我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.random.randint()。
def optimal_policy(self, state_int): """ The optimal policy for this gridworld. state_int: What state we are in. int. -> Action int. """ sx, sy = self.int_to_point(state_int) if sx < self.grid_size and sy < self.grid_size: return rn.randint(0, 2) if sx < self.grid_size-1: return 0 if sy < self.grid_size-1: return 1 raise ValueError("Unexpected state.")
def _get_glyph(gnum, height, width, shift_prob, shift_size): if isinstance(gnum, list): n = randint(*gnum) else: n = gnum glyph = random_points_in_circle( n, 0, 0, 0.5 )*array((width, height), 'float') _spatial_sort(glyph) if random()<shift_prob: shift = ((-1)**randint(0,2))*shift_size*height glyph[:,1] += shift if random()<0.5: ii = randint(0,n-1,size=(1)) xy = glyph[ii,:] glyph = row_stack((glyph, xy)) return glyph
def random_walk_rec(current, trace, length, successor_fn): import numpy.random as random if length == 0: return current else: sucs = successor_fn(current) first = random.randint(len(sucs)) now = first while True: suc = sucs[now] try: assert not np.any([np.all(np.equal(suc, t)) for t in trace]) result = random_walk_rec(suc, [*trace, suc], length-1, successor_fn) assert result is not None return result except AssertionError: now = (now+1)%len(sucs) if now == first: print("B",end="") return None else: continue
def main(): from numpy.random import random from numpy.random import randint from iutils.render import Render from modules.linear import Linear render = Render(SIZE, BACK, FRONT) render.clear_canvas() nsteps = 500 height = 1.0 for i in range(20): start = random(size=(1,2)) start_w = 0 grains = randint(20,150) scale = 0.005 + random()*0.02 L = Linear(SIZE, height, start, start_w) L.steps(nsteps, scale=scale) show(render, L, grains) render.write_to_png('./linear.png')
def _random_overlay(self, static_hidden=False): """Construct random max pool locations.""" s = self.shapes[2] if static_hidden: args = np.random.randint(s[2], size=np.prod(s) / s[2] / s[4]) overlay = np.zeros(np.prod(s) / s[4], np.bool) overlay[args + np.arange(len(args)) * s[2]] = True overlay = overlay.reshape([s[0], s[1], s[3], s[2]]) overlay = np.rollaxis(overlay, -1, 2) return arrays.extend(overlay, s[4]) else: args = np.random.randint(s[2], size=np.prod(s) / s[2]) overlay = np.zeros(np.prod(s), np.bool) overlay[args + np.arange(len(args)) * s[2]] = True overlay = overlay.reshape([s[0], s[1], s[3], s[4], s[2]]) return np.rollaxis(overlay, -1, 2)
def make_fasta_file(sequences=None, headers=None, out_file=None, num_sequences=10, seq_len=80, rnd_seed=None): """Make artificial FASTA file.""" random.seed(rnd_seed) # pylint:disable=no-member if sequences is None and headers is None: headers = ['{}'.format(i + 1) for i in range(num_sequences)] random_seeds = random.randint(10**5, size=num_sequences) # pylint:disable=no-member sequences = [make_sequence(seq_len, rnd_seed=rnd) for rnd in random_seeds] elif sequences is None: random_seeds = random.randint(10**5, size=len(headers)) # pylint:disable=no-member sequences = [make_sequence(seq_len, rnd_seed=rnd) for rnd in random_seeds] elif headers is None: headers = ['{}'.format(i + 1) for i in range(len(sequences))] if out_file is None: out_file = get_temp_file_name(extension='fasta') with open(out_file, 'wt') as ofile: for header, seq in zip(headers, sequences): ofile.write('>' + header + '\n') ofile.write(seq + '\n') return os.path.abspath(out_file)
def test_identity_module(self): """ identity module should preserve input """ with IsolatedSession() as issn: pred_input = tf.placeholder(tf.float32, [None, None]) final_output = tf.identity(pred_input, name='output') gfn = issn.asGraphFunction([pred_input], [final_output]) for _ in range(10): m, n = prng.randint(10, 1000, size=2) mat = prng.randn(m, n).astype(np.float32) with IsolatedSession() as issn: feeds, fetches = issn.importGraphFunction(gfn) mat_out = issn.run(fetches[0], {feeds[0]: mat}) self.assertTrue(np.all(mat_out == mat))
def _init_edges(self): ''' Initialize random edges filling the FSs struct ''' if self.acyclic: self._init_acyclic_edges() return for i in range(len(self.nodes)): # rnd.randint(, self.max_neighbours+1) neighbours = self.max_neighbours query_res = self.nodes_tree.query( self.nodes[i], k=neighbours+1) self.FSs[i] = query_res[1][1:] for node_index in self.FSs[i]: self.BSs[node_index] = np.append(self.BSs[node_index], [i]) self.FS_costs[i] = query_res[0][1:]
def _sample_indices(self, valid_length, num_seg): """ :param record: VideoRecord :return: list """ average_duration = (valid_length + 1) // num_seg if average_duration > 0: # normal cases offsets = np.multiply(list(range(num_seg)), average_duration) \ + randint(average_duration, size=num_seg) elif valid_length > num_seg: offsets = np.sort(randint(valid_length, size=num_seg)) else: offsets = np.zeros((num_seg, )) return offsets
def initiate_infection(self, strain, ): """ Function to set the initial seed for an infection. Arguments: - strains: dict, key the name of a strain, value a list of node id's or 'random'. If the value is 'random' then one random host is infected. Eg. strain = {'wild_type':[1,5,10]}: infects _hosts 1,5 and 10 with the wild type strain. """ self.t = 0 for name in strain: if name not in self.pathogen.ids.keys(): raise self.WrongPathogenError("There is no pathogen strain with the name <%s>." % name) if type(strain[name]) is not str: for node_id in strain[name]: self.current_view[node_id] = self.pathogen.ids[name] else: self.current_view[nrand.randint(0, self.contact_structure.n)] = self.pathogen.ids[name] self._init_queue() return 0 # unused method can be removed (along with self.initiate_infection)
def sample(self, batch_size): """ computes (x_t,u_t,x_{t+1}) pair returns tuple of 3 ndarrays with shape (batch,x_dim), (batch, u_dim), (batch, x_dim) """ if not self.initialized: raise ValueError( "Dataset not loaded - call PlaneData.initialize() first.") traj = randint(0, num_t, size=batch_size) # which trajectory tt = randint(0, T - 1, size=batch_size) # time step t for each batch X0 = np.zeros((batch_size, x_dim)) U0 = np.zeros((batch_size, u_dim), dtype=np.int) X1 = np.zeros((batch_size, x_dim)) for i in range(batch_size): t = tt[i] p = self.P[traj[i], t, :] X0[i, :] = self.getX(traj[i], t) X1[i, :] = self.getX(traj[i], t + 1) U0[i, :] = self.U[traj[i], t, :] return (X0, U0, X1)
def next_batch(self): inverse_vocabulary = self.inverse_vocabulary if self.stream: q = [[inverse_vocabulary[word] for word in next(self.questions).strip().split() ] for i in range(self.batch_size)] a = [[inverse_vocabulary[word] for word in next(self.answers).strip().split() ] for i in range(self.batch_size)] else: n_example = len(self.answers) indices = random.randint(0, n_example, size=(self.batch_size)) q = [[inverse_vocabulary[word] for word in self.questions[i].split()] for i in indices] a = [[inverse_vocabulary[word] for word in self.answers[i].split()] for i in indices] X = pad_sequences(q, maxlen=self.sequence_length) y = pad_sequences(a, maxlen=self.sequence_length) if self.one_hot_target: return (X, self.to_one_hot(y)) else: return (X, y)
def test_long_sequence(): N_iters = 200 vect_length = 10 Ns = [] Ms = [] for i in range(N_iters): Ms.append(npr.randint(200) + 1) Ns.append(npr.randint(Ms[-1], size=vect_length)) store = BitStore(vect_length) coinflips = npr.rand(N_iters) new_Ns = [] for N, M, r in zip(Ns, Ms, coinflips): if r < 0.75: store.push(N, M) else: new_Ns.append(store.pop(M)) for N, M, r in zip(Ns, Ms, coinflips)[::-1]: if r < 0.75: cur_N = store.pop(M) assert np.all(cur_N == N) else: store.push(new_Ns.pop(), M)
def layer_test_helper_1d_global(layer, channel_index): # This should test that the output is the correct shape so it should pass # into a Dense layer rather than a Conv layer. # The weighted layer is the previous layer, # Create model main_input = Input(shape=list(random.randint(10, 20, size=2))) x = Conv1D(3, 3)(main_input) x = layer(x) main_output = Dense(5)(x) model = Model(inputs=main_input, outputs=main_output) # Delete channels del_layer_index = 1 next_layer_index = 3 del_layer = model.layers[del_layer_index] new_model = operations.delete_channels(model, del_layer, channel_index) new_w = new_model.layers[next_layer_index].get_weights() # Calculate next layer's correct weights channel_count = getattr(del_layer, utils.get_channels_attr(del_layer)) channel_index = [i % channel_count for i in channel_index] correct_w = model.layers[next_layer_index].get_weights() correct_w[0] = np.delete(correct_w[0], channel_index, axis=0) assert weights_equal(correct_w, new_w)
def layer_test_helper_2d_global(layer, channel_index, data_format): # This should test that the output is the correct shape so it should pass # into a Dense layer rather than a Conv layer. # The weighted layer is the previous layer, # Create model main_input = Input(shape=list(random.randint(10, 20, size=3))) x = Conv2D(3, [3, 3], data_format=data_format)(main_input) x = layer(x) main_output = Dense(5)(x) model = Model(inputs=main_input, outputs=main_output) # Delete channels del_layer_index = 1 next_layer_index = 3 del_layer = model.layers[del_layer_index] new_model = operations.delete_channels(model, del_layer, channel_index) new_w = new_model.layers[next_layer_index].get_weights() # Calculate next layer's correct weights channel_count = getattr(del_layer, utils.get_channels_attr(del_layer)) channel_index = [i % channel_count for i in channel_index] correct_w = model.layers[next_layer_index].get_weights() correct_w[0] = np.delete(correct_w[0], channel_index, axis=0) assert weights_equal(correct_w, new_w)
def test_frame_negate(self): expr = self.ex('-') # float lhs = DataFrame(randn(5, 2)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_frame_equal(expect, result) # int lhs = DataFrame(randint(5, size=(5, 2))) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_frame_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = DataFrame(rand(5, 2) > 0.5) if self.engine == 'numexpr': with tm.assertRaises(NotImplementedError): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_frame_equal(expect, result)
def test_series_negate(self): expr = self.ex('-') # float lhs = Series(randn(5)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result) # int lhs = Series(randint(5, size=5)) expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result) # bool doesn't work with numexpr but works elsewhere lhs = Series(rand(5) > 0.5) if self.engine == 'numexpr': with tm.assertRaises(NotImplementedError): result = pd.eval(expr, engine=self.engine, parser=self.parser) else: expect = -lhs result = pd.eval(expr, engine=self.engine, parser=self.parser) assert_series_equal(expect, result)
def test_grouper_multilevel_freq(self): # GH 7885 # with level and freq specified in a pd.Grouper from datetime import date, timedelta d0 = date.today() - timedelta(days=14) dates = date_range(d0, date.today()) date_index = pd.MultiIndex.from_product( [dates, dates], names=['foo', 'bar']) df = pd.DataFrame(np.random.randint(0, 100, 225), index=date_index) # Check string level expected = df.reset_index().groupby([pd.Grouper( key='foo', freq='W'), pd.Grouper(key='bar', freq='W')]).sum() # reset index changes columns dtype to object expected.columns = pd.Index([0], dtype='int64') result = df.groupby([pd.Grouper(level='foo', freq='W'), pd.Grouper( level='bar', freq='W')]).sum() assert_frame_equal(result, expected) # Check integer level result = df.groupby([pd.Grouper(level=0, freq='W'), pd.Grouper( level=1, freq='W')]).sum() assert_frame_equal(result, expected)
def test_apply_frame_concat_series(self): def trans(group): return group.groupby('B')['C'].sum().sort_values()[:2] def trans2(group): grouped = group.groupby(df.reindex(group.index)['B']) return grouped.sum().sort_values()[:2] df = DataFrame({'A': np.random.randint(0, 5, 1000), 'B': np.random.randint(0, 5, 1000), 'C': np.random.randn(1000)}) result = df.groupby('A').apply(trans) exp = df.groupby('A')['C'].apply(trans2) assert_series_equal(result, exp, check_names=False) self.assertEqual(result.name, 'C')
def test_apply_corner_cases(self): # #535, can't use sliding iterator N = 1000 labels = np.random.randint(0, 100, size=N) df = DataFrame({'key': labels, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) grouped = df.groupby('key') def f(g): g['value3'] = g['value1'] * 2 return g result = grouped.apply(f) self.assertTrue('value3' in result)
def test_fast_apply(self): # make sure that fast apply is correctly called # rather than raising any kind of error # otherwise the python path will be callsed # which slows things down N = 1000 labels = np.random.randint(0, 2000, size=N) labels2 = np.random.randint(0, 3, size=N) df = DataFrame({'key': labels, 'key2': labels2, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) def f(g): return 1 g = df.groupby(['key', 'key2']) grouper = g.grouper splitter = grouper._get_splitter(g._selected_obj, axis=g.axis) group_keys = grouper._get_group_keys() values, mutated = splitter.fast_apply(f, group_keys) self.assertFalse(mutated)
def test_groupby_categorical_index(self): levels = ['foo', 'bar', 'baz', 'qux'] codes = np.random.randint(0, 4, size=20) cats = Categorical.from_codes(codes, levels, ordered=True) df = DataFrame( np.repeat( np.arange(20), 4).reshape(-1, 4), columns=list('abcd')) df['cats'] = cats # with a cat index result = df.set_index('cats').groupby(level=0).sum() expected = df[list('abcd')].groupby(cats.codes).sum() expected.index = CategoricalIndex( Categorical.from_codes( [0, 1, 2, 3], levels, ordered=True), name='cats') assert_frame_equal(result, expected) # with a cat column, should produce a cat index result = df.groupby('cats').sum() expected = df[list('abcd')].groupby(cats.codes).sum() expected.index = CategoricalIndex( Categorical.from_codes( [0, 1, 2, 3], levels, ordered=True), name='cats') assert_frame_equal(result, expected)
def test__cython_agg_general(self): ops = [('mean', np.mean), ('median', np.median), ('var', np.var), ('add', np.sum), ('prod', np.prod), ('min', np.min), ('max', np.max), ('first', lambda x: x.iloc[0]), ('last', lambda x: x.iloc[-1]), ] df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) for op, targop in ops: result = df.groupby(labels)._cython_agg_general(op) expected = df.groupby(labels).agg(targop) try: tm.assert_frame_equal(result, expected) except BaseException as exc: exc.args += ('operation: %s' % op, ) raise
def simplify_once(genome): """Silences or noops between 1 and 3 random genes. Parameters ---------- genome : list of Genes List of Plush genes. """ gn = deepcopy(genome) n = randint(1, 4) action = choice(['silent', 'noop']) if action == 'silent': silent_n_random_genes(gn, n) else: noop_n_random_genes(gn, n) return gn
def _kshape(x, k, initial_clustering=None): """ >>> from numpy.random import seed; seed(0) >>> _kshape(np.array([[1,2,3,4], [0,1,2,3], [-1,1,-1,1], [1,2,2,3]]), 2) (array([0, 0, 1, 0]), array([[-1.2244258 , -0.35015476, 0.52411628, 1.05046429], [-0.8660254 , 0.8660254 , -0.8660254 , 0.8660254 ]])) """ m = x.shape[0] if initial_clustering is not None: assert len(initial_clustering) == m, "Initial assigment does not match column length" idx = initial_clustering else: idx = randint(0, k, size=m) print(idx) centroids = np.zeros((k,x.shape[1])) distances = np.empty((m, k)) for _ in range(100): old_idx = idx for j in range(k): centroids[j] = _extract_shape(idx, x, j, centroids[j]) for i in range(m): for j in range(k): distances[i,j] = 1 - max(_ncc_c(x[i], centroids[j])) idx = distances.argmin(1) if np.array_equal(old_idx, idx): break print(idx) return idx, centroids
def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \ 'num_images ({}) must divide BATCH_SIZE ({})'. \ format(num_images, cfg.TRAIN.BATCH_SIZE) # Get the input image blob, formatted for caffe im_blob, im_scales = _get_image_blob(roidb, random_scale_inds) blobs = {'data': im_blob} assert len(im_scales) == 1, "Single batch only" assert len(roidb) == 1, "Single batch only" # gt boxes: (x1, y1, x2, y2, cls) if cfg.TRAIN.USE_ALL_GT: # Include all ground truth boxes gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0] else: # For the COCO ground truth boxes, exclude the ones that are ''iscrowd'' gt_inds = np.where(roidb[0]['gt_classes'] != 0 & np.all(roidb[0]['gt_overlaps'].toarray() > -1.0, axis=1))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] * im_scales[0] gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] blobs['gt_boxes'] = gt_boxes blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs
def get_initial(num=10, shift=2): from numpy import zeros from numpy.random import randint init = zeros((GRID_SIZE, GRID_SIZE), 'bool') mid = int(GRID_SIZE/2) init[mid-shift:mid+shift,mid-shift:mid+shift] = True xx = randint(mid-shift,mid+shift, size=(num)) yy = randint(mid-shift,mid+shift, size=(num)) init[xx,yy] = False return init
def corrupt(dataset, corruption): """ Return a corrupted copy of the input dataset. corruption: (between 0.0 and 1.0) Fraction of dataset randomly set to mean value of the dataset. """ corrupted = dataset.flatten() size = corrupted.size corrupted[randint(size, size=int(corruption * size))] = np.mean(corrupted) return corrupted.reshape(dataset.shape)
def block_corrupt(dataX, corruption_level=.1): """ Return a copy of dataX MNIST images after corrupting each row with a rectangle of size corruption_level. """ count = len(dataX) size = dataX[0].size length = int(np.sqrt(size)) corrupt_area = corruption_level * size breadths = randint(1, int(np.sqrt(corrupt_area)), count) lengths = (corrupt_area / breadths).astype(int) switch = randint(0, 2, count) breadths[switch==0] = lengths[switch==0] lengths = (corrupt_area / breadths).astype(int) loc_x = randint(0, length, count) loc_y = randint(0, length, count) corruptX = np.zeros(dataX.shape, dtype=dataX.dtype) for i, img in enumerate(dataX): bi, li = breadths[i], lengths[i] ind_x = np.arange(loc_x[i], loc_x[i] + bi, dtype=int) % length ind_y = np.arange(loc_y[i], loc_y[i] + li, dtype=int) % length corrupted = img.copy().reshape((length, length)) corrupted[(np.tile(ind_x, li), np.repeat(ind_y, bi))] = random(bi * li) # = np.zeros(bi * li) corruptX[i] = corrupted.reshape(img.shape) return corruptX
def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) # Get the input image blob, formatted for caffe im_blob, im_scales, im_shapes = _get_image_blob(roidb, random_scale_inds) # Now, build the region of interest and label blobs rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0, 20), dtype=np.float32) # bbox_targets_blob = np.zeros((0, 4 * num_classes), dtype=np.float32) # bbox_loss_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32) # all_overlaps = [] for im_i in xrange(num_images): labels, im_rois = _sample_rois(roidb[im_i], num_classes) # Add to RoIs blob rois = _project_im_rois(im_rois, im_scales[im_i]) batch_ind = im_i * np.ones((rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, rois)) rois_blob = np.vstack((rois_blob, rois_blob_this_image)) # Add to labels, bbox targets, and bbox loss blobs labels_blob = np.vstack((labels_blob, labels)) # all_overlaps = np.hstack((all_overlaps, overlaps)) # For debug visualizations # _vis_minibatch(im_blob, rois_blob, labels_blob, all_overlaps) blobs = {'data': im_blob, 'rois': rois_blob, 'labels': labels_blob, 'shapes': im_shapes} return blobs
def _default_asg_transition_probabilities(grapheme_set_size: int) -> ndarray: asg_transition_probabilities = random.randint(1, 15, (grapheme_set_size + 1, grapheme_set_size + 1)) zero_array = zeros(grapheme_set_size + 1) asg_transition_probabilities[0] = zero_array asg_transition_probabilities[:, 0] = zero_array # sum up each column, add dummy 1 in front for easier division later transition_norms = concatenate(([1], asg_transition_probabilities[:, 1:].sum(axis=0))) asg_transition_probabilities = asg_transition_probabilities / transition_norms return asg_transition_probabilities
def _default_asg_initial_probabilities(grapheme_set_size: int) -> ndarray: asg_initial_probabilities = random.randint(1, 15, grapheme_set_size + 1) asg_initial_probabilities[0] = 0 asg_initial_probabilities = asg_initial_probabilities / asg_initial_probabilities.sum() # N.B. beware that initial_logprobs[0] is now -inf, NOT 0! return asg_initial_probabilities
def build_instance(): instance = dict(x=[], y=[], source=[], target=[], target_c=[], rule_id=[], rule=[]) for k in xrange(num): source = rules['source'][k] target = rules['target'][k] for j in xrange(repeats): X = n_rng.randint(1000, size= n_rng.randint(maxleg) + 1) Y = n_rng.randint(1000, size= n_rng.randint(maxleg) + 1) S = [] T = [] for w in source: if w is 'X': S += [ftr(v) for v in X] elif w is 'Y': S += [ftr(v) for v in Y] else: S += [w] for w in target: if w is 'X': T += [ftr(v) for v in X] elif w is 'Y': T += [ftr(v) for v in Y] else: T += [w] A = [word2idx[w] for w in S] B = [word2idx[w] for w in T] C = [0 if w not in S else S.index(w) + Lmax for w in T] instance['x'] += [S] instance['y'] += [T] instance['source'] += [A] instance['target'] += [B] instance['target_c'] += [C] instance['rule_id'] += [k] instance['rule'] += [' '.join(source) + ' -> ' + ' '.join(target)] return instance
def repeat_name(l): ll = [] for word in l: if word2idx[word] in persons: k = n_rng.randint(5) + 1 ll += [idx2word[persons[i]] for i in n_rng.randint(len(persons), size=k).tolist()] elif word2idx[word] in colors: k = n_rng.randint(5) + 1 ll += [idx2word[colors[i]] for i in n_rng.randint(len(colors), size=k).tolist()] elif word2idx[word] in shapes: k = n_rng.randint(5) + 1 ll += [idx2word[shapes[i]] for i in n_rng.randint(len(shapes), size=k).tolist()] else: ll += [word] return ll
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 1] *= random.uniform(self.lower, self.upper) return image, boxes, labels
def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 0] += random.uniform(-self.delta, self.delta) image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 return image, boxes, labels
def __call__(self, image, boxes=None, labels=None): if random.randint(2): swap = self.perms[random.randint(len(self.perms))] shuffle = SwapChannels(swap) # shuffle channels image = shuffle(image) return image, boxes, labels
def __call__(self, image, boxes=None, labels=None): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image *= alpha return image, boxes, labels
def __call__(self, image, boxes=None, labels=None): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image += delta return image, boxes, labels
def __call__(self, image, boxes, classes): _, width, _ = image.shape if random.randint(2): image = image[:, ::-1] boxes = boxes.copy() boxes[:, 0::2] = width - boxes[:, 2::-2] return image, boxes, classes
def __call__(self, image, boxes, labels): im = image.copy() im, boxes, labels = self.rand_brightness(im, boxes, labels) if random.randint(2): distort = Compose(self.pd[:-1]) else: distort = Compose(self.pd[1:]) im, boxes, labels = distort(im, boxes, labels) return self.rand_light_noise(im, boxes, labels)
def setUp(self): self.order = int(randint(low=0,high=4,size=1)) self.dim = int(randint(low=self.order+2,high=2000,size=1)) self.D = trendpy.globals.derivative_matrix(self.dim,self.order)
def random_panels(): load() return [ digits[randint(0,len(digits))].reshape((28,28)) for digits in imgs ]
def select(data,num): return data[random.randint(0,data.shape[0],num)]
def _select(list): import random return list[random.randint(0,len(list)-1)]
def dump_autoencoding_image(ae,test,train): if 'plot' not in mode: return rz = np.random.randint(0,2,(6,ae.parameters['N'])) ae.plot_autodecode(rz,"autodecoding_random.png",verbose=True) ae.plot(select(test,6),"autoencoding_test.png",verbose=True) ae.plot(select(train,6),"autoencoding_train.png",verbose=True)