Python numpy.random 模块,uniform() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.random.uniform()

项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:textobjdetection    作者:andfoy    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width * ratio - width)
        top = random.uniform(0, height * ratio - height)

        expand_image = np.zeros(
            (int(height * ratio), int(width * ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:bayes-qnet    作者:casutton    | 项目源码 | 文件源码
def test_ln_sample_parameters (self):
        sampling.set_seed(3242)
        for rep in range(10):
            mu = random.uniform(-1, 1)
            sd = random.uniform(0.5, 1.25)
            print rep, mu, sd
            f = distributions.LogNormal (mu, sd)
            x = f.sample(1000)
            print numpy.mean(map(numpy.log, x))
            params = [ f.sample_parameters(x) for i in xrange(10000) ] 
            mu1 = [ p[0] for p in params ]
            sd1 = [ p[1] for p in params ]
            print numpy.mean(mu1)
            print numpy.mean(sd1)
            self.assertTrue (abs(mu - numpy.mean(mu1)) < 0.1, "Mismatch: MU %s params %s" % (mu, numpy.mean(mu1)))
            self.assertTrue (abs(sd - numpy.mean(sd1)) < 0.1, "Mismatch: std %s params %s" % (sd, numpy.mean(sd1)))
项目:bayes-qnet    作者:casutton    | 项目源码 | 文件源码
def test_gamma_sample_parameters (self):
        sampling.set_seed(3242)
        for rep in range(1):
            shape = random.uniform(0.5, 3.0)
            scale = random.uniform(0.0, 10.0)
            print "REP", rep, shape, scale

            f = distributions.Gamma (shape, scale)
            x = f.sample(1000)            
            params = [ f.sample_parameters(x) for i in xrange(1000) ] 
            shape1 = [ p[0] for p in params ]
            scale1 = [ p[1] for p in params ]
            for p in params: print "P", " ".join (map(str,p)), p[0]*p[1]

            self.assertTrue (abs(scale - numpy.mean(scale1)) < 0.03, "Mismatch: MU %s params %s" % (scale, numpy.mean(scale1)))
            self.assertTrue (abs(shape - numpy.mean(shape1)) < 0.03, "Mismatch: SHAPE %s params %s" % (shape, numpy.mean(shape1)))
项目:isp-data-pollution    作者:essandess    | 项目源码 | 文件源码
def pollute_forever(self):
        if self.verbose: print("""Display format:
Downloading: website.com; NNNNN links [in library], H(domain)= B bits [entropy]
Downloaded:  website.com: +LLL/NNNNN links [added], H(domain)= B bits [entropy]
""")
        self.open_driver()
        self.seed_links()
        self.clear_driver()
        if self.quit_driver_every_call: self.quit_driver()
        while True: # pollute forever, pausing only to meet the bandwidth requirement
            try:
                if (not self.diurnal_flag) or self.diurnal_cycle_test():
                    self.pollute()
                else:
                    time.sleep(self.chi2_mean_std(3.,1.))
                if npr.uniform() < 0.005: self.set_user_agent()  # reset the user agent occasionally
                self.elapsed_time = time.time() - self.start_time
                self.exceeded_bandwidth_tasks()
                self.random_interval_tasks()
                self.every_hour_tasks()
                time.sleep(self.chi2_mean_std(0.5,0.2))
            except Exception as e:
                if self.debug: print('.pollute() exception:\n{}'.format(e))
项目:single_shot_multibox_detector    作者:oarriaga    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:yolov2    作者:zhangkaij    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:kerpy    作者:oxmlcs    | 项目源码 | 文件源码
def null_model(num_samples, dimension = 1, rho=0):
        data_z = np.reshape(uniform(0,5,num_samples*dimension),(num_samples,dimension))
        coin_flip_x = np.random.choice([0,1],replace=True,size=num_samples)
        coin_flip_y = np.random.choice([0,1],replace=True,size=num_samples)
        mean_noise = [0,0]
        cov_noise = [[1,0],[0,1]]
        noise_x, noise_y = multivariate_normal(mean_noise, cov_noise, num_samples).T
        data_x = zeros(num_samples)
        data_x[coin_flip_x == 0,] = 1.7*data_z[coin_flip_x == 0,0] 
        data_x[coin_flip_x == 1,] = -1.7*data_z[coin_flip_x == 1,0]
        data_x = data_x + noise_x
        data_y = zeros(num_samples)
        data_y[coin_flip_y == 0,] = (data_z[coin_flip_y == 0,0]-2.7)**2
        data_y[coin_flip_y == 1,] = -(data_z[coin_flip_y == 1,0]-2.7)**2+13
        data_y = data_y + noise_y
        data_x = np.reshape(data_x, (num_samples,1))
        data_y = np.reshape(data_y, (num_samples,1))
        return data_x, data_y, data_z
项目:kerpy    作者:oxmlcs    | 项目源码 | 文件源码
def alternative_model(num_samples,dimension = 1, rho=0.15):
        data_z = np.reshape(uniform(0,5,num_samples*dimension),(num_samples,dimension))
        rr = uniform(0,1, num_samples)
        idx_rr = np.where(rr < rho)
        coin_flip_x = np.random.choice([0,1],replace=True,size=num_samples)
        coin_flip_y = np.random.choice([0,1],replace=True,size=num_samples)
        coin_flip_y[idx_rr] = coin_flip_x[idx_rr]
        mean_noise = [0,0]
        cov_noise = [[1,0],[0,1]]
        noise_x, noise_y = multivariate_normal(mean_noise, cov_noise, num_samples).T
        data_x = zeros(num_samples)
        data_x[coin_flip_x == 0] = 1.7*data_z[coin_flip_x == 0,0] 
        data_x[coin_flip_x == 1] = -1.7*data_z[coin_flip_x == 1,0]
        data_x = data_x + noise_x
        data_y = zeros(num_samples)
        data_y[coin_flip_y == 0] = (data_z[coin_flip_y == 0,0]-2.7)**2
        data_y[coin_flip_y == 1] = -(data_z[coin_flip_y == 1,0]-2.7)**2+13
        data_y = data_y + noise_y
        data_x = np.reshape(data_x, (num_samples,1))
        data_y = np.reshape(data_y, (num_samples,1))
        return data_x, data_y, data_z
项目:nexar-2    作者:lbin    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:fastmat    作者:EMS-TU-Ilmenau    | 项目源码 | 文件源码
def genGroundTruth(numN, numM, numK):
    '''
    '''

    arrX = np.zeros((numN, numM))

    for ii in range(numM):
        arrInd = int(0.1 * numN) + npr.choice(
            range(int(numN - 0.2 * numN)), numK, replace=False)
        arrX[arrInd, ii] = npr.uniform(1, 2, numK)

    return arrX


################################################################################
#                          CALCULATION SECTION
################################################################################
项目:PrisonersDilemma2017    作者:gshorrSPHS    | 项目源码 | 文件源码
def move(my_history, their_history, my_score, their_score):
    ''' Arguments accepted: my_history, their_history are strings.
    my_score, their_score are ints.

    Make my move.
    Returns 'c' or 'b'. 
    '''

    # my_history: a string with one letter (c or b) per round that has been played with this opponent.
    # their_history: a string of the same length as history, possibly empty. 
    # The first round between these two players is my_history[0] and their_history[0].
    # The most recent round is my_history[-1] and their_history[-1].

    # Analyze my_history and their_history and/or my_score and their_score.
    # Decide whether to return 'c' or 'b'.
    if random.uniform() < 0.7:
        return 'c'
    else:
        return 'b'
项目:additions_mxnet    作者:eldercrow    | 项目源码 | 文件源码
def update(self, index, weight, grad, state):
        # assert(isinstance(weight, NDArray))
        # assert(isinstance(grad, NDArray))
        self._update_count(index)
        lr = self._get_lr(index)
        wd = self._get_wd(index)

        # preprocess grad
        grad *= self.rescale_grad
        if self.clip_gradient is not None:
            grad = mx.nd.clip(grad, -self.clip_gradient, self.clip_gradient)
        grad += wd * weight

        w_nadam = self._update_nadam(index, weight, grad, state, lr, wd)
        w_sgd = self._update_sgd(index, weight, grad, state, lr, wd)

        if uniform(0, 1) < 1.0/3.0:
            weight[:] += w_nadam * 0.1
        else:
            weight[:] += w_sgd
项目:nn_tools    作者:hahnyuan    | 项目源码 | 文件源码
def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels
项目:sandworks    作者:Caged    | 项目源码 | 文件源码
def __init__(self, sand, colors):
        self.x = 0  # X position on grid
        self.y = 0  # Y position on grid
        self.t = 0  # Direction of travel
        self.w = WIDTH
        self.h = HEIGHT
        self.g = uniform(0.01, 0.1)
        self.grains = 64

        self.xs = SimpleLinearScale(domain=array([0, self.w]), range=array([0, 1]))
        self.ys = SimpleLinearScale(domain=array([0, self.h]), range=array([0, 1]))

        self.painter = SandPainter(
            sand=sand,
            xs=self.xs,
            ys=self.ys,
            colors=colors)

        self.find_start()
项目:sandworks    作者:Caged    | 项目源码 | 文件源码
def find_start(self):
        global cgrid
        px = 0
        py = 0
        timeout = 0
        found = False

        while not found:
            px = randint(self.w)
            py = randint(self.h)
            if(cgrid[py * self.w + px] < 10000):
                found = True

        if found:
            a = cgrid[py * self.w + px]
            if randint(100) < 50:
                a -= 90 + int(uniform(-2, 2.1))
            else:
                a += 90 + int(uniform(-2, 2.1))
            self.start_crack(px, py, a)
项目:Ultras-Sound-Nerve-Segmentation---Kaggle    作者:Simoncarbo    | 项目源码 | 文件源码
def transform(image): #translate, shear, stretch, flips?
    rows,cols = image.shape

    angle = random.uniform(-1.5,1.5)
    center = (rows / 2 - 0.5+random.uniform(-50,50), cols / 2 - 0.5+random.uniform(-50,50))
    def_image = tf.rotate(image, angle = angle, center = center,clip = True, preserve_range = True,order = 5)

    alpha = random.uniform(0,5)
    sigma = random.exponential(scale = 5)+2+alpha**2
    def_image = elastic_transform(def_image, alpha, sigma)

    def_image = def_image[10:-10,10:-10]

    return def_image

# sigma: variance of filter, fixes homogeneity of transformation 
#    (close to zero : random, big: translation)
项目:RRMPG    作者:kratzert    | 项目源码 | 文件源码
def get_random_params(self, num=1):
        """Generate random sets of model parameters in the default bounds.

        Samples num values for each model parameter from a uniform distribution
        between the default bounds.

        Args:
            num: (optional) Integer, specifying the number of parameter sets,
                that will be generated. Default is 1.

        Returns:
            A numpy array of the models custom data type, containing the at
            random generated parameters.

        """
        params = np.zeros(num, dtype=self._dtype)
        # sample one value for each parameter
        for param in self._param_list:
            values = uniform(low=self._default_bounds[param][0],
                             high=self._default_bounds[param][1],
                             size=num)
            params[param] = values

        return params
项目:python_utils    作者:Jayhello    | 项目源码 | 文件源码
def init_board_gauss(N, k):
    from numpy import random
    n = float(N)/k
    X = []
    for i in range(k):
        c = (random.uniform(-1, 1), random.uniform(-1, 1))
        s = random.uniform(0.05, 0.5)
        x = []
        while len(x) < n:
            a, b = np.array([np.random.normal(c[0], s), np.random.normal(c[1], s)])
            # Continue drawing points from the distribution in the range [-1,1]
            if abs(a) < 1 and abs(b) < 1:
                x.append([a, b])
        X.extend(x)
    X = np.array(X)[:N]
    return X
项目:IRL-maxent    作者:harpribot    | 项目源码 | 文件源码
def irl(feature_matrix, n_actions, discount, transition_probability,
        trajectories, epochs, learning_rate):
    """
    Find the reward function for the given trajectories.

    feature_matrix: Matrix with the nth row representing the nth state. NumPy
        array with shape (N, D) where N is the number of states and D is the
        dimensionality of the state.
    n_actions: Number of actions A. int.
    discount: Discount factor of the MDP. float.
    transition_probability: NumPy array mapping (state_i, action, state_k) to
        the probability of transitioning from state_i to state_k under action.
        Shape (N, A, N).
    trajectories: 3D array of state/action pairs. States are ints, actions
        are ints. NumPy array with shape (T, L, 2) where T is the number of
        trajectories and L is the trajectory length.
    epochs: Number of gradient descent steps. int.
    learning_rate: Gradient descent learning rate. float.
    -> Reward vector with shape (N,).
    """

    n_states, d_states = feature_matrix.shape

    # Initialise weights.
    alpha = rn.uniform(size=(d_states,))

    # Calculate the feature expectations \tilde{phi}.
    feature_expectations = find_feature_expectations(feature_matrix,
                                                     trajectories)

    # Gradient descent on alpha.
    for i in range(epochs):
        # print("i: {}".format(i))
        r = feature_matrix.dot(alpha)
        expected_svf = find_expected_svf(n_states, r, n_actions, discount,
                                         transition_probability, trajectories)
        grad = feature_expectations - feature_matrix.T.dot(expected_svf)

        alpha += learning_rate * grad

    return feature_matrix.dot(alpha).reshape((n_states,))
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 1] *= random.uniform(self.lower, self.upper)

        return image, boxes, labels
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 0] += random.uniform(-self.delta, self.delta)
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
        return image, boxes, labels
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image *= alpha
        return image, boxes, labels
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image += delta
        return image, boxes, labels
项目:scikit-kge    作者:mnick    | 项目源码 | 文件源码
def init_unif(sz):
        """
        Uniform intialization

        Heuristic commonly used to initialize deep neural networks
        """
        bnd = 1 / sqrt(sz[0])
        p = uniform(low=-bnd, high=bnd, size=sz)
        return squeeze(p)
项目:scikit-kge    作者:mnick    | 项目源码 | 文件源码
def init_nunif(sz):
        """
        Normalized uniform initialization

        See Glorot X., Bengio Y.: "Understanding the difficulty of training
        deep feedforward neural networks". AISTATS, 2010
        """
        bnd = sqrt(6) / sqrt(sz[0] + sz[1])
        p = uniform(low=-bnd, high=bnd, size=sz)
        return squeeze(p)
项目:textobjdetection    作者:andfoy    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 1] *= random.uniform(self.lower, self.upper)

        return image, boxes, labels
项目:textobjdetection    作者:andfoy    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 0] += random.uniform(-self.delta, self.delta)
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
        return image, boxes, labels
项目:textobjdetection    作者:andfoy    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image *= alpha
        return image, boxes, labels
项目:textobjdetection    作者:andfoy    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image += delta
        return image, boxes, labels
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_image_conversion(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [3, 4, 128, 128]))
        cir = convert_stokes_to_circular(stokes)
        st = convert_circular_to_stokes(cir)
        assert_array_almost_equal(st.real, stokes, 15)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_image_auto_conversion_circular(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [3, 4, 128, 128]))
        ipf = PolarisationFrame('stokesIQUV')
        opf = PolarisationFrame('circular')
        cir = convert_pol_frame(stokes, ipf, opf)
        st = convert_pol_frame(cir, opf, ipf)
        assert_array_almost_equal(st.real, stokes, 15)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_image_auto_conversion_linear(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [3, 4, 128, 128]))
        ipf = PolarisationFrame('stokesIQUV')
        opf = PolarisationFrame('linear')
        cir = convert_pol_frame(stokes, ipf, opf)
        st = convert_pol_frame(cir, opf, ipf)
        assert_array_almost_equal(st.real, stokes, 15)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_image_auto_conversion_I(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [3, 4, 128, 128]))
        ipf = PolarisationFrame('stokesI')
        opf = PolarisationFrame('stokesI')
        cir = convert_pol_frame(stokes, ipf, opf)
        st = convert_pol_frame(cir, opf, ipf)
        assert_array_almost_equal(st.real, stokes, 15)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_vis_conversion(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [1000, 3, 4]))
        cir = convert_stokes_to_circular(stokes, polaxis=2)
        st = convert_circular_to_stokes(cir, polaxis=2)
        assert_array_almost_equal(st.real, stokes, 15)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_vis_auto_conversion_I(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [1000, 3, 1]))
        ipf = PolarisationFrame('stokesI')
        opf = PolarisationFrame('stokesI')
        cir = convert_pol_frame(stokes, ipf, opf, polaxis=2)
        st = convert_pol_frame(cir, opf, ipf, polaxis=2)
        assert_array_almost_equal(st.real, stokes, 15)
项目:algorithm-reference-library    作者:SKA-ScienceDataProcessor    | 项目源码 | 文件源码
def test_circular_to_linear(self):
        stokes = numpy.array(random.uniform(-1.0, 1.0, [3, 4, 128, 128]))
        ipf = PolarisationFrame('stokesIQUV')
        opf = PolarisationFrame('circular')
        cir = convert_pol_frame(stokes, ipf, opf)
        wrong_pf = PolarisationFrame('linear')
        with self.assertRaises(ValueError):
            convert_pol_frame(cir, opf, wrong_pf)
项目:Solid    作者:100    | 项目源码 | 文件源码
def _clear(self):
        """
        Resets the variables that are altered on a per-run basis of the algorithm

        :return: None
        """
        self.pos = uniform(self.lower_bound, self.upper_bound, size=(self.swarm_size, self.member_size))
        self.vel = uniform(self.lower_bound - self.upper_bound, self.upper_bound - self.lower_bound,
                           size=(self.swarm_size, self.member_size))
        self.scores = self._score(self.pos)
        self.best = copy(self.pos)
        self.cur_steps = 0
        self._global_best()
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 1] *= random.uniform(self.lower, self.upper)

        return image, boxes, labels
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 0] += random.uniform(-self.delta, self.delta)
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
        return image, boxes, labels
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image *= alpha
        return image, boxes, labels
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image += delta
        return image, boxes, labels
项目:isp-data-pollution    作者:essandess    | 项目源码 | 文件源码
def seed_links(self):
        # bias with non-random seed links
        self.bias_links()
        if self.link_count() < self.max_links_cached:
            num_words = max(1,npr.poisson(1.33)+1)  # mean of 1.33 words per search
            if num_words == 1:
                word = ' '.join(random.sample(self.words,num_words))
            else:
                if npr.uniform() < 0.5:
                    word = ' '.join(random.sample(self.words,num_words))
                else:      # quote the first two words together
                    word = ' '.join(['"{}"'.format(' '.join(random.sample(self.words, 2))),
                                     ' '.join(random.sample(self.words, num_words-2))])
            if self.debug: print('Seeding with search for \'{}\'…'.format(word))
            self.get_websearch(word)
项目:isp-data-pollution    作者:essandess    | 项目源码 | 文件源码
def diurnal_cycle_test(self):
        now = dt.datetime.now()
        tmhr = now.hour + now.minute/60.
        phase = npr.normal(14.,1.)
        exponent = min(0.667,self.chi2_mean_std(0.333,0.1))
        def cospow(x,e):  # flattened cosine with e < 1
            c = np.cos(x)
            return np.sign(c) * np.power(np.abs(c), e)
        diurn = max(0.,0.5*(1.+cospow((tmhr-phase)*(2.*np.pi/24.),exponent)))
        flr = min(0.1,self.chi2_mean_std(0.02,0.002))
        val = flr + (1.-flr)*diurn
        return npr.uniform() < val
项目:isp-data-pollution    作者:essandess    | 项目源码 | 文件源码
def pop_link(self,remove_link_fraction=0.95,current_preferred_domain_fraction=0.1):
        """ Pop a link from the collected list.
If `self.current_preferred_domain` is defined, then a link from this domain is drawn
a fraction of the time. """
        url = None
        if hasattr(self,'current_preferred_domain') and npr.uniform() < current_preferred_domain_fraction:
            while url is not None and len(self.domain_links) > 0:  # loop until `self.current_preferred_domain` has a url
                url = self.draw_link_from_domain(self.current_preferred_domain)
                if url is None: self.current_preferred_domain = self.draw_domain()
        if url is None: url = self.draw_link()
        if npr.uniform() < remove_link_fraction:  # 95% 1 GET, ~5% 2 GETs, .2% three GETs
            self.remove_link(url)  # pop a random item from the stack
        return url
项目:visually-grounded-speech    作者:gchrupala    | 项目源码 | 文件源码
def noisify(sound, noise):
    loudness = random.uniform(0.0, 10.0)
    start = random.randint(0, int((noise.duration_seconds - sound.duration_seconds) * 1000))
    speed = 1 + abs(numpy.random.normal(0.0, 0.1))
    noisy = sound.speedup(playback_speed=speed).overlay(noise[start:] + loudness)
    return noisy

# Delta and acceleration
项目:py-graphart    作者:dandydarcy    | 项目源码 | 文件源码
def _init_random_nodes(self):
        '''
        Initialize uniformly random nodes coordinates
        '''
        s = self.n*5  # number of random samples
        # generate random points
        self.nodes = np.array(
            1.*rnd.uniform(0, 1, size=(s, 2)), dtype=np.float32)
项目:PyGraphArt    作者:dnlcrl    | 项目源码 | 文件源码
def _init_random_nodes(self):
        '''
        Initialize uniformly random nodes coordinates
        '''
        s = self.n*5  # number of random samples
        # generate random points
        self.nodes = np.array(
            1.*rnd.uniform(0, 1, size=(s, 2)), dtype=np.float32)
项目:yt    作者:yt-project    | 项目源码 | 文件源码
def test_update_data():
    ds = fake_random_ds(64, nprocs=8)
    ds.index
    dims = (32,32,32)
    grid_data = [{"temperature": uniform(size=dims)}
                 for i in range(ds.index.num_grids)]
    ds.index.update_data(grid_data)
    prj = ds.proj("temperature", 2)
    prj["temperature"]
    dd = ds.all_data()
    profile = create_profile(dd, "density", "temperature", 10)
    profile["temperature"]