Python nltk 模块,Production() 实例源码

我们从Python开源项目中,提取了以下24个代码示例,用于说明如何使用nltk.Production()

项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:Price-Comparator    作者:Thejas-1    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:neighborhood_mood_aws    作者:jarrellmark    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:hate-to-hugs    作者:sdoran35    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:FancyWord    作者:EastonLee    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:beepboop    作者:nicolehe    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def _parse_productions(self):
        """
        Parse the current contents of the textwidget buffer, to create
        a list of productions.
        """
        productions = []

        # Get the text, normalize it, and split it into lines.
        text = self._textwidget.get('1.0', 'end')
        text = re.sub(self.ARROW, '->', text)
        text = re.sub('\t', ' ', text)
        lines = text.split('\n')

        # Convert each line to a CFG production
        for line in lines:
            line = line.strip()
            if line=='': continue
            productions += _read_cfg_production(line)
            #if line.strip() == '': continue
            #if not CFGEditor._PRODUCTION_RE.match(line):
            #    raise ValueError('Bad production string %r' % line)
            #
            #(lhs_str, rhs_str) = line.split('->')
            #lhs = Nonterminal(lhs_str.strip())
            #rhs = []
            #def parse_token(match, rhs=rhs):
            #    token = match.group()
            #    if token[0] in "'\"": rhs.append(token[1:-1])
            #    else: rhs.append(Nonterminal(token))
            #    return ''
            #CFGEditor._TOKEN_RE.sub(parse_token, rhs_str)
            #
            #productions.append(Production(lhs, *rhs))

        return productions
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:kind2anki    作者:prz3m    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])
项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def demo2():
    from nltk import Nonterminal, Production, CFG
    nonterminals = 'S VP NP PP P N Name V Det'
    (S, VP, NP, PP, P, N, Name, V, Det) = [Nonterminal(s)
                                           for s in nonterminals.split()]
    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )
    grammar = CFG(S, productions)

    text = 'I saw a man in the park'.split()
    d=CFGDemo(grammar, text)
    d.mainloop()

######################################################################
# Old Demo
######################################################################
项目:but_sentiment    作者:MixedEmotions    | 项目源码 | 文件源码
def demo3():
    from nltk import Production
    (S, VP, NP, PP, P, N, Name, V, Det) = \
        nonterminals('S, VP, NP, PP, P, N, Name, V, Det')

    productions = (
        # Syntactic Productions
        Production(S, [NP, VP]),
        Production(NP, [Det, N]),
        Production(NP, [NP, PP]),
        Production(VP, [VP, PP]),
        Production(VP, [V, NP, PP]),
        Production(VP, [V, NP]),
        Production(PP, [P, NP]),
        Production(PP, []),

        Production(PP, ['up', 'over', NP]),

        # Lexical Productions
        Production(NP, ['I']),   Production(Det, ['the']),
        Production(Det, ['a']),  Production(N, ['man']),
        Production(V, ['saw']),  Production(P, ['in']),
        Production(P, ['with']), Production(N, ['park']),
        Production(N, ['dog']),  Production(N, ['statue']),
        Production(Det, ['my']),
        )

    t = Tk()
    def destroy(e, t=t): t.destroy()
    t.bind('q', destroy)
    p = ProductionList(t, productions)
    p.pack(expand=1, fill='both')
    p.add_callback('select', p.markonly)
    p.add_callback('move', p.markonly)
    p.focus()
    p.mark(productions[2])
    p.mark(productions[8])