Python numpy.random 模块,randn() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.random.randn()

项目:Pyquino    作者:kmolLin    | 项目源码 | 文件源码
def __init__(self):
            super(TestWindow, self).__init__()
            # generate random data points
            cc = 0.2*2
            self.data = np.array(.1*rdn.randn(1000,2),dtype=np.float32)
            # initialize the GL widget
            self.widget = GLPlotWidget()
            self.widget.set_data(self.data)
            # put the window at the screen position (100, 100)
            self.setGeometry(100, 100, self.widget.width, self.widget.height)
            self.setCentralWidget(self.widget)
            self.show()



    # create the Qt App and window
项目:MTransE    作者:muhaochen    | 项目源码 | 文件源码
def initialize_vectors(self):
        self.vec2e = np.zeros(len(self.vocab_e), dtype=np.int)
        for i in range(len(self.vocab_e)):
            w = self.vocab_e[i]
            self.e2vec[w] = i
            self.vec2e[i] = i
        #randomize and normalize the initial vector
        self.vec_e = RD.randn(len(self.vocab_e), self.dim)
        for i in range(len(self.vec_e)):
            self.vec_e[i] /= LA.norm(self.vec_e[i])
        self.vec2r = np.zeros(len(self.vocab_r), dtype=np.int)
        for i in range(len(self.vocab_r)):
            w = self.vocab_r[i]
            #randomize and normalize the initial vector
            self.r2vec[w] = i
            self.vec2r[i] = i
        self.vec_r = RD.randn(len(self.vocab_r), self.dim)
        for i in range(len(self.vec_r)):
            self.vec_r[i] /= LA.norm(self.vec_r[i])
        print "Initialized vectors for all entities and relations."

    #GD of h + r - t
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_errors(self):
        x = np.random.randn(1, 2, 3)
        assert_raises_regex(ValueError, 'invalid axis .* `source`',
                            np.moveaxis, x, 3, 0)
        assert_raises_regex(ValueError, 'invalid axis .* `source`',
                            np.moveaxis, x, -4, 0)
        assert_raises_regex(ValueError, 'invalid axis .* `destination`',
                            np.moveaxis, x, 0, 5)
        assert_raises_regex(ValueError, 'repeated axis in `source`',
                            np.moveaxis, x, [0, 0], [0, 1])
        assert_raises_regex(ValueError, 'repeated axis in `destination`',
                            np.moveaxis, x, [0, 1], [1, 1])
        assert_raises_regex(ValueError, 'must have the same number',
                            np.moveaxis, x, 0, [0, 1])
        assert_raises_regex(ValueError, 'must have the same number',
                            np.moveaxis, x, [0, 1], [0])
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def test_returns(self, seed_value, window_length):

        returns = Returns(window_length=window_length)

        today = datetime64(1, 'ns')
        assets = arange(3)
        out = empty((3,), dtype=float)

        seed(seed_value)  # Seed so we get deterministic results.
        test_data = abs(randn(window_length, 3))

        # Calculate the expected returns
        expected = (test_data[-1] - test_data[0]) / test_data[0]

        out = empty((3,), dtype=float)
        returns.compute(today, assets, out, test_data)

        check_allclose(expected, out)
项目:spark-deep-learning    作者:databricks    | 项目源码 | 文件源码
def test_identity_module(self):
        """ identity module should preserve input """

        with IsolatedSession() as issn:
            pred_input = tf.placeholder(tf.float32, [None, None])
            final_output = tf.identity(pred_input, name='output')
            gfn = issn.asGraphFunction([pred_input], [final_output])

        for _ in range(10):
            m, n = prng.randint(10, 1000, size=2)
            mat = prng.randn(m, n).astype(np.float32)
            with IsolatedSession() as issn:
                feeds, fetches = issn.importGraphFunction(gfn)
                mat_out = issn.run(fetches[0], {feeds[0]: mat})

            self.assertTrue(np.all(mat_out == mat))
项目:pepnet    作者:hammerlab    | 项目源码 | 文件源码
def test_predictor_output_transform():
    predictor = Predictor(
        inputs=[NumericInput(dim=30, name="x")],
        outputs=[
            Output(
                name="y",
                dim=1,
                activation="sigmoid",
                transform=log,
                inverse_transform=exp)],
        dense_layer_sizes=[30],
        dense_activation="relu")
    y = predictor.predict({"x": randn(10, 30)})["y"]
    eq_(len(y), 10)
    # make sure transformed outputs are within given bounds
    assert exp(0.0) <= y.min() <= exp(1.0)
    assert exp(0.0) <= y.max() <= exp(1.0)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def test_errors(self):
        x = np.random.randn(1, 2, 3)
        assert_raises_regex(ValueError, 'invalid axis .* `source`',
                            np.moveaxis, x, 3, 0)
        assert_raises_regex(ValueError, 'invalid axis .* `source`',
                            np.moveaxis, x, -4, 0)
        assert_raises_regex(ValueError, 'invalid axis .* `destination`',
                            np.moveaxis, x, 0, 5)
        assert_raises_regex(ValueError, 'repeated axis in `source`',
                            np.moveaxis, x, [0, 0], [0, 1])
        assert_raises_regex(ValueError, 'repeated axis in `destination`',
                            np.moveaxis, x, [0, 1], [1, 1])
        assert_raises_regex(ValueError, 'must have the same number',
                            np.moveaxis, x, 0, [0, 1])
        assert_raises_regex(ValueError, 'must have the same number',
                            np.moveaxis, x, [0, 1], [0])
项目:drmad    作者:bigaidream-projects    | 项目源码 | 文件源码
def test_getter():
    def fun(input_dict):
        A = np.sum(input_dict['item_1'])
        B = np.sum(input_dict['item_2'])
        C = np.sum(input_dict['item_2'])
        return A + B + C

    d_fun = grad(fun)
    input_dict = {'item_1' : npr.randn(5, 6),
                  'item_2' : npr.randn(4, 3),
                  'item_X' : npr.randn(2, 4)}

    result = d_fun(input_dict)
    assert np.allclose(result['item_1'], np.ones((5, 6)))
    assert np.allclose(result['item_2'], 2 * np.ones((4, 3)))
    assert np.allclose(result['item_X'], np.zeros((2, 4)))
项目:drmad    作者:bigaidream-projects    | 项目源码 | 文件源码
def test_grads():
    def fun(input_dict):
        A = np.sum(np.sin(input_dict['item_1']))
        B = np.sum(np.cos(input_dict['item_2']))
        return A + B

    def d_fun(input_dict):
        g = grad(fun)(input_dict)
        A = np.sum(g['item_1'])
        B = np.sum(np.sin(g['item_1']))
        C = np.sum(np.sin(g['item_2']))
        return A + B + C

    input_dict = {'item_1' : npr.randn(5, 6),
                  'item_2' : npr.randn(4, 3),
                  'item_X' : npr.randn(2, 4)}

    check_grads(fun, input_dict)
    check_grads(d_fun, input_dict)
项目:drmad    作者:bigaidream-projects    | 项目源码 | 文件源码
def test_getter():
    def fun(input_list):
        A = np.sum(input_list[0])
        B = np.sum(input_list[1])
        C = np.sum(input_list[1])
        return A + B + C

    d_fun = grad(fun)
    input_list = [npr.randn(5, 6),
                  npr.randn(4, 3),
                  npr.randn(2, 4)]

    result = d_fun(input_list)
    assert np.allclose(result[0], np.ones((5, 6)))
    assert np.allclose(result[1], 2 * np.ones((4, 3)))
    assert np.allclose(result[2], np.zeros((2, 4)))
项目:drmad    作者:bigaidream-projects    | 项目源码 | 文件源码
def test_grads():
    def fun(input_list):
        A = np.sum(np.sin(input_list[0]))
        B = np.sum(np.cos(input_list[1]))
        return A + B

    def d_fun(input_list):
        g = grad(fun)(input_list)
        A = np.sum(g[0])
        B = np.sum(np.sin(g[0]))
        C = np.sum(np.sin(g[1]))
        return A + B + C

    input_list = [npr.randn(5, 6),
                  npr.randn(4, 3),
                  npr.randn(2, 4)]

    check_grads(fun, input_list)
    check_grads(d_fun, input_list)
项目:a3c_torcs    作者:waxz    | 项目源码 | 文件源码
def addOUNoise(a, epsilon):
        """Adds noise from an Ornstein Uhlenbeck process to the actions"""

        def ou_func(x, mu, theta, sigma):
            return theta * (mu - x) + sigma * randn(1)

        a_new = np.zeros(np.shape(a))
        noise = np.zeros(np.shape(a))

        noise[0] = (max(epsilon, 0) * ou_func(a[0], 0.0, 0.60, 0.30))
        noise[1] = (max(epsilon, 0) * ou_func(a[1], 0.5, 1.00, 0.10))
        noise[2] = (max(epsilon, 0) * ou_func(a[2], -0.1, 1.00, 0.10))


        a_new[0] = a[0] + noise[0]
        a_new[1] = a[1] + noise[1]
        a_new[2] = a[2] + noise[2]


        return a_new
项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码
def GetRadar(dt):
    """ Simulate radar range to object at 1K altidue and moving at 100m/s.
    Adds about 5% measurement noise. Returns slant range to the object.
    Call once for each new measurement at dt time from last call.
    """

    if not hasattr (GetRadar, "posp"):
        GetRadar.posp = 0

    if GetRadar.posp  > 10:
      vel = 0;
    else:
      vel = 100  + .5 * randn()
    alt = 1000 + 10 * randn()
    pos = GetRadar.posp + vel*dt

    v = 0 + pos* 0.05*randn()
    slant_range = math.sqrt (pos**2 + alt**2) + v
    GetRadar.posp = pos

    return slant_range
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, n_samples=1, u=None):
        """
        Generate samples.
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        x = rng.randn(n_samples, self.n_inputs).astype(dtype) if u is None else u

        if getattr(self, 'batch_norm', False):

            for layer, bn in izip(self.layers[::-1], self.bns[::-1]):
                x = bn.eval_inv(x)
                x = layer.eval_forward(x)

        else:

            for layer in self.layers[::-1]:
                x = layer.eval_forward(x)

        return x
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, x, n_samples=1, u=None):
        """
        Generate samples conditioned on x.
        :param x: numpy vector to condition on
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        xx = np.tile(x, [n_samples, 1])
        y = rng.randn(n_samples, self.n_outputs).astype(dtype) if u is None else u

        if getattr(self, 'batch_norm', False):

            for layer, bn in izip(self.layers[::-1], self.bns[::-1]):
                y = bn.eval_inv(y)
                y = layer.eval_forward(xx, y)

        else:

            for layer in self.layers[::-1]:
                y = layer.eval_forward(xx, y)

        return y
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, n_samples=1, u=None):
        """
        Generate samples from made. Requires as many evaluations as number of inputs.
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        x = np.zeros([n_samples, self.n_inputs], dtype=dtype)
        u = rng.randn(n_samples, self.n_inputs).astype(dtype) if u is None else u

        for i in xrange(1, self.n_inputs + 1):
            m, logp = self.eval_comps(x)
            idx = np.argwhere(self.input_order == i)[0, 0]
            x[:, idx] = m[:, idx] + np.exp(np.minimum(-0.5 * logp[:, idx], 10.0)) * u[:, idx]

        return x
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, n_samples=1, u=None):
        """
        Generate samples from made. Requires as many evaluations as number of inputs.
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        x = np.zeros([n_samples, self.n_inputs], dtype=dtype)
        u = rng.randn(n_samples, self.n_inputs).astype(dtype) if u is None else u

        for i in xrange(1, self.n_inputs + 1):
            m, logp, loga = self.eval_comps(x)
            idx = np.argwhere(self.input_order == i)[0, 0]
            for n in xrange(n_samples):
                z = util.discrete_sample(np.exp(loga[n, idx]))[0]
                x[n, idx] = m[n, idx, z] + np.exp(np.minimum(-0.5 * logp[n, idx, z], 10.0)) * u[n, idx]

        return x
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, x, n_samples=1, u=None):
        """
        Generate samples from made conditioned on x. Requires as many evaluations as number of outputs.
        :param x: input vector
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        y = np.zeros([n_samples, self.n_outputs], dtype=dtype)
        u = rng.randn(n_samples, self.n_outputs).astype(dtype) if u is None else u

        xy = (np.tile(x, [n_samples, 1]), y)

        for i in xrange(1, self.n_outputs + 1):
            m, logp = self.eval_comps(xy)
            idx = np.argwhere(self.output_order == i)[0, 0]
            y[:, idx] = m[:, idx] + np.exp(np.minimum(-0.5 * logp[:, idx], 10.0)) * u[:, idx]

        return y
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, x, n_samples=1, u=None):
        """
        Generate samples from made conditioned on x. Requires as many evaluations as number of outputs.
        :param x: input vector
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        y = np.zeros([n_samples, self.n_outputs], dtype=dtype)
        u = rng.randn(n_samples, self.n_outputs).astype(dtype) if u is None else u

        xy = (np.tile(x, [n_samples, 1]), y)

        for i in xrange(1, self.n_outputs + 1):
            m, logp, loga = self.eval_comps(xy)
            idx = np.argwhere(self.output_order == i)[0, 0]
            for n in xrange(n_samples):
                z = util.discrete_sample(np.exp(loga[n, idx]))[0]
                y[n, idx] = m[n, idx, z] + np.exp(np.minimum(-0.5 * logp[n, idx, z], 10.0)) * u[n, idx]

        return y
项目:maf    作者:gpapamak    | 项目源码 | 文件源码
def gen(self, x, n_samples=1, u=None):
        """
        Generate samples, by propagating random numbers through each made, after conditioning on input x.
        :param x: input vector
        :param n_samples: number of samples
        :param u: random numbers to use in generating samples; if None, new random numbers are drawn
        :return: samples
        """

        y = rng.randn(n_samples, self.n_outputs).astype(dtype) if u is None else u

        if getattr(self, 'batch_norm', False):

            for made, bn in izip(self.mades[::-1], self.bns[::-1]):
                y = bn.eval_inv(y)
                y = made.gen(x, n_samples, y)

        else:

            for made in self.mades[::-1]:
                y = made.gen(x, n_samples, y)

        return y
项目:block    作者:bamos    | 项目源码 | 文件源码
def test_np():
    npr.seed(0)

    nx, nineq, neq = 4, 6, 7
    Q = npr.randn(nx, nx)
    G = npr.randn(nineq, nx)
    A = npr.randn(neq, nx)
    D = np.diag(npr.rand(nineq))

    K_ = np.bmat((
        (Q, np.zeros((nx, nineq)), G.T, A.T),
        (np.zeros((nineq, nx)), D, np.eye(nineq), np.zeros((nineq, neq))),
        (G, np.eye(nineq), np.zeros((nineq, nineq + neq))),
        (A, np.zeros((neq, nineq + nineq + neq)))
    ))

    K = block((
        (Q,   0, G.T, A.T),
        (0,   D, 'I',   0),
        (G, 'I',   0,   0),
        (A,   0,   0,   0)
    ))

    assert np.allclose(K_, K)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_series_negate(self):
        expr = self.ex('-')

        # float
        lhs = Series(randn(5))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # int
        lhs = Series(randint(5, size=5))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = Series(rand(5) > 0.5)
        if self.engine == 'numexpr':
            with tm.assertRaises(NotImplementedError):
                result = pd.eval(expr, engine=self.engine, parser=self.parser)
        else:
            expect = -lhs
            result = pd.eval(expr, engine=self.engine, parser=self.parser)
            assert_series_equal(expect, result)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_index_duplicate_periods(self):
        # monotonic
        idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq='A-JUN')
        ts = Series(np.random.randn(len(idx)), index=idx)

        result = ts[2007]
        expected = ts[1:3]
        assert_series_equal(result, expected)
        result[:] = 1
        self.assertTrue((ts[1:3] == 1).all())

        # not monotonic
        idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq='A-JUN')
        ts = Series(np.random.randn(len(idx)), index=idx)

        result = ts[2007]
        expected = ts[idx == 2007]
        assert_series_equal(result, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_align_series(self):
        rng = period_range('1/1/2000', '1/1/2010', freq='A')
        ts = Series(np.random.randn(len(rng)), index=rng)

        result = ts + ts[::2]
        expected = ts + ts
        expected[1::2] = np.nan
        assert_series_equal(result, expected)

        result = ts + _permute(ts[::2])
        assert_series_equal(result, expected)

        # it works!
        for kind in ['inner', 'outer', 'left', 'right']:
            ts.align(ts[::2], join=kind)
        msg = "Input has different freq=D from PeriodIndex\\(freq=A-DEC\\)"
        with assertRaisesRegexp(ValueError, msg):
            ts + ts.asfreq('D', how="end")
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_repr_truncation(self):
        max_len = 20
        with option_context("display.max_colwidth", max_len):
            df = DataFrame({'A': np.random.randn(10),
                            'B': [tm.rands(np.random.randint(
                                max_len - 1, max_len + 1)) for i in range(10)
            ]})
            r = repr(df)
            r = r[r.find('\n') + 1:]

            adj = fmt._get_adjustment()

            for line, value in lzip(r.split('\n'), df['B']):
                if adj.len(value) + 1 > max_len:
                    self.assertIn('...', line)
                else:
                    self.assertNotIn('...', line)

        with option_context("display.max_colwidth", 999999):
            self.assertNotIn('...', repr(df))

        with option_context("display.max_colwidth", max_len + 2):
            self.assertNotIn('...', repr(df))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_repr_html_long_multiindex(self):
        max_rows = get_option('display.max_rows')
        max_L1 = max_rows // 2

        tuples = list(itertools.product(np.arange(max_L1), ['foo', 'bar']))
        idx = MultiIndex.from_tuples(tuples, names=['first', 'second'])
        df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx,
                       columns=['A', 'B'])
        reg_repr = df._repr_html_()
        assert '...' not in reg_repr

        tuples = list(itertools.product(np.arange(max_L1 + 1), ['foo', 'bar']))
        idx = MultiIndex.from_tuples(tuples, names=['first', 'second'])
        df = DataFrame(np.random.randn((max_L1 + 1) * 2, 2), index=idx,
                       columns=['A', 'B'])
        long_repr = df._repr_html_()
        assert '...' in long_repr
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_scatter_plot_legacy(self):
        tm._skip_if_no_scipy()

        df = DataFrame(randn(100, 2))

        def scat(**kwds):
            return plotting.scatter_matrix(df, **kwds)

        _check_plot_works(scat)
        _check_plot_works(scat, marker='+')
        _check_plot_works(scat, vmin=0)
        if _ok_for_gaussian_kde('kde'):
            _check_plot_works(scat, diagonal='kde')
        if _ok_for_gaussian_kde('density'):
            _check_plot_works(scat, diagonal='density')
        _check_plot_works(scat, diagonal='hist')
        _check_plot_works(scat, range_padding=.1)

        def scat2(x, y, by=None, ax=None, figsize=None):
            return plotting.scatter_plot(df, x, y, by, ax, figsize=None)

        _check_plot_works(scat2, x=0, y=1)
        grouper = Series(np.repeat([1, 2, 3, 4, 5], 20), df.index)
        _check_plot_works(scat2, x=0, y=1, by=grouper)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_getitem(self):
        # slicing
        sl = self.frame[:20]
        self.assertEqual(20, len(sl.index))

        # column access

        for _, series in compat.iteritems(sl):
            self.assertEqual(20, len(series.index))
            self.assertTrue(tm.equalContents(series.index, sl.index))

        for key, _ in compat.iteritems(self.frame._series):
            self.assertIsNotNone(self.frame[key])

        self.assertNotIn('random', self.frame)
        with assertRaisesRegexp(KeyError, 'random'):
            self.frame['random']

        df = self.frame.copy()
        df['$10'] = randn(len(df))
        ad = randn(len(df))
        df['@awesome_domain'] = ad
        self.assertRaises(KeyError, df.__getitem__, 'df["$10"]')
        res = df['@awesome_domain']
        assert_numpy_array_equal(ad, res.values)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_getitem_ix_mixed_integer(self):
        df = DataFrame(np.random.randn(4, 3),
                       index=[1, 10, 'C', 'E'], columns=[1, 2, 3])

        result = df.ix[:-1]
        expected = df.ix[df.index[:-1]]
        assert_frame_equal(result, expected)

        result = df.ix[[1, 10]]
        expected = df.ix[Index([1, 10], dtype=object)]
        assert_frame_equal(result, expected)

        # 11320
        df = pd.DataFrame({"rna": (1.5, 2.2, 3.2, 4.5),
                           -1000: [11, 21, 36, 40],
                           0: [10, 22, 43, 34],
                           1000: [0, 10, 20, 30]},
                          columns=['rna', -1000, 0, 1000])
        result = df[[1000]]
        expected = df.iloc[:, [3]]
        assert_frame_equal(result, expected)
        result = df[[-1000]]
        expected = df.iloc[:, [1]]
        assert_frame_equal(result, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_getitem_setitem_ix_negative_integers(self):
        result = self.frame.ix[:, -1]
        assert_series_equal(result, self.frame['D'])

        result = self.frame.ix[:, [-1]]
        assert_frame_equal(result, self.frame[['D']])

        result = self.frame.ix[:, [-1, -2]]
        assert_frame_equal(result, self.frame[['D', 'C']])

        self.frame.ix[:, [-1]] = 0
        self.assertTrue((self.frame['D'] == 0).all())

        df = DataFrame(np.random.randn(8, 4))
        self.assertTrue(isnull(df.ix[:, [-1]].values).all())

        # #1942
        a = DataFrame(randn(20, 2), index=[chr(x + 65) for x in range(20)])
        a.ix[-1] = a.ix[-2]

        assert_series_equal(a.ix[-1], a.ix[-2], check_names=False)
        self.assertEqual(a.ix[-1].name, 'T')
        self.assertEqual(a.ix[-2].name, 'S')
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_getitem_setitem_integer_slice_keyerrors(self):
        df = DataFrame(np.random.randn(10, 5), index=lrange(0, 20, 2))

        # this is OK
        cp = df.copy()
        cp.ix[4:10] = 0
        self.assertTrue((cp.ix[4:10] == 0).values.all())

        # so is this
        cp = df.copy()
        cp.ix[3:11] = 0
        self.assertTrue((cp.ix[3:11] == 0).values.all())

        result = df.ix[4:10]
        result2 = df.ix[3:11]
        expected = df.reindex([4, 6, 8, 10])

        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        # non-monotonic, raise KeyError
        df2 = df.iloc[lrange(5) + lrange(5, 10)[::-1]]
        self.assertRaises(KeyError, df2.ix.__getitem__, slice(3, 11))
        self.assertRaises(KeyError, df2.ix.__setitem__, slice(3, 11), 0)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_fancy_setitem_int_labels(self):
        # integer index defers to label-based indexing

        df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))

        tmp = df.copy()
        exp = df.copy()
        tmp.ix[[0, 2, 4]] = 5
        exp.values[:3] = 5
        assert_frame_equal(tmp, exp)

        tmp = df.copy()
        exp = df.copy()
        tmp.ix[6] = 5
        exp.values[3] = 5
        assert_frame_equal(tmp, exp)

        tmp = df.copy()
        exp = df.copy()
        tmp.ix[:, 2] = 5

        # tmp correctly sets the dtype
        # so match the exp way
        exp[2] = 5
        assert_frame_equal(tmp, exp)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_fancy_getitem_int_labels(self):
        df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))

        result = df.ix[[4, 2, 0], [2, 0]]
        expected = df.reindex(index=[4, 2, 0], columns=[2, 0])
        assert_frame_equal(result, expected)

        result = df.ix[[4, 2, 0]]
        expected = df.reindex(index=[4, 2, 0])
        assert_frame_equal(result, expected)

        result = df.ix[4]
        expected = df.xs(4)
        assert_series_equal(result, expected)

        result = df.ix[:, 3]
        expected = df[3]
        assert_series_equal(result, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_fancy_index_int_labels_exceptions(self):
        df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))

        # labels that aren't contained
        self.assertRaises(KeyError, df.ix.__setitem__,
                          ([0, 1, 2], [2, 3, 4]), 5)

        # try to set indices not contained in frame
        self.assertRaises(KeyError,
                          self.frame.ix.__setitem__,
                          ['foo', 'bar', 'baz'], 1)
        self.assertRaises(KeyError,
                          self.frame.ix.__setitem__,
                          (slice(None, None), ['E']), 1)

        # partial setting now allows this GH2578
        # self.assertRaises(KeyError,
        #                  self.frame.ix.__setitem__,
        #                  (slice(None, None), 'E'), 1)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_ix_frame_align(self):
        b = DataFrame(np.random.randn(3, 4))
        df_orig = DataFrame(randn(10, 4))
        df = df_orig.copy()

        df.ix[:3] = b
        out = b.ix[:3]
        assert_frame_equal(out, b)

        b.sort_index(inplace=True)

        df = df_orig.copy()
        df.ix[[0, 1, 2]] = b
        out = df.ix[[0, 1, 2]].reindex(b.index)
        assert_frame_equal(out, b)

        df = df_orig.copy()
        df.ix[:3] = b
        out = df.ix[:3]
        assert_frame_equal(out, b.reindex(out.index))
项目:sgcrfpy    作者:dswah    | 项目源码 | 文件源码
def test_theta_0():
    rng.seed(0)
    n_samples = 100
    Y = rng.randn(n_samples, 5)
    X = rng.randn(n_samples, 5)

    sgcrf = SparseGaussianCRF(lamL=0.01, lamT=0.01)
    sgcrf.fit(X, Y)

    assert np.allclose(sgcrf.Lam, np.eye(5), .1, .2)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def test_rsi(self, seed_value, expected):

        rsi = RSI()

        today = datetime64(1, 'ns')
        assets = arange(3)
        out = empty((3,), dtype=float)

        seed(seed_value)  # Seed so we get deterministic results.
        test_data = abs(randn(15, 3))

        out = empty((3,), dtype=float)
        rsi.compute(today, assets, out, test_data)

        check_allclose(expected, out)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def test_returns(self, seed_value, window_length):

        returns = Returns(window_length=window_length)

        today = datetime64(1, 'ns')
        assets = arange(3)
        out = empty((3,), dtype=float)

        seed(seed_value)  # Seed so we get deterministic results.
        test_data = abs(randn(window_length, 3))

        # Calculate the expected returns
        expected = (test_data[-1] - test_data[0]) / test_data[0]

        out = empty((3,), dtype=float)
        returns.compute(today, assets, out, test_data)

        check_allclose(expected, out)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def test_masked_rankdata_2d(self,
                                seed_value,
                                method,
                                use_mask,
                                set_missing,
                                ascending):
        eyemask = ~eye(5, dtype=bool)
        nomask = ones((5, 5), dtype=bool)

        seed(seed_value)
        asfloat = (randn(5, 5) * seed_value)
        asdatetime = (asfloat).copy().view('datetime64[ns]')

        mask = eyemask if use_mask else nomask
        if set_missing:
            asfloat[:, 2] = nan
            asdatetime[:, 2] = NaTns

        float_result = masked_rankdata_2d(
            data=asfloat,
            mask=mask,
            missing_value=nan,
            method=method,
            ascending=True,
        )
        datetime_result = masked_rankdata_2d(
            data=asdatetime,
            mask=mask,
            missing_value=NaTns,
            method=method,
            ascending=True,
        )

        check_arrays(float_result, datetime_result)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def randn_data(self, seed, shape):
        """
        Build a block of testing data from numpy.random.randn.
        """
        random_seed(seed)
        return randn(*shape)
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def sample_v_given_h(self, h, eps=1e-5):

        mean_v = self.mean_v.eval(feed_dict={self.hidden: h})

        if not self.beta_sampling:
            rnds = np.random.randn(mean_v.shape[0], mean_v.shape[1]).astype(h.dtype)
            return np.clip(mean_v + rnds * self.sigma, eps, 1. - eps)

        mvvm = mean_v * (1 - mean_v)
        var_v = np.fmin(mvvm, self.sigma**2)
        operand = (mvvm + 1.5 * eps) / (var_v + eps) - 1
        alpha = mean_v * operand + eps
        beta = (1 - mean_v) * operand + eps

        return np.random.beta(alpha, beta).astype(h.dtype)
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def sample_h_given_v(self, v, eps=1e-5):

        mean_h = self.mean_h.eval(feed_dict={self.visible: v})

        if not self.beta_sampling:
            rnds = np.random.randn(mean_h.shape[0], mean_h.shape[1]).astype(v.dtype)
            return np.clip(mean_h + rnds * self.sigma, eps, 1. - eps)

        mhhm = mean_h * (1 - mean_h)

        # Handle the cases where h is close to 0.0 or 1.0
        # Normally beta distribution will give a sample close to 0.0 or 1.0,
        # breaking requirement that there be some variation (sample dispersion
        # close to 0.0 when it ought to be close to self.sigma).
        small_h = self.sigma**2 > mhhm
        small_count = np.sum(small_h)
        if small_count:
            # We randomize these cases with probability self.sigma.
            switch = np.random.rand(small_count) < self.sigma
            if np.sum(switch):
                mean_h[small_h][switch] = np.random.rand(np.sum(switch))
            mhhm = mean_h * (1 - mean_h)

        var_h = np.fmin(mhhm, self.sigma**2)
        operand = (mhhm + 1.5 * eps) / (var_h + eps) - 1
        alpha = mean_h * operand + eps
        beta = (1 - mean_h) * operand + eps

        return np.random.beta(alpha, beta).astype(v.dtype)
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def train_feed(self, data):
        """Return feed_dict based on data to be used for training."""

        return {self.train_args[0]: data,
                self.train_args[1]: randn(data.shape[0], self.n_z)}
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def cost_args(self, data):
        """Return args to self.cost() for given dataset."""

        return [data, randn(data.shape[0], self.n_z)]
项目:ddpg-aigym    作者:stevenpjg    | 项目源码 | 文件源码
def noise(self):
        x = self.state
        dx = self.theta * (self.mu - x) + self.sigma * nr.randn(len(x))
        self.state = x + dx
        return self.state
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _generate_data(self, n, m):
        return randn(n, m)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _generate_data_complex(self, n, m):
        return randn(n, m) + 1.j * rand(n, m)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _generate_flt_data(self, n, m):
        return (randn(n, m)).astype(np.float32)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _generate_non_native_data(self, n, m):
        data = randn(n, m)
        data = self._neg_byteorder(data)
        assert_(not data.dtype.isnative)
        return data
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_move_to_end(self):
        x = np.random.randn(5, 6, 7)
        for source, expected in [(0, (6, 7, 5)),
                                 (1, (5, 7, 6)),
                                 (2, (5, 6, 7)),
                                 (-1, (5, 6, 7))]:
            actual = np.moveaxis(x, source, -1).shape
            assert_(actual, expected)