of word types for text and hypothesis self.text_tokens = tokenizer.tokenize(rtepair.text) self.hyp_tokens = tokenizer.tokenize(rtepair.hyp) self.text_words = set(self.text_tokens) self.hyp_words = set(self.hyp_tokens) if lemmatize: self.text_words = set(lemmatize(token) for token in self.text_tokens) self.hyp_words = set(lemmatize(token) for token in self.hyp_tokens) if self.stop: self.text_words = self.text_words - self.stopwords self.hyp_words = self.hyp_words - self.stopwords self._overlap = self.hyp_words & self.text_words self._hyp_extra = self.hyp_words - self.text_words self._txt_extra = self.text_words - self.hyp_words
def read_block(self, stream): block = [] for para_str in self._para_block_reader(stream): para = [] for sent_str in self._sent_tokenizer.tokenize(para_str): sent = self._str2chunktree(sent_str, source_tagset=self._source_tagset, target_tagset=self._target_tagset) # If requested, throw away the tags. if not self._tagged: sent = self._untag(sent) # If requested, throw away the chunks. if not self._chunked: sent = sent.leaves() # Add the sentence to `para`. if self._group_by_sent: para.append(sent) else: para.extend(sent) # Add the paragraph to `block`. if self._group_by_para: block.append(para) else: block.extend(para) # Return the block return block
def tokenize(self, _text): if self.regexp: return RegexpTokenizer(self.regexp).tokenize(_text) return word_tokenize(_text, language=self.language)
def get_words(self, _text): return self.tokenize(_text)
def tweet_tokenize(self, tweet): #http://www.nltk.org/api/nltk.tokenize.html tknzr = TweetTokenizer() tokens = tknzr.tokenize(tweet) return tokens
def split_sentence_into_words(sentence): tokenizer = RegexpTokenizer(r'\w+') return tokenizer.tokenize(sentence.lower())
def tokenize(text): # lowers = text.lower() # no_punctuation = lowers.translate(None, string.punctuation) time0 = time.time() # tokens = [word[0] for word in TextBlob(unicode(TextBlob(text).correct())).tags if word[1] in ['NN', 'NNS', 'NNP', 'JJ', 'VB'] ] # stems = stem_tokens(tokens, stemmer) stems = re.findall('[a-z]+', text) # stems = [word[0] for word in nltk.pos_tag(tokens) if word[1] in ['NN', 'NNS', 'NNP', 'JJ', 'VB'] ] print('%s seconds' % (time.time()-time0)) print(stems) return stems
def tweet_stemming(tweet, token_freqs): """ Stems tweets words and counts diversty :param tweet: the tweet to analyze :type tweet: str or unicode :param token_freqs: counter of words frequency :type token_freqs: Counter :returns: words added to token_freqs :rtype: int """ pattern_url = '((https?:\/\/)|www\.)([\da-z\.-]+)\.([\/\w \.-]*)( |$)' regex_punctuation = re.compile('[%s]' % re.escape(string.punctuation)) porter = PorterStemmer() counter_tokens = 0 tweet_url_removed = re.sub(pattern_url, '', tweet, flags=re.MULTILINE) # remove URL tweet_url_removed_tokenized = word_tokenize(tweet_url_removed) # tokenize tweet tweet_url_removed_tokenized_cleaned_stemming = [] # cleaned of URLs and hashs, and stemming for token in tweet_url_removed_tokenized: new_token = regex_punctuation.sub(u'', token) # remove punctuation and hash if not new_token == u'': new_token_stemming = porter.stem(new_token) tweet_url_removed_tokenized_cleaned_stemming.append(new_token_stemming) token_freqs[new_token_stemming] += 1 counter_tokens += 1 return counter_tokens
def tokenize(tweet): tknzr = TweetTokenizer(strip_handles=True, reduce_len=True, preserve_case=False) return tknzr.tokenize(tweet) # Read cleaned training tweets file into pandas and randomize it