Python numpy 模块,float64() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.float64()

项目:mpiFFT4py    作者:spectralDNS    | 项目源码 | 文件源码
def test_FFT2(FFT2):
    N = FFT2.N
    if FFT2.rank == 0:
        A = random(N).astype(FFT2.float)

    else:
        A = zeros(N, dtype=FFT2.float)

    atol, rtol = (1e-10, 1e-8) if FFT2.float is float64 else (5e-7, 1e-4)
    FFT2.comm.Bcast(A, root=0)
    a = zeros(FFT2.real_shape(), dtype=FFT2.float)
    c = zeros(FFT2.complex_shape(), dtype=FFT2.complex)
    a[:] = A[FFT2.real_local_slice()]
    c = FFT2.fft2(a, c)
    B2 = zeros(FFT2.global_complex_shape(), dtype=FFT2.complex)
    B2 = rfft2(A, B2, axes=(0,1))
    assert allclose(c, B2[FFT2.complex_local_slice()], rtol, atol)
    a = FFT2.ifft2(c, a)
    assert allclose(a, A[FFT2.real_local_slice()], rtol, atol)
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_lowpass_cutoff_freq_range_vals(self):
        """
        List[float]: Indicates pairs of lowpass cutoff frequency ranges
            supported by this device. Each pair consists of the low
            value, followed by the high value. If the device supports a
            set of discrete lowpass cutoff frequencies, use
            **ai_lowpass_cutoff_freq_discrete_vals** to determine the
            supported  frequencies.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAILowpassCutoffFreqRangeVals
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_analog_f_64(
        task_handle, write_array, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteAnalogF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, write_array,
        ctypes.byref(samps_per_chan_written), None)
    check_for_error(error_code)

    return samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _write_ctr_freq(
        task_handle, freq, duty_cycle, num_samps_per_chan, auto_start, timeout,
        data_layout=FillMode.GROUP_BY_CHANNEL):
    num_samps_per_chan_written = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxWriteCtrFreq
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, c_bool32,
                    ctypes.c_double, ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, auto_start, timeout,
        data_layout.value, freq, duty_cycle,
        ctypes.byref(num_samps_per_chan_written), None)
    check_for_error(error_code)

    return num_samps_per_chan_written.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_analog_f_64(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadAnalogF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    c_bool32,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_f_64(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_f_64_ex(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterF64Ex
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_ctr_freq(
        task_handle, freq, duty_cycle, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrFreq
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        freq, duty_cycle, numpy.prod(freq.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_ctr_time(
        task_handle, high_time, low_time, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTime
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_time, low_time, numpy.prod(high_time.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def test_insufficient_numpy_write_data(self, x_series_device, seed):
        # Reset the pseudorandom number generator with seed.
        random.seed(seed)

        # Randomly select physical channels to test.
        number_of_channels = random.randint(
            2, len(x_series_device.ao_physical_chans))
        channels_to_test = random.sample(
            x_series_device.ao_physical_chans, number_of_channels)

        with nidaqmx.Task() as task:
            task.ao_channels.add_ao_voltage_chan(
                flatten_channel_string([c.name for c in channels_to_test]),
                max_val=10, min_val=-10)

            number_of_samples = random.randint(1, number_of_channels - 1)
            values_to_test = numpy.float64([
                random.uniform(-10, 10) for _ in range(number_of_samples)])

            with pytest.raises(DaqError) as e:
                task.write(values_to_test, auto_start=True)
            assert e.value.error_code == -200524
项目:pytorch-semseg    作者:meetshah1995    | 项目源码 | 文件源码
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl[lbl==255] = 0
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
项目:pytorch-semseg    作者:meetshah1995    | 项目源码 | 文件源码
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl = self.encode_segmap(lbl)
        classes = np.unique(lbl)
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)
        assert(np.all(classes == np.unique(lbl)))

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_3d_data_slices(slices):  # get data in Hunsfield Units
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from v 9

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_pixels_hu(slices):
    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)

    # Set outside-of-scan pixels to 0
    # The intercept is usually -1024, so air is approximately 0
    image[image == -2000] = 0

    # Convert to Hounsfield units (HU)
    ### slope can differ per slice -- so do it individually (case in point black_tset, slices 95 vs 96)
    ### Changes/correction - 31.01.2017
    for slice_number in range(len(slices)):

        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)    

    return np.array(image, dtype=np.int16)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_3d_data_slices(slices):  # get data in Hunsfield Units
    #slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key=lambda x: int(x.InstanceNumber))  # was x.InstanceNumber
    slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v 8

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def get_3d_data_hu(path):  # get data in Hunsfield Units
    slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
    #slices.sort(key=lambda x: int(x.InstanceNumber))  # was x.InstanceNumber
    #slices.sort(key = lambda x: int(x.ImagePositionPatient[2]))  # from v8 - BUGGY 
    slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))  # from 22.02

    image = np.stack([s.pixel_array for s in slices])
    image = image.astype(np.int16)  # ensure int16 (it may be here uint16 for some images )
    image[image == -2000] = 0   #correcting cyindrical bound entrioes to 0

    # Convert to Hounsfield units (HU)
    # The intercept is usually -1024
    for slice_number in range(len(slices)):  # from v 8
        intercept = slices[slice_number].RescaleIntercept
        slope = slices[slice_number].RescaleSlope

        if slope != 1:  # added 16 Jan 2016, evening
            image[slice_number] = slope * image[slice_number].astype(np.float64)
            image[slice_number] = image[slice_number].astype(np.int16)

        image[slice_number] += np.int16(intercept)

    return np.array(image, dtype=np.int16)
项目:pyelastix    作者:almarklein    | 项目源码 | 文件源码
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
项目:sampleRNN_ICLR2017    作者:soroushmehr    | 项目源码 | 文件源码
def __linear_quantize(data, q_levels):
    """
    floats in (0, 1) to ints in [0, q_levels-1]
    scales normalized across axis 1
    """
    # Normalization is on mini-batch not whole file
    #eps = numpy.float64(1e-5)
    #data -= data.min(axis=1)[:, None]
    #data *= ((q_levels - eps) / data.max(axis=1)[:, None])
    #data += eps/2
    #data = data.astype('int32')

    eps = numpy.float64(1e-5)
    data *= (q_levels - eps)
    data += eps/2
    data = data.astype('int32')
    return data
项目:sampleRNN_ICLR2017    作者:soroushmehr    | 项目源码 | 文件源码
def __batch_quantize(data, q_levels, q_type):
    """
    One of 'linear', 'a-law', 'mu-law' for q_type.
    """
    data = data.astype('float64')
    data = __normalize(data)
    if q_type == 'linear':
        return __linear_quantize(data, q_levels)
    if q_type == 'a-law':
        return __a_law_quantize(data)
    if q_type == 'mu-law':
        # from [0, 1] to [-1, 1]
        data = 2.*data-1.
        # Automatically quantized to 256 bins.
        return __mu_law_quantize(data)
    raise NotImplementedError
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def iter_tango_logs(directory, logs, topics=[]):
    for log in logs: 
        directory = os.path.expanduser(os.path.join(args.directory, log))
        print('Accessing Tango directory {:}'.format(directory))
        dataset = TangoLogReader(directory=directory, scale=im_scale) 
        for item in dataset.iterframes(topics=topics): 
            bboxes = item.bboxes
            targets = item.coords


# # If RGB_VIO, RGB, RGB_VIO in stream, then interpolate pose
# # b/w the 1st and 3rd timestamps to match RGB timestamps
# if len(self.__item_q) >= 3 and \
#    self.__item_q[-1][0] == self.__item_q[-3][0] == 1 and \
#    self.__item_q[-2][0] == 0: 
#     t1,t2,t3 = self.__item_q[-3][1], self.__item_q[-2][1], self.__item_q[-1][1]
#     w2, w1 = np.float32([t2-t1, t3-t2]) / (t3-t1)
#     p1,p3 = self.__item_q[-3][2], self.__item_q[-1][2]
#     p2 = p1.interpolate(p3, w1)
#     self.on_frame(t2, t2, p2, self.__item_q[-2][2])
#     print np.array_str(np.float64([t1, t2, t3]) * 1e-14, precision=6, suppress_small=True), \
#         (t2-t1) * 1e-6, (t3-t2) * 1e-6, w1, w2, p2
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def load_ply(fn, version): 
            """ Retrieve aligned point cloud for each scene """ 

            if version == 'v1': 
                raise ValueError('''Version %s not supported. '''
                                 '''Check dataset and choose either v1 or v2 scene dataset''' % version)
                # P = np.loadtxt(os.path.expanduser(fn), usecols=(2,3,4,5,6,7,8), dtype=np.float64)
                # return map(lambda p: RigidTransform(Quaternion.from_wxyz(p[:4]), p[4:]), P)
            elif version == 'v2': 
                ply = PlyData.read(os.path.expanduser(fn))
                xyz = np.vstack([ply['vertex'].data['x'], 
                                 ply['vertex'].data['y'], 
                                 ply['vertex'].data['z']]).T
                rgb = np.vstack([ply['vertex'].data['diffuse_red'], 
                                 ply['vertex'].data['diffuse_green'], 
                                 ply['vertex'].data['diffuse_blue']]).T
                return xyz, rgb

            else: 
                raise ValueError('''Version %s not supported. '''
                                 '''Check dataset and choose either v1 or v2 scene dataset''' % version)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
    >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
    True

    """
    q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
    nq = numpy.dot(q, q)
    if nq < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / nq)
    q = numpy.outer(q, q)
    return numpy.array((
        (1.0-q[1, 1]-q[2, 2],     q[0, 1]-q[2, 3],     q[0, 2]+q[1, 3], 0.0),
        (    q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2],     q[1, 2]-q[0, 3], 0.0),
        (    q[0, 2]-q[1, 3],     q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
        (                0.0,                 0.0,                 0.0, 1.0)
        ), dtype=numpy.float64)
项目:dask_gdf    作者:gpuopenanalytics    | 项目源码 | 文件源码
def test_frame_dtype_error():
    nelem = 20

    df1 = gd.DataFrame()
    df1['bad'] = np.arange(nelem)
    df1['bad'] = np.arange(nelem, dtype=np.float64)

    df2 = gd.DataFrame()
    df2['bad'] = np.arange(nelem)
    df2['bad'] = np.arange(nelem, dtype=np.float32)


    ddf1 = dgd.from_pygdf(df1, npartitions=5)
    ddf2 = dgd.from_pygdf(df2, npartitions=5)

    combined = dgd.from_delayed(ddf1.to_delayed() + ddf2.to_delayed())

    with pytest.raises(ValueError) as raises:
        out = combined.compute()

    print("out")
    raises.match(r"^Metadata mismatch found in `from_delayed`.")
    raises.match(r"\s+\|\s+".join(['bad', 'float32', 'float64']))
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
    >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
    True
    >>> M = quaternion_matrix([1, 0, 0, 0])
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> M = quaternion_matrix([0, 1, 0, 0])
    >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
    True

    """
    q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
    n = numpy.dot(q, q)
    if n < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / n)
    q = numpy.outer(q, q)
    return numpy.array([
        [1.0-q[2, 2]-q[3, 3],     q[1, 2]-q[3, 0],     q[1, 3]+q[2, 0], 0.0],
        [    q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3],     q[2, 3]-q[1, 0], 0.0],
        [    q[1, 3]-q[2, 0],     q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
        [                0.0,                 0.0,                 0.0, 1.0]])
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def __init__(self, initial=None):
        """Initialize virtual trackball control.

        initial : quaternion or rotation matrix

        """
        self._axis = None
        self._axes = None
        self._radius = 1.0
        self._center = [0.0, 0.0]
        self._vdown = numpy.array([0.0, 0.0, 1.0])
        self._constrain = False
        if initial is None:
            self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0])
        else:
            initial = numpy.array(initial, dtype=numpy.float64)
            if initial.shape == (4, 4):
                self._qdown = quaternion_from_matrix(initial)
            elif initial.shape == (4, ):
                initial /= vector_norm(initial)
                self._qdown = initial
            else:
                raise ValueError("initial not a quaternion or matrix")
        self._qnow = self._qpre = self._qdown
项目:search-MjoLniR    作者:wikimedia    | 项目源码 | 文件源码
def test_vectorized_jaccard_sim():
    # The vectorized version of jaccard similarity is 20x faster, but it is
    # harder to understand. Compute it the simple way and compare to the
    # vectorized version
    def jaccard_sim(X, Y):
        assert len(X) == len(Y)
        a = np.sum((X == 1) & (Y == 1))
        d = np.sum((X == 0) & (Y == 0))
        return a / float(len(X) - d)

    def binary_sim(mat):
        n_rows = mat.shape[0]
        out = np.empty((n_rows, n_rows), dtype=np.float64)
        for i in range(n_rows):
            out[i][i] = 1.
            for j in range(0, i):
                out[i][j] = jaccard_sim(mat[i], mat[j])
                out[j][i] = out[i][j]
        return out

    # Simulate 200 queries with 100 shared page ids
    matrix = np.random.rand(200, 100) > 0.7
    simple = binary_sim(matrix)
    vectorized = mjolnir.norm_query._binary_sim(matrix)
    assert np.array_equal(simple, vectorized)
项目:lstm-poetry    作者:dvictor    | 项目源码 | 文件源码
def sample(self, sess, chars, vocab, num, prime, temperature):
        state = self.cell.zero_state(1, tf.float32).eval()
        for char in prime[:-1]:
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed = {self.input_data: x, self.initial_state: state}
            [state] = sess.run([self.final_state], feed)

        def weighted_pick(a):
            a = a.astype(np.float64)
            a = a.clip(min=1e-20)
            a = np.log(a) / temperature
            a = np.exp(a) / (np.sum(np.exp(a)))
            return np.argmax(np.random.multinomial(1, a, 1))

        char = prime[-1]
        for n in range(num):
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed = {self.input_data: x, self.initial_state: state}
            [probs, state] = sess.run([self.probs, self.final_state], feed)
            p = probs[0]
            sample = weighted_pick(p)
            char = chars[sample]
            yield char
项目:corporadb    作者:nlesc-sherlock    | 项目源码 | 文件源码
def connectToDB(dbName=None, userName=None, dbPassword=None, dbHost=None,
                dbPort=None, dbCursor=psycopg2.extras.DictCursor):
    '''
    Connect to a specified PostgreSQL DB and return connection and cursor objects.
    '''
    # Start DB connection
    try:
        connectionString = "dbname='" + dbName + "'"
        if userName != None and userName != '':
            connectionString += " user='" + userName + "'"
        if dbHost != None and dbHost != '':
            connectionString += " host='" + dbHost + "'"
        if dbPassword != None and dbPassword != '':
            connectionString += " password='" + dbPassword + "'"
        if dbPort != None:
            connectionString += " port='" + str(dbPort) + "'"
        connection  = psycopg2.connect(connectionString)
        register_adapter(numpy.float64, addapt_numpy_float64)
        register_adapter(numpy.int64, addapt_numpy_int64)
    except:
        raise
    # if the connection succeeded get a cursor
    cursor = connection.cursor(cursor_factory=dbCursor)
    return connection, cursor
项目:FaceSwap    作者:Aravind-Suresh    | 项目源码 | 文件源码
def get_face_mask(img, img_l):
    img = np.zeros(img.shape[:2], dtype = np.float64)

    for idx in OVERLAY_POINTS_IDX:
        cv2.fillConvexPoly(img, cv2.convexHull(img_l[idx]), color = 1)

    img = np.array([img, img, img]).transpose((1, 2, 0))
    img = (cv2.GaussianBlur(img, (BLUR_AMOUNT, BLUR_AMOUNT), 0) > 0) * 1.0
    img = cv2.GaussianBlur(img, (BLUR_AMOUNT, BLUR_AMOUNT), 0)

    return img
项目:FaceSwap    作者:Aravind-Suresh    | 项目源码 | 文件源码
def smooth_colors(src, dst, src_l):
    blur_amount = BLUR_FRACTION * np.linalg.norm(np.mean(src_l[LEFT_EYE_IDX], axis = 0) - np.mean(src_l[RIGHT_EYE_IDX], axis = 0))
    blur_amount = (int)(blur_amount)

    if blur_amount % 2 == 0:
        blur_amount += 1

    src_blur = cv2.GaussianBlur(src, (blur_amount, blur_amount), 0)
    dst_blur = cv2.GaussianBlur(dst, (blur_amount, blur_amount), 0)

    dst_blur += (128 * ( dst_blur <= 1.0 )).astype(dst_blur.dtype)

    return (np.float64(dst) * np.float64(src_blur)/np.float64(dst_blur))
项目:FaceSwap    作者:Aravind-Suresh    | 项目源码 | 文件源码
def get_tm_opp(pts1, pts2):
    # Transformation matrix - ( Translation + Scaling + Rotation )
    # using Procuster analysis
    pts1 = np.float64(pts1)
    pts2 = np.float64(pts2)

    m1 = np.mean(pts1, axis = 0)
    m2 = np.mean(pts2, axis = 0)

    # Removing translation
    pts1 -= m1
    pts2 -= m2

    std1 = np.std(pts1)
    std2 = np.std(pts2)
    std_r = std2/std1

    # Removing scaling
    pts1 /= std1
    pts2 /= std2

    U, S, V = np.linalg.svd(np.transpose(pts1) * pts2)

    # Finding the rotation matrix
    R = np.transpose(U * V)

    return np.vstack([np.hstack((std_r * R,
        np.transpose(m2) - std_r * R * np.transpose(m1))), np.matrix([0.0, 0.0, 1.0])])
项目:topically-driven-language-model    作者:jhlau    | 项目源码 | 文件源码
def sample(self, probs, temperature):
        if temperature == 0:
            return np.argmax(probs)

        probs = probs.astype(np.float64) #convert to float64 for higher precision
        probs = np.log(probs) / temperature
        probs = np.exp(probs) / math.fsum(np.exp(probs))
        return np.argmax(np.random.multinomial(1, probs, 1))

    #generate a sentence given conv_hidden
项目:mpiFFT4py    作者:spectralDNS    | 项目源码 | 文件源码
def test_FFT(FFT):
    N = FFT.N
    if FFT.rank == 0:
        A = random(N).astype(FFT.float)
        if FFT.communication == 'AlltoallN':
            C = empty(FFT.global_complex_shape(), dtype=FFT.complex)
            C = rfftn(A, C, axes=(0,1,2))
            C[:, :, -1] = 0  # Remove Nyquist frequency
            A = irfftn(C, A, axes=(0,1,2))
        B2 = zeros(FFT.global_complex_shape(), dtype=FFT.complex)
        B2 = rfftn(A, B2, axes=(0,1,2))

    else:
        A = zeros(N, dtype=FFT.float)
        B2 = zeros(FFT.global_complex_shape(), dtype=FFT.complex)

    atol, rtol = (1e-10, 1e-8) if FFT.float is float64 else (5e-7, 1e-4)
    FFT.comm.Bcast(A, root=0)
    FFT.comm.Bcast(B2, root=0)

    a = zeros(FFT.real_shape(), dtype=FFT.float)
    c = zeros(FFT.complex_shape(), dtype=FFT.complex)
    a[:] = A[FFT.real_local_slice()]
    c = FFT.fftn(a, c)
    #print abs((c - B2[FFT.complex_local_slice()])/c.max()).max()
    assert all(abs((c - B2[FFT.complex_local_slice()])/c.max()) < rtol)
    #assert allclose(c, B2[FFT.complex_local_slice()], rtol, atol)
    a = FFT.ifftn(c, a)
    #print abs((a - A[FFT.real_local_slice()])/a.max()).max()

    assert all(abs((a - A[FFT.real_local_slice()])/a.max()) < rtol)
    #assert allclose(a, A[FFT.real_local_slice()], rtol, atol)
项目:mpiFFT4py    作者:spectralDNS    | 项目源码 | 文件源码
def datatypes(precision):
    """Return datatypes associated with precision."""
    assert precision in ("single", "double")
    return {"single": (np.float32, np.complex64, MPI.C_FLOAT_COMPLEX),
            "double": (np.float64, np.complex128, MPI.C_DOUBLE_COMPLEX)}[precision]
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def set_analog_power_up_states_with_output_type(
            self, power_up_states):
        """
        Updates power up states for analog physical channels.

        Args:
            power_up_states (List[nidaqmx.types.AOPowerUpState]):
                Contains the physical channels and power up states to
                set. Each element of the list contains a physical channel
                and the power up state to set for that physical channel.

                - physical_channel (str): Specifies the physical channel to
                  modify.
                - power_up_state (float): Specifies the power up state
                  to set for the physical channel specified with the
                  **physical_channel** input.
                - channel_type (:class:`nidaqmx.constants.AOPowerUpOutputBehavior`):
                  Specifies the output type for the physical channel
                  specified with the **physical_channel** input.
        """
        physical_channel = flatten_channel_string(
            [p.physical_channel for p in power_up_states])
        state = numpy.float64(
            [p.power_up_state for p in power_up_states])
        channel_type = numpy.int32(
            [p.channel_type.value for p in power_up_states])

        cfunc = lib_importer.cdll.DAQmxSetAnalogPowerUpStatesWithOutputType
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                                          flags=('C','W')),
                        wrapped_ndpointer(dtype=numpy.int32,
                                          flags=('C','W'))]

        error_code = cfunc(
            physical_channel, state, channel_type, len(power_up_states))
        check_for_error(error_code)
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ao_power_amp_scaling_coeff(self):
        """
        List[float]: Indicates the coefficients of a polynomial equation
            used to scale from pre-amplified values.
        """
        cfunc = lib_importer.windll.DAQmxGetAOPowerAmpScalingCoeff
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_bridge_rngs(self):
        """
        List[float]: Indicates pairs of input voltage ratio ranges, in
            volts per volt, supported by devices that acquire using
            ratiometric measurements. Each pair consists of the low
            value followed by the high value.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAIBridgeRngs
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_current_int_excit_discrete_vals(self):
        """
        List[float]: Indicates the set of discrete internal current
            excitation values supported by this device.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAICurrentIntExcitDiscreteVals
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_current_rngs(self):
        """
        List[float]: Indicates the pairs of current input ranges
            supported by this device. Each pair consists of the low
            value, followed by the high value.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAICurrentRngs
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_dig_fltr_lowpass_cutoff_freq_discrete_vals(self):
        """
        List[float]: Indicates the set of discrete lowpass cutoff
            frequencies supported by this device. If the device supports
            ranges of lowpass cutoff frequencies, use
            AI.DigFltr.Lowpass.CutoffFreq.RangeVals to determine
            supported frequencies.
        """
        cfunc = (lib_importer.windll.
                 DAQmxGetDevAIDigFltrLowpassCutoffFreqDiscreteVals)
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_dig_fltr_lowpass_cutoff_freq_range_vals(self):
        """
        List[float]: Indicates pairs of lowpass cutoff frequency ranges
            supported by this device. Each pair consists of the low
            value, followed by the high value. If the device supports a
            set of discrete lowpass cutoff frequencies, use
            AI.DigFltr.Lowpass.CutoffFreq.DiscreteVals to determine the
            supported frequencies.
        """
        cfunc = (lib_importer.windll.
                 DAQmxGetDevAIDigFltrLowpassCutoffFreqRangeVals)
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_freq_rngs(self):
        """
        List[float]: Indicates the pairs of frequency input ranges
            supported by this device. Each pair consists of the low
            value, followed by the high value.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAIFreqRngs
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_lowpass_cutoff_freq_discrete_vals(self):
        """
        List[float]: Indicates the set of discrete lowpass cutoff
            frequencies supported by this device. If the device supports
            ranges of lowpass cutoff frequencies, use
            **ai_lowpass_cutoff_freq_range_vals** to determine supported
            frequencies.
        """
        cfunc = (lib_importer.windll.
                 DAQmxGetDevAILowpassCutoffFreqDiscreteVals)
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_resistance_rngs(self):
        """
        List[float]: Indicates pairs of input resistance ranges, in
            ohms, supported by devices that have the necessary signal
            conditioning to measure resistances. Each pair consists of
            the low value followed by the high value.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAIResistanceRngs
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_voltage_int_excit_discrete_vals(self):
        """
        List[float]: Indicates the set of discrete internal voltage
            excitation values supported by this device. If the device
            supports ranges of internal excitation values, use
            **ai_voltage_int_excit_range_vals** to determine supported
            excitation values.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAIVoltageIntExcitDiscreteVals
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_voltage_int_excit_range_vals(self):
        """
        List[float]: Indicates pairs of internal voltage excitation
            ranges supported by this device. Each pair consists of the
            low value, followed by the high value. If the device
            supports a set of discrete internal excitation values, use
            **ai_voltage_int_excit_discrete_vals** to determine the
            supported excitation values.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAIVoltageIntExcitRangeVals
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ao_current_rngs(self):
        """
        List[float]: Indicates pairs of output current ranges supported
            by this device. Each pair consists of the low value,
            followed by the high value.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAOCurrentRngs
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ao_gains(self):
        """
        List[float]: Indicates the output gain settings supported by
            this device.
        """
        cfunc = lib_importer.windll.DAQmxGetDevAOGains
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_bridge_poly_forward_coeff(self, val):
        val = numpy.float64(val)
        cfunc = lib_importer.windll.DAQmxSetAIBridgePolyForwardCoeff
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        lib_importer.task_handle, ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        error_code = cfunc(
            self._handle, self._name, val, len(val))
        check_for_error(error_code)
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def ai_bridge_poly_reverse_coeff(self):
        """
        List[float]: Specifies an list of coefficients for the
            polynomial that converts physical values to electrical
            values. Each element of the list corresponds to a term of
            the equation. For example, if index three of the list is 9,
            the fourth term of the equation is 9x^3.
        """
        cfunc = lib_importer.windll.DAQmxGetAIBridgePolyReverseCoeff
        if cfunc.argtypes is None:
            with cfunc.arglock:
                if cfunc.argtypes is None:
                    cfunc.argtypes = [
                        lib_importer.task_handle, ctypes_byte_str,
                        wrapped_ndpointer(dtype=numpy.float64,
                        flags=('C','W')), ctypes.c_uint]

        temp_size = 0
        while True:
            val = numpy.zeros(temp_size, dtype=numpy.float64)

            size_or_code = cfunc(
                self._handle, self._name, val, temp_size)

            if is_array_buffer_too_small(size_or_code):
                # Buffer size must have changed between calls; check again.
                temp_size = 0
            elif size_or_code > 0 and temp_size == 0:
                # Buffer size obtained, use to retrieve data.
                temp_size = size_or_code
            else:
                break

        check_for_error(size_or_code)

        return val.tolist()