Python numpy.linalg 模块,eigvals() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.linalg.eigvals()

项目:radar    作者:amoose136    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def calculate_beta(self):
        """

        .. math::

            \\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)}

        http://en.wikipedia.org/wiki/Beta_(finance)
        """
        # it doesn't make much sense to calculate beta for less than two days,
        # so return nan.
        if len(self.algorithm_returns) < 2:
            return np.nan, np.nan, np.nan, np.nan, []

        returns_matrix = np.vstack([self.algorithm_returns,
                                    self.benchmark_returns])
        C = np.cov(returns_matrix, ddof=1)

        # If there are missing benchmark values, then we can't calculate the
        # beta.
        if not np.isfinite(C).all():
            return np.nan, np.nan, np.nan, np.nan, []

        eigen_values = la.eigvals(C)
        condition_number = max(eigen_values) / min(eigen_values)
        algorithm_covariance = C[0][1]
        benchmark_variance = C[1][1]
        beta = algorithm_covariance / benchmark_variance

        return (
            beta,
            algorithm_covariance,
            benchmark_variance,
            condition_number,
            eigen_values
        )
项目:bayestsa    作者:thalesians    | 项目源码 | 文件源码
def eigenvalueconstraint(params):
    sd1 = params[0]
    sd2 = params[1]
    cor = params[2]
    bandwidth = maths.stats.choleskysqrt2d(sd1, sd2, cor)
    bandwidthsq = bandwidth.dot(bandwidth.T)
    return -np.min(la.eigvals(bandwidthsq))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:lquant    作者:squall1988    | 项目源码 | 文件源码
def calculate_beta(self):
        """

        .. math::

            \\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)}

        http://en.wikipedia.org/wiki/Beta_(finance)
        """
        # it doesn't make much sense to calculate beta for less than two days,
        # so return nan.
        if len(self.algorithm_returns) < 2:
            return np.nan, np.nan, np.nan, np.nan, []

        returns_matrix = np.vstack([self.algorithm_returns,
                                    self.benchmark_returns])
        C = np.cov(returns_matrix, ddof=1)

        # If there are missing benchmark values, then we can't calculate the
        # beta.
        if not np.isfinite(C).all():
            return np.nan, np.nan, np.nan, np.nan, []

        eigen_values = la.eigvals(C)
        condition_number = max(eigen_values) / min(eigen_values)
        algorithm_covariance = C[0][1]
        benchmark_variance = C[1][1]
        beta = algorithm_covariance / benchmark_variance

        return (
            beta,
            algorithm_covariance,
            benchmark_variance,
            condition_number,
            eigen_values
        )
项目:PyBGMM    作者:junlulocky    | 项目源码 | 文件源码
def update_common_component(self, mask):
        common_idx = 0
        common_D = np.where(mask == common_idx)[0].shape[0]
        if np.sum(common_D) == 0:
            mask[-1] = 0
            common_D = np.where(mask == common_idx)[0].shape[0]
        common_X = self.X[:, np.where(mask == common_idx)[0]]

        if common_D == 1:
            covar_scale = np.var(common_X)
        else:
            covar_scale = np.median(LA.eigvals(np.cov(common_X.T)))
            # pass
        mu_scale = np.amax(common_X) - covar_scale

        m_0 = common_X.mean(axis=0)
        k_0 = 1.0 / self.h0
        # k_0 = covar_scale**2/mu_scale**2
        v_0 = common_D + 2
        # S_0 = 1. / covar_scale * np.eye(common_D)
        S_0 = 1. * np.eye(common_D)
        common_kernel_prior = NIW(m_0, k_0, v_0, S_0)

        ## save for common component, unused dimensions
        common_assignments = np.zeros(common_X.shape[0])  ## one component

        if self.common_component_covariance_type == "full":
            common_component = GaussianComponents(common_X, common_kernel_prior, common_assignments, 1)
        elif self.common_component_covariance_type == "diag":
            common_component = GaussianComponentsDiag(common_X, common_kernel_prior, common_assignments, 1)
        elif self.common_component_covariance_type == "fixed":
            common_component = GaussianComponentsFixedVar(common_X, common_kernel_prior, common_assignments, 1)
        else:
            assert False, "Invalid covariance type."

        return common_component
项目:PyBGMM    作者:junlulocky    | 项目源码 | 文件源码
def update_clustering_components(self, mask, assignments):
        cluster_idx = 1
        cluster_D = np.where(mask == cluster_idx)[0].shape[0]
        cluster_X = self.X[:, np.where(mask == cluster_idx)[0]]

        if cluster_D == 1:
            covar_scale = np.var(cluster_X)
        else:
            covar_scale = np.median(LA.eigvals(np.cov(cluster_X.T)))
        mu_scale = np.amax(cluster_X) - covar_scale

        # Intialize prior
        m_0 = cluster_X.mean(axis=0)
        k_0 = 1.0 / self.h1
        # k_0 = covar_scale ** 2 / mu_scale ** 2
        v_0 = cluster_D + 2
        # S_0 = 1./100 / covar_scale * np.eye(cluster_D)
        S_0 = 1. * np.eye(cluster_D)

        cluster_kernel_prior = NIW(m_0, k_0, v_0, S_0)

        if self.covariance_type == "full":
            components = GaussianComponents(cluster_X, cluster_kernel_prior, assignments, self.K_max)
        elif self.covariance_type == "diag":
            components = GaussianComponentsDiag(cluster_X, cluster_kernel_prior, assignments, self.K_max)
        elif self.covariance_type == "fixed":
            components = GaussianComponentsFixedVar(cluster_X, cluster_kernel_prior, assignments, self.K_max)
        else:
            assert False, "Invalid covariance type."

        return components
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def is_psd(m):
    eigvals = linalg.eigvals(m)
    return np.isreal(eigvals).all() and (eigvals >= 0).all()
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:QuantEcon.lectures.code    作者:QuantEcon    | 项目源码 | 文件源码
def test_stability(self, Q):
        """
        Stability test for a given matrix Q.
        """
        sr = np.max(np.abs(eigvals(Q)))
        if not sr < 1 / self.?:
            msg = "Spectral radius condition failed with radius = %f" % sr
            raise ValueError(msg)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def lagroots(c):
    """
    Compute the roots of a Laguerre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, chebroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Laguerre series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
    >>> coef = lagfromroots([0, 1, 2])
    >>> coef
    array([  2.,  -8.,  12.,  -6.])
    >>> lagroots(coef)
    array([ -4.44089210e-16,   1.00000000e+00,   2.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([1 + c[0]/c[1]])

    m = lagcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def legroots(c):
    """
    Compute the roots of a Legendre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, chebroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such values.
    Roots with multiplicity greater than 1 will also show larger errors as
    the value of the series near such points is relatively insensitive to
    errors in the roots. Isolated roots near the origin can be improved by
    a few iterations of Newton's method.

    The Legendre series basis polynomials aren't powers of ``x`` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.legendre as leg
    >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
    array([-0.85099543, -0.11407192,  0.51506735])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = legcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def polyroots(c):
    """
    Compute the roots of a polynomial.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * x^i.

    Parameters
    ----------
    c : 1-D array_like
        1-D array of polynomial coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the polynomial. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    chebroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the power series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    Examples
    --------
    >>> import numpy.polynomial.polynomial as poly
    >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = polycompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r


#
# polynomial class
#
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def chebroots(c):
    """
    Compute the roots of a Chebyshev series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * T_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Chebyshev series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as cheb
    >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = chebcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def hermroots(c):
    """
    Compute the roots of a Hermite series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * H_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, chebroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Hermite series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermroots, hermfromroots
    >>> coef = hermfromroots([-1, 0, 1])
    >>> coef
    array([ 0.   ,  0.25 ,  0.   ,  0.125])
    >>> hermroots(coef)
    array([ -1.00000000e+00,  -1.38777878e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-.5*c[0]/c[1]])

    m = hermcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def lagroots(c):
    """
    Compute the roots of a Laguerre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, chebroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Laguerre series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
    >>> coef = lagfromroots([0, 1, 2])
    >>> coef
    array([  2.,  -8.,  12.,  -6.])
    >>> lagroots(coef)
    array([ -4.44089210e-16,   1.00000000e+00,   2.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([1 + c[0]/c[1]])

    m = lagcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def legroots(c):
    """
    Compute the roots of a Legendre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, chebroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such values.
    Roots with multiplicity greater than 1 will also show larger errors as
    the value of the series near such points is relatively insensitive to
    errors in the roots. Isolated roots near the origin can be improved by
    a few iterations of Newton's method.

    The Legendre series basis polynomials aren't powers of ``x`` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.legendre as leg
    >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
    array([-0.85099543, -0.11407192,  0.51506735])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = legcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def polyroots(c):
    """
    Compute the roots of a polynomial.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * x^i.

    Parameters
    ----------
    c : 1-D array_like
        1-D array of polynomial coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the polynomial. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    chebroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the power series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    Examples
    --------
    >>> import numpy.polynomial.polynomial as poly
    >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = polycompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r


#
# polynomial class
#
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def chebroots(c):
    """
    Compute the roots of a Chebyshev series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * T_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Chebyshev series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as cheb
    >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = chebcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def hermroots(c):
    """
    Compute the roots of a Hermite series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * H_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, chebroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Hermite series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermroots, hermfromroots
    >>> coef = hermfromroots([-1, 0, 1])
    >>> coef
    array([ 0.   ,  0.25 ,  0.   ,  0.125])
    >>> hermroots(coef)
    array([ -1.00000000e+00,  -1.38777878e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-.5*c[0]/c[1]])

    m = hermcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def lagroots(c):
    """
    Compute the roots of a Laguerre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, chebroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Laguerre series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
    >>> coef = lagfromroots([0, 1, 2])
    >>> coef
    array([  2.,  -8.,  12.,  -6.])
    >>> lagroots(coef)
    array([ -4.44089210e-16,   1.00000000e+00,   2.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([1 + c[0]/c[1]])

    m = lagcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def hermeroots(c):
    """
    Compute the roots of a HermiteE series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * He_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, hermroots, chebroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The HermiteE series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
    >>> coef = hermefromroots([-1, 0, 1])
    >>> coef
    array([ 0.,  2.,  0.,  1.])
    >>> hermeroots(coef)
    array([-1.,  0.,  1.])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = hermecompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def polyroots(c):
    """
    Compute the roots of a polynomial.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * x^i.

    Parameters
    ----------
    c : 1-D array_like
        1-D array of polynomial coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the polynomial. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    chebroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the power series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    Examples
    --------
    >>> import numpy.polynomial.polynomial as poly
    >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = polycompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r


#
# polynomial class
#
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def chebroots(c):
    """
    Compute the roots of a Chebyshev series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * T_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Chebyshev series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as cheb
    >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = chebcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def hermroots(c):
    """
    Compute the roots of a Hermite series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * H_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, chebroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Hermite series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermroots, hermfromroots
    >>> coef = hermfromroots([-1, 0, 1])
    >>> coef
    array([ 0.   ,  0.25 ,  0.   ,  0.125])
    >>> hermroots(coef)
    array([ -1.00000000e+00,  -1.38777878e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-.5*c[0]/c[1]])

    m = hermcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def lagroots(c):
    """
    Compute the roots of a Laguerre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, chebroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Laguerre series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
    >>> coef = lagfromroots([0, 1, 2])
    >>> coef
    array([  2.,  -8.,  12.,  -6.])
    >>> lagroots(coef)
    array([ -4.44089210e-16,   1.00000000e+00,   2.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([1 + c[0]/c[1]])

    m = lagcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def legroots(c):
    """
    Compute the roots of a Legendre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, chebroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such values.
    Roots with multiplicity greater than 1 will also show larger errors as
    the value of the series near such points is relatively insensitive to
    errors in the roots. Isolated roots near the origin can be improved by
    a few iterations of Newton's method.

    The Legendre series basis polynomials aren't powers of ``x`` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.legendre as leg
    >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
    array([-0.85099543, -0.11407192,  0.51506735])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = legcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def polyroots(c):
    """
    Compute the roots of a polynomial.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * x^i.

    Parameters
    ----------
    c : 1-D array_like
        1-D array of polynomial coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the polynomial. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    chebroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the power series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    Examples
    --------
    >>> import numpy.polynomial.polynomial as poly
    >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = polycompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r


#
# polynomial class
#
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def chebroots(c):
    """
    Compute the roots of a Chebyshev series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * T_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Chebyshev series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as cheb
    >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = chebcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def hermroots(c):
    """
    Compute the roots of a Hermite series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * H_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, chebroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Hermite series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermroots, hermfromroots
    >>> coef = hermfromroots([-1, 0, 1])
    >>> coef
    array([ 0.   ,  0.25 ,  0.   ,  0.125])
    >>> hermroots(coef)
    array([ -1.00000000e+00,  -1.38777878e-17,   1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-.5*c[0]/c[1]])

    m = hermcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def lagroots(c):
    """
    Compute the roots of a Laguerre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, chebroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Laguerre series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
    >>> coef = lagfromroots([0, 1, 2])
    >>> coef
    array([  2.,  -8.,  12.,  -6.])
    >>> lagroots(coef)
    array([ -4.44089210e-16,   1.00000000e+00,   2.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([1 + c[0]/c[1]])

    m = lagcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def legroots(c):
    """
    Compute the roots of a Legendre series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * L_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, chebroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such values.
    Roots with multiplicity greater than 1 will also show larger errors as
    the value of the series near such points is relatively insensitive to
    errors in the roots. Isolated roots near the origin can be improved by
    a few iterations of Newton's method.

    The Legendre series basis polynomials aren't powers of ``x`` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.legendre as leg
    >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
    array([-0.85099543, -0.11407192,  0.51506735])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = legcompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r