我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.asarray()。
def sparse_tuple_from(sequences, dtype=np.int32): r"""Creates a sparse representention of ``sequences``. Args: * sequences: a list of lists of type dtype where each element is a sequence Returns a tuple with (indices, values, shape) """ indices = [] values = [] for n, seq in enumerate(sequences): indices.extend(zip([n]*len(seq), range(len(seq)))) values.extend(seq) indices = np.asarray(indices, dtype=np.int64) values = np.asarray(values, dtype=dtype) shape = np.asarray([len(sequences), indices.max(0)[1]+1], dtype=np.int64) return tf.SparseTensor(indices=indices, values=values, shape=shape)
def pad_batch(mini_batch): mini_batch_size = len(mini_batch) # print mini_batch.shape # print mini_batch max_sent_len1 = int(np.max([len(x[0]) for x in mini_batch])) max_sent_len2 = int(np.max([len(x[1]) for x in mini_batch])) # print max_sent_len1, max_sent_len2 # max_token_len = int(np.mean([len(val) for sublist in mini_batch for val in sublist])) main_matrix1 = np.zeros((mini_batch_size, max_sent_len1), dtype= np.int) main_matrix2 = np.zeros((mini_batch_size, max_sent_len2), dtype= np.int) for idx1, i in enumerate(mini_batch): for idx2, j in enumerate(i[0]): try: main_matrix1[i,j] = j except IndexError: pass for idx1, i in enumerate(mini_batch): for idx2, j in enumerate(i[1]): try: main_matrix2[i,j] = j except IndexError: pass main_matrix1_t = Variable(torch.from_numpy(main_matrix1)) main_matrix2_t = Variable(torch.from_numpy(main_matrix2)) # print main_matrix1_t.size() # print main_matrix2_t.size() return [main_matrix1_t, main_matrix2_t] # return [Variable(torch.cat((main_matrix1_t, main_matrix2_t), 0)) # def pad_batch(mini_batch): # # print mini_batch # # print type(mini_batch) # # print mini_batch.shape # # for i, _ in enumerate(mini_batch): # # print i, _ # return [Variable(torch.from_numpy(np.asarray(_))) for _ in mini_batch[0]]
def quantize_without_scipy(self, image): """" This function can be used if no scipy is availabe. It's 7 times slower though. """ w,h = image.size px = np.asarray(image).copy() memo = {} for j in range(w): for i in range(h): key = (px[i,j,0],px[i,j,1],px[i,j,2]) try: val = memo[key] except KeyError: val = self.convert(*key) memo[key] = val px[i,j,0],px[i,j,1],px[i,j,2] = val return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage())
def xyz_array_to_pointcloud2(points, stamp=None, frame_id=None): ''' Create a sensor_msgs.PointCloud2 from an array of points. ''' msg = PointCloud2() if stamp: msg.header.stamp = stamp if frame_id: msg.header.frame_id = frame_id if len(points.shape) == 3: msg.height = points.shape[1] msg.width = points.shape[0] else: msg.height = 1 msg.width = len(points) msg.fields = [ PointField('x', 0, PointField.FLOAT32, 1), PointField('y', 4, PointField.FLOAT32, 1), PointField('z', 8, PointField.FLOAT32, 1)] msg.is_bigendian = False msg.point_step = 12 msg.row_step = 12*points.shape[0] msg.is_dense = int(np.isfinite(points).all()) msg.data = np.asarray(points, np.float32).tostring() return msg
def text_to_char_array(original): r""" Given a Python string ``original``, remove unsupported characters, map characters to integers and return a numpy array representing the processed string. """ # Create list of sentence's words w/spaces replaced by '' result = original.replace(" '", "") # TODO: Deal with this properly result = result.replace("'", "") # TODO: Deal with this properly result = result.replace(' ', ' ') result = result.split(' ') # Tokenize words into letters adding in SPACE_TOKEN where required result = np.hstack([SPACE_TOKEN if xt == '' else list(xt) for xt in result]) # Map characters into indicies result = np.asarray([SPACE_INDEX if xt == SPACE_TOKEN else ord(xt) - FIRST_INDEX for xt in result]) # Add result to results return result
def text_to_char_array(original): r""" Given a Python string ``original``, remove unsupported characters, map characters to integers and return a numpy array representing the processed string. """ # Create list of sentence's words w/spaces replaced by '' result = original.replace(" '", "") # TODO: Deal with this properly result = result.replace("'", "") # TODO: Deal with this properly result = result.replace(' ', ' ') result = result.split(' ') # Tokenize words into letters adding in SPACE_TOKEN where required result = np.hstack([SPACE_TOKEN if xt == '' else list(xt) for xt in result]) # Map characters into indicies result = np.asarray([SPACE_INDEX if xt == SPACE_TOKEN else ( ord(xt) - FIRST_INDEX if ord(xt)>FIRST_INDEX else 27+int(xt)) for xt in result]) # Add result to results return result
def __init__(self, data, tree_prior, config): """Initialize a model with an empty subsample. Args: data: An [N, V]-shaped numpy array of real-valued data. tree_prior: A [K]-shaped numpy array of prior edge log odds, where K is the number of edges in the complete graph on V vertices. config: A global config dict. """ assert isinstance(data, np.ndarray) data = np.asarray(data, np.float32) assert len(data.shape) == 2 N, V = data.shape D = config['model_latent_dim'] E = V - 1 # Number of edges in the tree. TreeTrainer.__init__(self, N, V, tree_prior, config) self._data = data self._latent = np.zeros([N, V, D], np.float32) # This is symmetric positive definite. self._vert_ss = np.zeros([V, D, D], np.float32) # This is arbitrary (not necessarily symmetric). self._edge_ss = np.zeros([E, D, D], np.float32) # This represents (count, mean, covariance). self._feat_ss = np.zeros([V, D, 1 + 1 + D], np.float32)
def _num_samples(x): """Return number of samples in array-like x.""" if hasattr(x, 'fit'): # Don't get num_samples from an ensembles length! raise TypeError('Expected sequence or array-like, got ' 'estimator %s' % x) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %s" % type(x)) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x)
def process_rollout(rollout, gamma, lambda_=1.0): """ given a rollout, compute its returns and the advantage """ batch_si = np.asarray(rollout.states) batch_a = np.asarray(rollout.actions) rewards = np.asarray(rollout.rewards) vpred_t = np.asarray(rollout.values + [rollout.r]) rewards_plus_v = np.asarray(rollout.rewards + [rollout.r]) batch_r = discount(rewards_plus_v, gamma)[:-1] delta_t = rewards + gamma * vpred_t[1:] - vpred_t[:-1] # this formula for the advantage comes "Generalized Advantage Estimation": # https://arxiv.org/abs/1506.02438 batch_adv = discount(delta_t, gamma * lambda_) features = rollout.features[0] return Batch(batch_si, batch_a, batch_adv, batch_r, rollout.terminal, features)
def has_tomatoes(self, im_path): # load the image im = Image.open(im_path) im = np.asarray(im, dtype=np.float32) im = self.prepare_image(im) # launch an inference with the image pred = self.sess.run( self.output_logits, feed_dict={ self.img_feed: im.eval( session=self.sess)}) if np.argmax(pred) == 0: print("NOT a tomato ! (confidence : ", pred[0, 0], "%)") else: print("We have a tomato ! (confidence : ", pred[0, 1], "%)")
def play(self, nb_rounds): img_saver = save_image() img_saver.next() game_cnt = it.count(1) for i in xrange(nb_rounds): game = self.game(width=self.width, height=self.height) screen, _ = game.next() img_saver.send(screen) frame_cnt = it.count() try: state = np.asarray([screen] * self.nb_frames) while True: frame_cnt.next() act_idx = np.argmax( self.model.predict(state[np.newaxis]), axis=-1)[0] screen, _ = game.send(self.actions[act_idx]) state = np.roll(state, 1, axis=0) state[0] = screen img_saver.send(screen) except StopIteration: print 'Saved %4i frames for game %3i' % ( frame_cnt.next(), game_cnt.next()) img_saver.close()
def draw_sequences_test(step, action, qval, draw, region_image, background, path_testing_folder, region_mask, image_name, save_boolean): aux = np.asarray(region_image, np.uint8) img_offset = (1000 * step, 70) footnote_offset = (1000 * step, 550) q_predictions_offset = (1000 * step, 500) mask_img_offset = (1000 * step, 700) img_for_paste = Image.fromarray(aux) background.paste(img_for_paste, img_offset) mask_img = Image.fromarray(255 * region_mask) background.paste(mask_img, mask_img_offset) footnote = 'action: ' + str(action) q_val_predictions_text = str(qval) draw.text(footnote_offset, footnote, (0, 0, 0), font=font) draw.text(q_predictions_offset, q_val_predictions_text, (0, 0, 0), font=font) file_name = path_testing_folder + image_name + '.png' if save_boolean == 1: background.save(file_name) return background
def encode(obj): # return single RLE if len(obj.shape) == 2: mask = obj masks = np.array(np.asarray([mask])) masks = _masks_as_fortran_order(masks) rles = _mask.encode(masks) rle = rles[0] return rle # return RLEs elif len(obj.shape) == 3: masks = obj masks = _masks_as_fortran_order(masks) rles = _mask.encode(masks) return rles else: raise Exception("Not Implement")
def test_prune_from_top(): d, traversal = get_four_level_data_traversal() reduced_storm_id = [1,] d = traversal.reduce_to_entities('storm_id', reduced_storm_id) reduced_stroke_id = np.asarray([]) reduced_flash_id = np.asarray([]) reduced_trig_id = np.asarray([]) assert_equal(d['storm_id'], reduced_storm_id) assert_equal(d['flash_id'], reduced_flash_id) assert_equal(d['stroke_id'], reduced_stroke_id) assert_equal(d['trig_id'], reduced_trig_id) reduced_storm_id = [2,] d = traversal.reduce_to_entities('storm_id', reduced_storm_id) reduced_flash_id = [4,5,6,7,8] reduced_stroke_id = [13,14,15,19,20,23,46] reduced_trig_id = [18,19,20,22,23,25,26,30,31,32] assert_equal(d['storm_id'].data, reduced_storm_id) assert_equal(d['flash_id'].data, reduced_flash_id) assert_equal(d['stroke_id'].data, reduced_stroke_id) assert_equal(d['trig_id'].data, reduced_trig_id)
def _validate(self, machine, n=10): N = n * n z = np.random.normal(0., 1., size=[n, self.arch['z_dim']]) z = np.concatenate([z] * n, axis=1) z = np.reshape(z, [N, -1]).astype(np.float32) # consecutive rows y = np.asarray( [[5, 0, 0 ], [9, 0, 0 ], [12, 0, 0 ], [17, 0, 0 ], [19, 0, 0 ], [161, 0, 0 ], [170, 0, 0 ], [170, 16, 0 ], [161, 9, 4 ], [19, 24, 50]], dtype=np.int64) y = np.concatenate([y] * n, axis=0) Z = tf.constant(z) Y = tf.constant(y) Xh = machine.generate(Z, Y) # 100, 64, 64, 3 Xh = make_png_thumbnail(Xh, n) return Xh
def get_likelihood(term_document_matrix, label_index, smoothing=0): """ Compute likelihood based on training samples Args: term_document_matrix (sparse matrix) label_index (grouped sample indices by class) smoothing (integer, additive Laplace smoothing parameter) Returns: dictionary, with class as key, corresponding conditional probability P(feature|class) vector as value """ likelihood = {} for label, index in label_index.items(): likelihood[label] = term_document_matrix[index, :].sum(axis=0) + smoothing likelihood[label] = np.asarray(likelihood[label])[0] total_count = likelihood[label].sum() likelihood[label] = likelihood[label] / float(total_count) return likelihood
def reset_index(self): """Reset index to range based """ dfs = self.to_delayed() sizes = np.asarray(compute(*map(delayed(len), dfs))) prefixes = np.zeros_like(sizes) prefixes[1:] = np.cumsum(sizes[:-1]) @delayed def fix_index(df, startpos): return df.set_index(np.arange(start=startpos, stop=startpos + len(df), dtype=np.intp)) outdfs = [fix_index(df, startpos) for df, startpos in zip(dfs, prefixes)] return from_delayed(outdfs)
def __init__(self, dimension, constant_trace='None', randn=np.random.randn, quadratic=False, **kwargs): try: self.dimension = len(dimension) standard_deviations = np.asarray(dimension) except TypeError: self.dimension = dimension standard_deviations = np.ones(dimension) assert self.dimension == len(standard_deviations) assert len(standard_deviations) == self.dimension self.C = standard_deviations**2 "covariance matrix diagonal" self.constant_trace = constant_trace self.randn = randn self.quadratic = quadratic self.count_tell = 0
def norm(self, x): """compute the Mahalanobis norm that is induced by the statistical model / sample distribution, specifically by covariance matrix ``C``. The expected Mahalanobis norm is about ``sqrt(dimension)``. Example ------- >>> import cma, numpy as np >>> sm = cma.sampler.GaussFullSampler(np.ones(10)) >>> x = np.random.randn(10) >>> d = sm.norm(x) `d` is the norm "in" the true sample distribution, sampled points have a typical distance of ``sqrt(2*sm.dim)``, where ``sm.dim`` is the dimension, and an expected distance of close to ``dim**0.5`` to the sample mean zero. In the example, `d` is the Euclidean distance, because C = I. """ return sum(np.asarray(x)**2 / self.C)**0.5
def elli(self, x, rot=0, xoffset=0, cond=1e6, actuator_noise=0.0, both=False): """Ellipsoid test objective function""" x = np.asarray(x) if not isscalar(x[0]): # parallel evaluation return [self.elli(xi, rot) for xi in x] # could save 20% overall if rot: x = rotate(x) N = len(x) if actuator_noise: x = x + actuator_noise * np.random.randn(N) ftrue = sum(cond**(np.arange(N) / (N - 1.)) * (x + xoffset)**2) \ if N > 1 else (x + xoffset)**2 alpha = 0.49 + 1. / N beta = 1 felli = np.random.rand(1)[0]**beta * ftrue * \ max(1, (10.**9 / (ftrue + 1e-99))**(alpha * np.random.rand(1)[0])) # felli = ftrue + 1*np.random.randn(1)[0] / (1e-30 + # np.abs(np.random.randn(1)[0]))**0 if both: return (felli, ftrue) else: # return felli # possibly noisy value return ftrue # + np.random.randn()
def __call__(self, *args, **kwargs): # late initialization if necessary try: if not self.__initialized: raise AttributeError except AttributeError: Function.initialize(self, None) # find the "right" callable callable_ = self.__callable if callable_ is None: for name in self.function_names_to_evaluate_first_found: try: callable_ = getattr(self, name) break except AttributeError: pass # call with each vector if callable_ is not None: X, list_revert = utils.as_vector_list(args[0]) self.evaluations += len(X) return list_revert([ callable_(np.asarray(x), *args[1:], **kwargs) for x in X]) else: self.evaluations += 1 # somewhat bound to fail
def __init__(self, fitness_function, multipliers=None, zero=None): """ :param fitness_function: a `callable` object :param multipliers: coordinate-wise multipliers. :param zero: defines a new zero in preimage space, that is, calling the `ScaleCoordinates` instance returns ``fitness_function(multipliers * (x - zero))``. For both arguments, ``multipliers`` and ``zero``, to fit in case the length of the given input, superfluous trailing elements are ignored or the last element is recycled. """ ComposedFunction.__init__(self, [fitness_function, self.scale_and_offset]) self.multiplier = multipliers if self.multiplier is not None: self.multiplier = np.asarray(self.multiplier, dtype=float) self.zero = zero if zero is not None: self.zero = np.asarray(zero, dtype=float)
def monotoneTFosc(f): """Maps [-inf,inf] to [-inf,inf] with different constants for positive and negative part. """ if np.isscalar(f): if f > 0.: f = np.log(f) / 0.1 f = np.exp(f + 0.49 * (np.sin(f) + np.sin(0.79 * f))) ** 0.1 elif f < 0.: f = np.log(-f) / 0.1 f = -np.exp(f + 0.49 * (np.sin(0.55 * f) + np.sin(0.31 * f))) ** 0.1 return f else: f = np.asarray(f) g = f.copy() idx = (f > 0) g[idx] = np.log(f[idx]) / 0.1 g[idx] = np.exp(g[idx] + 0.49 * (np.sin(g[idx]) + np.sin(0.79 * g[idx])))**0.1 idx = (f < 0) g[idx] = np.log(-f[idx]) / 0.1 g[idx] = -np.exp(g[idx] + 0.49 * (np.sin(0.55 * g[idx]) + np.sin(0.31 * g[idx])))**0.1 return g
def make_heatmaps_from_joints(input_size, heatmap_size, gaussian_variance, batch_joints): # Generate ground-truth heatmaps from ground-truth 2d joints scale_factor = input_size // heatmap_size batch_gt_heatmap_np = [] for i in range(batch_joints.shape[0]): gt_heatmap_np = [] invert_heatmap_np = np.ones(shape=(heatmap_size, heatmap_size)) for j in range(batch_joints.shape[1]): cur_joint_heatmap = make_gaussian(heatmap_size, gaussian_variance, center=(batch_joints[i][j] // scale_factor)) gt_heatmap_np.append(cur_joint_heatmap) invert_heatmap_np -= cur_joint_heatmap gt_heatmap_np.append(invert_heatmap_np) batch_gt_heatmap_np.append(gt_heatmap_np) batch_gt_heatmap_np = np.asarray(batch_gt_heatmap_np) batch_gt_heatmap_np = np.transpose(batch_gt_heatmap_np, (0, 2, 3, 1)) return batch_gt_heatmap_np
def QA_fetch_get_stock_risk(name, startDate, endDate): try: from WindPy import w except: QA_util_log_info('No WindPY Module!') w.start() if(QA_util_date_valid(endDate) == False): QA_util_log_info("wrong date") else: data = w.wsd(name, "annualyeild_100w,annualyeild_24m,annualyeild_60m,\ annualstdevr_100w,annualstdevr_24m,annualstdevr_60m,beta_100w,\ beta_24m,beta_60m,avgreturn,avgreturny,stdevry,stdcof,\ risk_nonsysrisk1,r2,alpha2,beta,sharpe,treynor,jensen,jenseny,betadf", startDate, endDate, "period=2;returnType=1;index=000001.SH;yield=1") if (data.ErrorCode == 0): QA_util_log_info("Connent to Wind successfully") return pd.DataFrame(np.asarray(data.Data).T, columns=data.Fields, index=data.Times)
def load_channels(self,normalize = False): modalities = [] modalities.append(nib.load(self.FLAIR_FILE)) modalities.append(nib.load(self.T1_FILE)) channels = np.zeros( modalities[0].shape + (2,), dtype=np.float32) for index_mod, mod in enumerate(modalities): if self.data_augmentation: channels[:, :, :, index_mod] = flip_plane(np.asarray(mod.dataobj)) else: channels[:,:,:,index_mod] = np.asarray(mod.dataobj) if normalize: channels[:, :, :, index_mod] = normalize_image(channels[:,:,:,index_mod], mask = self.load_ROI_mask() ) return channels
def load_channels(self): flair = nib.load(self.FLAIR_FILE) t1 = nib.load(self.T1_FILE) t1c = nib.load(self.T1c_FILE) t2 = nib.load(self.T2_FILE) to_int = lambda b: 1 if b else 0 num_input_modalities = to_int(self.booleanFLAIR) + to_int(self.booleanT1) + to_int(self.booleanT1c) + to_int( self.booleanT2) channels = np.zeros((num_input_modalities,) + flair.shape, dtype=np.float32) channels[0] = np.asarray(flair.dataobj) if self.booleanFLAIR is True else None channels[to_int(self.booleanFLAIR)] = np.asarray(t1.dataobj) if self.booleanT1 is True else None channels[to_int(self.booleanFLAIR) + to_int(self.booleanT1)] = np.asarray( t1c.dataobj) if self.booleanT1c is True else None channels[to_int(self.booleanFLAIR) + to_int(self.booleanT1) + to_int(self.booleanT1c)] = np.asarray( t2.dataobj) if self.booleanT2 is True else None return channels
def load_channels(self, normalize=False): modalities = [] modalities.append(nib.load(self.FLAIR_FILE)) modalities.append(nib.load(self.T1_FILE)) modalities.append(nib.load(self.T1c_FILE)) modalities.append(nib.load(self.T2_FILE)) channels = np.zeros(modalities[0].shape + (4,), dtype=np.float32) if normalize: mask = self.load_ROI_mask() for index_mod, mod in enumerate(modalities): if self.data_augmentation_flag: channels[:, :, :, index_mod] = flip_plane(np.asarray(mod.dataobj), plane=self.data_augmentation) else: channels[:, :, :, index_mod] = np.asarray(mod.dataobj) if normalize: channels[:, :, :, index_mod] = normalize_image(channels[:, :, :, index_mod], mask=mask) return channels
def load_channels(self, normalize=False): modalities = [] modalities.append(nib.load(self.T2_FILE)) modalities.append(nib.load(self.T1_FILE)) channels = np.zeros(modalities[0].shape + (2,), dtype=np.float32) for index_mod, mod in enumerate(modalities): if self.data_augmentation: channels[:, :, :, index_mod] = flip_plane(np.asarray(mod.dataobj), plane=self.data_augmentation) else: channels[:,:,:,index_mod] = np.asarray(mod.dataobj) if normalize: channels[:, :, :, index_mod] = normalize_image(channels[:,:,:,index_mod], mask = self.load_ROI_mask() ) return channels
def save(self, model_filename): self.__model.save("%s.model" % model_filename) np.save("%s.tvocab" % model_filename, np.asarray(self.__trigrams)) np.save("%s.cvocab" % model_filename, np.asarray(self.__chars)) np.save("%s.classes" % model_filename, np.asarray(self.__classes))
def galfit_getheadervalue(compnumber,key,headerinfo): """ Return the paramters of a GALFIT model header --- INPUT --- compnumber A string containing the component number to extract info for (number after "COMP_" in header) key The key to extract (keyword after "COMPNUMBER_" in header) headerinfo Header to extract info from. """ hdrinfo = headerinfo[compnumber+'_'+key] if '*' in hdrinfo: # handling parameters fixed in GALFIT run hdrinfo = hdrinfo.replace('*','') if '+/-' in hdrinfo: value = float(hdrinfo.split('+/-')[0]) error = float(hdrinfo.split('+/-')[1]) else: value = float(hdrinfo[1:-1]) error = None if (key == 'XC') or (key == 'YC'): xrange, yrange = headerinfo['FITSECT'][1:-1].split(',') xrange = np.asarray(xrange.split(':')).astype(float) yrange = np.asarray(yrange.split(':')).astype(float) if key == 'XC': value = value - xrange[0] + 1.0 if key == 'YC': value = value - yrange[0] + 1.0 return value, error # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def to_categorical(y, nb_classes): y = np.asarray(y, dtype='int32') if not nb_classes: nb_classes = np.max(y)+1 Y = np.zeros((len(y), nb_classes)) for i in range(len(y)): Y[i, y[i]] = 1. return Y # load training and testing data
def make_one_hot(indices): ''' Accepts an array of indices, and converts them to a one-hot matrix ''' # Making indices 0 based. indices = numpy.asarray(indices) - min(indices) num_classes = max(indices) + 1 one_hot_indices = numpy.zeros((len(indices), num_classes)) for i, ind in enumerate(indices): one_hot_indices[i][ind] = 1.0 return one_hot_indices # TODO: Separate methods for returning word inds and conc inds
def get_embedding_matrix(self, embedding_file, onto_aware): # embedding_file is a tsv with words on the first column and vectors on the # remaining. This will add to word_embedding if for_words is true, or else to # synset embedding. # For words that do not have vectors, we sample from a uniform distribution in the # range of max and min of the word embedding. embedding_map = {} rep_max = -float("inf") rep_min = float("inf") for line in gzip.open(embedding_file): ln_parts = line.strip().split() if len(ln_parts) == 2: continue element = ln_parts[0] vec = numpy.asarray([float(f) for f in ln_parts[1:]]) vec_max, vec_min = vec.max(), vec.min() if vec_max > rep_max: rep_max = vec_max if vec_min < rep_min: rep_min = vec_min embedding_map[element] = vec embedding_dim = len(vec) target_index = self.synset_index if onto_aware else self.word_index # Initialize target embedding with all random vectors target_vocab_size = self.get_vocab_size(onto_aware=onto_aware) target_embedding = self.numpy_rng.uniform(low=rep_min, high=rep_max, size=(target_vocab_size, embedding_dim)) num_found_elements = 0 num_all_elements = 0 for element in target_index: num_all_elements += 1 if element in embedding_map: vec = embedding_map[element] target_embedding[target_index[element]] = vec num_found_elements += 1 print >>sys.stderr, "Found vectors for %.4f of the words" % (float(num_found_elements) / num_all_elements) return target_embedding
def prepare_default(N=100, dtype=np.double): return ( np.asarray(np.random.rand(N, N), dtype=dtype), ) #return toc/trials, (4/3)*N*N*N*1e-9, times
def prepare_eig(N=100, dtype=np.double): N/=4 return ( np.asarray(np.random.rand(int(N), int(N)), dtype=dtype), )
def prepare_svd(N=100, dtype=np.double): N/=2 return ( np.asarray(np.random.rand(int(N), int(N)), dtype=dtype), False ) #det: return toc/trials, N*N*N*1e-9, times
def prepare_dot(N=100, dtype=np.double): N=N*N*10 A = np.asarray(np.random.rand(int(N)), dtype=dtype) return (A, A) #return 1.0*toc/(trials), 2*N*N*N*1e-9, times
def prepare_dgemm(N=100, trials=3, dtype=np.double): LARGEDIM = int(N*2) KSIZE = int(N/2) A = np.asarray(np.random.rand(LARGEDIM, KSIZE), dtype=dtype) B = np.asarray(np.random.rand(KSIZE, LARGEDIM), dtype=dtype) return (A, B)
def write_one_sample_one_line(self, data, timeout=10): """ Writes a single boolean sample to a single digital output channel in a task. The channel can contain only one digital line. Args: data (int): Specifies the boolean sample to write to the task. timeout (Optional[float]): Specifies the amount of time in seconds to wait for the method to write all samples. NI-DAQmx performs a timeout check only if the method must wait before it writes data. This method returns an error if the time elapses. The default timeout is 10 seconds. If you set timeout to nidaqmx.constants.WAIT_INFINITELY, the method waits indefinitely. If you set timeout to 0, the method tries once to write the submitted samples. If the method could not write all the submitted samples, it returns an error and the number of samples successfully written. """ auto_start = (self._auto_start if self._auto_start is not AUTO_START_UNSET else True) numpy_array = numpy.asarray([data], dtype=numpy.bool) return _write_digital_lines( self._handle, numpy_array, 1, auto_start, timeout)
def write_one_sample_port_byte(self, data, timeout=10): """ Writes a single 8-bit unsigned integer sample to a single digital output channel in a task. Use this method for devices with up to 8 lines per port. Args: data (int): Specifies the 8-bit unsigned integer sample to write to the task. timeout (Optional[float]): Specifies the amount of time in seconds to wait for the method to write all samples. NI-DAQmx performs a timeout check only if the method must wait before it writes data. This method returns an error if the time elapses. The default timeout is 10 seconds. If you set timeout to nidaqmx.constants.WAIT_INFINITELY, the method waits indefinitely. If you set timeout to 0, the method tries once to write the submitted samples. If the method could not write all the submitted samples, it returns an error and the number of samples successfully written. """ auto_start = (self._auto_start if self._auto_start is not AUTO_START_UNSET else True) numpy_array = numpy.asarray([data], dtype=numpy.uint8) return _write_digital_u_8( self._handle, numpy_array, 1, auto_start, timeout)
def write_one_sample_port_uint16(self, data, timeout=10): """ Writes a single 16-bit unsigned integer sample to a single digital output channel in a task. Use this method for devices with up to 16 lines per port. Args: data (int): Specifies the 16-bit unsigned integer sample to write to the task. timeout (Optional[float]): Specifies the amount of time in seconds to wait for the method to write all samples. NI-DAQmx performs a timeout check only if the method must wait before it writes data. This method returns an error if the time elapses. The default timeout is 10 seconds. If you set timeout to nidaqmx.constants.WAIT_INFINITELY, the method waits indefinitely. If you set timeout to 0, the method tries once to write the submitted samples. If the method could not write all the submitted samples, it returns an error and the number of samples successfully written. """ auto_start = (self._auto_start if self._auto_start is not AUTO_START_UNSET else True) numpy_array = numpy.asarray([data], dtype=numpy.uint16) return _write_digital_u_16( self._handle, numpy_array, 1, auto_start, timeout)
def test_dimension(): dim = fls.Dimension(3, 0.1) assert np.allclose(dim.vector, np.asarray([0, 0.1, 0.2])) assert dim.get_index(0.1) == 1
def gen_minibatch(tokens, features, labels, mini_batch_size, shuffle= True): tokens = np.asarray(tokens)[np.where(labels!=0.5)[0]] if type(features) is np.ndarray: features = np.asarray(features)[np.where(labels!=0.5)[0]] else: features = np.asarray(features.todense())[np.where(labels!=0.5)[0]] labels = np.asarray(labels)[np.where(labels!=0.5)[0]] # print tokens.shape # print tokens[0] for token, feature, label in iterate_minibatches(tokens, features, labels, mini_batch_size, shuffle = shuffle): # print 'token', type(token) # print token token = [_ for _ in pad_batch(token)] # print len(token), token[0].size(), token[1].size() yield token, Variable(torch.from_numpy(feature)) , Variable(torch.FloatTensor(label), requires_grad= False)
def gen_minibatch1(tokens, features, mini_batch_size, shuffle= True): tokens = np.asarray(tokens) features = np.asarray(features.todense()) print(tokens.shape) for token, feature, label in iterate_minibatches(tokens, features, features, mini_batch_size, shuffle = shuffle): # print token # token = pad_batch(token) # print token token = [_ for _ in pad_batch(token)] yield token, Variable(torch.from_numpy(feature))
def gen_minibatch(tokens, features, labels, mini_batch_size, shuffle= True): tokens = np.asarray(tokens)[np.where(labels!=0.5)[0]] features = np.asarray(features.todense())[np.where(labels!=0.5)[0]] labels = np.asarray(labels)[np.where(labels!=0.5)[0]] # print tokens.shape # print tokens[0] for token, feature, label in iterate_minibatches(tokens, features, labels, mini_batch_size, shuffle = shuffle): # print 'token', type(token) # print token token = [_ for _ in pad_batch(token)] # print len(token), token[0].size(), token[1].size() yield token, Variable(torch.from_numpy(feature)) , Variable(torch.FloatTensor(label), requires_grad= False)