Python nltk 模块,compat() 实例源码

我们从Python开源项目中,提取了以下2个代码示例,用于说明如何使用nltk.compat()

项目:Translator2016    作者:ivan2110    | 项目源码 | 文件源码
def decode():
  with tf.Session() as sess:
    # Create model and load parameters.
    model = create_model(sess, True)
    model.batch_size = 1  # We decode one sentence at a time.

    # Load vocabularies.
    src_lang_vocab_path = PATH_TO_DATA_FILES + FLAGS.src_lang + "_mapping%d.txt" % FLAGS.src_lang_vocab_size
    dst_lang_vocab_path = PATH_TO_DATA_FILES + FLAGS.dst_lang + "_mapping%d.txt" % FLAGS.dst_lang_vocab_size
    src_lang_vocab, _ = data_utils.initialize_vocabulary(src_lang_vocab_path)
    _, rev_dst_lang_vocab = data_utils.initialize_vocabulary(dst_lang_vocab_path)

    # Decode from standard input.
    sys.stdout.write("> ")
    sys.stdout.flush()
    sentence = sys.stdin.readline()
    while sentence:
      # Get token-ids for the input sentence.
      token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), src_lang_vocab)
      # Which bucket does it belong to?
      bucket_id = min([b for b in xrange(len(_buckets))
                       if _buckets[b][0] > len(token_ids)])
      # Get a 1-element batch to feed the sentence to the model.
      encoder_inputs, decoder_inputs, target_weights = model.get_batch(
          {bucket_id: [(token_ids, [])]}, bucket_id)
      # Get output logits for the sentence.
      _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
                                       target_weights, bucket_id, True)
      # This is a greedy decoder - outputs are just argmaxes of output_logits.
      outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
      # If there is an EOS symbol in outputs, cut them at that point.
      if data_utils.EOS_ID in outputs:
        outputs = outputs[:outputs.index(data_utils.EOS_ID)]
      # Print out French sentence corresponding to outputs.
      print(" ".join([tf.compat.as_str(rev_dst_lang_vocab[output]) for output in outputs]))
      print("> ", end="")
      sys.stdout.flush()
      sentence = sys.stdin.readline()
项目:Translator2016    作者:ivan2110    | 项目源码 | 文件源码
def test():
  """Test the translation model."""
  nltk.download('punkt')
  with tf.Session() as sess:
    model = create_model(sess, True)
    model.batch_size = 1  # We decode one sentence at a time.

    # Load vocabularies.
    src_lang_vocab_path = PATH_TO_DATA_FILES + FLAGS.src_lang + "_mapping%d.txt" % FLAGS.src_lang_vocab_size
    dst_lang_vocab_path = PATH_TO_DATA_FILES + FLAGS.dst_lang + "_mapping%d.txt" % FLAGS.dst_lang_vocab_size
    src_lang_vocab, _ = data_utils.initialize_vocabulary(src_lang_vocab_path)
    _, rev_dst_lang_vocab = data_utils.initialize_vocabulary(dst_lang_vocab_path)

    weights = [0.25, 0.25, 0.25, 0.25]

    first_lang_file = open(generate_src_lang_sentences_file_name(FLAGS.src_lang))
    second_lang_file = open(generate_src_lang_sentences_file_name(FLAGS.dst_lang))

    total_bleu_value = 0.0
    computing_bleu_iterations = 0

    for first_lang_raw in first_lang_file:
      second_lang_gold_raw = second_lang_file.readline()
      # Get token-ids for the input sentence.
      token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(first_lang_raw), src_lang_vocab)
      # Which bucket does it belong to?
      try:
        bucket_id = min([b for b in xrange(len(_buckets))
                         if _buckets[b][0] > len(token_ids)])
      except ValueError:
        continue
      # Get a 1-element batch to feed the sentence to the model.
      encoder_inputs, decoder_inputs, target_weights = model.get_batch(
      {bucket_id: [(token_ids, [])]}, bucket_id)
      # Get output logits for the sentence.
      _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)
      # This is a greedy decoder - outputs are just argmaxes of output_logits.
      outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
      # If there is an EOS symbol in outputs, cut them at that point.
      if data_utils.EOS_ID in outputs:
        outputs = outputs[:outputs.index(data_utils.EOS_ID)]
      # Print out sentence corresponding to outputs.
      model_tran_res = " ".join([tf.compat.as_str(rev_dst_lang_vocab[output]) for output in outputs])
      second_lang_gold_tokens = word_tokenize(second_lang_gold_raw)
      model_tran_res_tokens = word_tokenize(model_tran_res)
      try:
        current_bleu_value = sentence_bleu([model_tran_res_tokens], second_lang_gold_tokens, weights)
        total_bleu_value += current_bleu_value
        computing_bleu_iterations += 1
      except ZeroDivisionError:
        pass
      if computing_bleu_iterations % 10 == 0:
        print("BLEU value after %d iterations: %.2f"
              % (computing_bleu_iterations, total_bleu_value / computing_bleu_iterations))
    final_bleu_value = total_bleu_value / computing_bleu_iterations
    print("Final BLEU value after %d iterations: %.2f" % (computing_bleu_iterations, final_bleu_value))
    return