Python numpy 模块,inf() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.inf()

项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def plot_eigenvectors(Vh, U, mytitle, which = [0,1,2,5,10,15]):
    assert len(which) % 3 == 0
    nrows = len(which) / 3
    subplot_loc = nrows*100 + 30
    plt.figure(figsize=(18,4*nrows))

    title_stamp = mytitle + " {0}" 
    u = dl.Function(Vh)
    counter=1
    for i in which:
        assert i < U.shape[1]
        Ui = U[:,i]
        if Ui[0] >= 0:
            s = 1./np.linalg.norm(Ui, np.inf)
        else:
            s = -1./np.linalg.norm(Ui, np.inf)
        u.vector().set_local(s*Ui)
        plot(u, subplot_loc=(subplot_loc+counter), mytitle=title_stamp.format(i), vmin=-1, vmax=1)
        counter = counter+1
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def exportU(self, Vh, fname, varname = "evect", normalize=1):
        """
        Export in paraview the generalized eigenvectors U.
        Inputs:
        - Vh:        the parameter finite element space
        - fname:     the name of the paraview output file
        - varname:   the name of the paraview variable
        - normalize: if True the eigenvector are rescaled such that || u ||_inf = 1 
        """
        evect = Function(Vh, name=varname)
        fid = File(fname)

        for i in range(0,self.U.shape[1]):
            Ui = self.U[:,i]
            if normalize:
                s = 1/np.linalg.norm(Ui, np.inf)
                evect.vector().set_local(s*Ui)
            else:
                evect.vector().set_local(Ui)
            fid << evect
项目:hyperband    作者:zygmuntz    | 项目源码 | 文件源码
def __init__( self, get_params_function, try_params_function ):
        self.get_params = get_params_function
        self.try_params = try_params_function

        self.max_iter = 81      # maximum iterations per configuration
        self.eta = 3            # defines configuration downsampling rate (default = 3)

        self.logeta = lambda x: log( x ) / log( self.eta )
        self.s_max = int( self.logeta( self.max_iter ))
        self.B = ( self.s_max + 1 ) * self.max_iter

        self.results = []   # list of dicts
        self.counter = 0
        self.best_loss = np.inf
        self.best_counter = -1


    # can be called multiple times
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
项目:genomedisco    作者:kundajelab    | 项目源码 | 文件源码
def load_data(infile, chroms, resolutions):
    starts = infile['starts'][...]
    chromosomes = infile['chromosomes'][...]
    data = {}
    for res in resolutions:
        data[res] = {}
        for i, chrom in enumerate(chromosomes):
            if chrom not in chroms:
                continue
            start = (starts[i] / res) * res
            dist = infile['dist.%s.%i' % (chrom, res)][...]
            valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
            corr = infile['corr.%s.%i' % (chrom, res)][...]
            valid = numpy.zeros(corr.shape, dtype=numpy.bool)
            N, M = corr.shape
            valid = numpy.zeros((N, M), dtype=numpy.int32)
            for i in range(min(N - 1, M)):
                P = N - i - 1
                valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
            temp = corr * dist
            valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
            data[res][chrom] = [start, temp, valid]
    return data
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def monotoneTFosc(f):
    """Maps [-inf,inf] to [-inf,inf] with different constants
    for positive and negative part.

    """
    if np.isscalar(f):
        if f > 0.:
            f = np.log(f) / 0.1
            f = np.exp(f + 0.49 * (np.sin(f) + np.sin(0.79 * f))) ** 0.1
        elif f < 0.:
            f = np.log(-f) / 0.1
            f = -np.exp(f + 0.49 * (np.sin(0.55 * f) + np.sin(0.31 * f))) ** 0.1
        return f
    else:
        f = np.asarray(f)
        g = f.copy()
        idx = (f > 0)
        g[idx] = np.log(f[idx]) / 0.1
        g[idx] = np.exp(g[idx] + 0.49 * (np.sin(g[idx]) + np.sin(0.79 * g[idx])))**0.1
        idx = (f < 0)
        g[idx] = np.log(-f[idx]) / 0.1
        g[idx] = -np.exp(g[idx] + 0.49 * (np.sin(0.55 * g[idx]) + np.sin(0.31 * g[idx])))**0.1
        return g
项目:vrep-env    作者:ycps    | 项目源码 | 文件源码
def get_float_parameter(self, param_id):
        return self.RAPI_rc(vrep.simxGetFloatingParameter( self.cID,
            param_id,
            vrep.simx_opmode_blocking))[0]

    # openai/gym

    # Set this in SOME subclasses
    #metadata = {'render.modes': []}
    #reward_range = (-np.inf, np.inf)

    # Override in SOME subclasses
    #def _close(self): pass

    # Set these in ALL subclasses
    #action_space = None
    #observation_space = None

    # Override in ALL subclasses
    #def _step(self, action): raise NotImplementedError
    #def _reset(self): raise NotImplementedError
    #def _render(self, mode='human', close=False): return
    #def _seed(self, seed=None): return []
项目:invo    作者:rafidrm    | 项目源码 | 文件源码
def _solveRelativeDG(self, points):
        """ Solves the norm constrained version of the problem.

            min sum z_q
            st  z_q >= c'x_q - 1
                z_q >= 1 - c'x_q
                A'y = c
                b'y = 1
                ||c|| = 1
                y >= 0
        """
        if self.normalize_c == 1:
            error = self._solveRelativeDGNorm1(points)
        elif self.normalize_c == np.inf:
            error = self._solveRelativeDGNormInf(points)
        return error
项目:invo    作者:rafidrm    | 项目源码 | 文件源码
def _solveFeasibleProjection(self, points):
        m, n = self.A.shape
        bestResult = np.inf

        for i in range(m):
            if i in self.ban_constraints:
                result = np.inf
            else:
                ai = self.A[i]
                bi = self.b[i]
                result = self._project_to_hyperplane(points, ai, bi)

            if result < bestResult:
                bestResult = result
                self.dual = np.zeros(m)
                self.dual[i] = 1.0 / np.linalg.norm(ai, np.inf)
                self.c = ai / np.linalg.norm(ai, np.inf)
        self._solved = True
        #self.dual = self.dual.T.tolist()[0]
        self.c = self.c.tolist()[0]
        self.error = bestResult
        return result
项目:invo    作者:rafidrm    | 项目源码 | 文件源码
def _initialize_kwargs(self, kwargs):
        # common kwargs
        if 'verbose' in kwargs:
            assert isinstance(kwargs['verbose'],
                              bool), 'verbose needs to be True or False.'
            self._verbose = kwargs['verbose']
        if 'tol' in kwargs:
            assert isinstance(kwargs['tol'],
                              int), 'tolerance needs to be an integer.'
            self.tol = kwargs['tol']

        # class specific kwargs
        if 'p' in kwargs:
            assert isinstance(
                kwargs['p'],
                int) or kwargs['p'] is 'inf', 'p needs to be an integer'
            self.p = kwargs['p']

        return kwargs
项目:DeepWorks    作者:daigo0927    | 项目源码 | 文件源码
def _build_graph(self, image_size):

        self.image_size = image_size
        self.images = tf.placeholder(tf.float32,
                                     shape = (None, image_size, image_size, 3))
        images_mini = tf.image.resize_images(self.images,
                                             size = (int(image_size/4),
                                                     int(image_size/4)))
        self.images_blur = tf.image.resize_images(images_mini,
                                                  size = (image_size, image_size))

        self.net = U_Net(output_ch = 3, block_fn = 'origin')
        self.images_reconst = self.net(self.images_blur, reuse = False)
        # self.image_reconst can be [-inf +inf], so need to clip its value if visualize them as images.
        self.loss = tf.reduce_mean((self.images_reconst - self.images)**2)
        self.opt = tf.train.AdamOptimizer()\
                           .minimize(self.loss, var_list = self.net.vars)

        self.saver = tf.train.Saver()
        self.sess.run(tf.global_variables_initializer())
项目:psola    作者:jcreinhold    | 项目源码 | 文件源码
def test_pitch_estimation(self):
        """
        test pitch estimation algo with contrived small example
        if pitch is within 5 Hz, then say its good (for this small example,
        since the algorithm wasn't made for this type of synthesized signal)
        """
        cfg = ExperimentConfig(pitch_strength_thresh=-np.inf)
        # the next 3 variables are in Hz
        tolerance = 5
        fs = 48000
        f = 150
        # create a sine wave of f Hz freq sampled at fs Hz
        x = np.sin(2*np.pi * f/fs * np.arange(2**10))
        # estimate the pitch, it should be close to f
        p, t, s = pest.pitch_estimation(x, fs, cfg)
        self.assertTrue(np.all(np.abs(p - f) < tolerance))
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def test_PlotCurveItem():
    p = pg.GraphicsWindow()
    p.ci.layout.setContentsMargins(4, 4, 4, 4)  # default margins vary by platform
    v = p.addViewBox()
    p.resize(200, 150)
    data = np.array([1,4,2,3,np.inf,5,7,6,-np.inf,8,10,9,np.nan,-1,-2,0])
    c = pg.PlotCurveItem(data)
    v.addItem(c)
    v.autoRange()

    # Check auto-range works. Some platform differences may be expected..
    checkRange = np.array([[-1.1457564053237301, 16.145756405323731], [-3.076811473165955, 11.076811473165955]])
    assert np.allclose(v.viewRange(), checkRange)

    assertImageApproved(p, 'plotcurveitem/connectall', "Plot curve with all points connected.")

    c.setData(data, connect='pairs')
    assertImageApproved(p, 'plotcurveitem/connectpairs', "Plot curve with pairs connected.")

    c.setData(data, connect='finite')
    assertImageApproved(p, 'plotcurveitem/connectfinite', "Plot curve with finite points connected.")

    c.setData(data, connect=np.array([1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0]))
    assertImageApproved(p, 'plotcurveitem/connectarray', "Plot curve with connection array.")
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`Event` corresponding to the time slice of
        the original :class:`Event` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf

        indices = (self >= _t_start) & (self <= _t_stop)
        new_evt = self[indices]

        return new_evt
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`Epoch` corresponding to the time slice of
        the original :class:`Epoch` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf

        indices = (self >= _t_start) & (self <= _t_stop)

        new_epc = self[indices]
        new_epc.durations = self.durations[indices]
        new_epc.labels = self.labels[indices]
        return new_epc
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def test_rescaleData():
    dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
    for dtype1 in dtypes:
        for dtype2 in dtypes:
            data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
            for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
                if dtype2.kind in 'iu':
                    lim = np.iinfo(dtype2)
                    lim = lim.min, lim.max
                else:
                    lim = (-np.inf, np.inf)
                s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
                s2 = pg.rescaleData(data, scale, offset, dtype2)
                assert s1.dtype == s2.dtype
                if dtype2.kind in 'iu':
                    assert np.all(s1 == s2)
                else:
                    assert np.allclose(s1, s2)
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`Epoch` corresponding to the time slice of
        the original :class:`Epoch` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf

        indices = (self >= _t_start) & (self <= _t_stop)

        new_epc = self[indices]
        new_epc.durations = self.durations[indices]
        new_epc.labels = self.labels[indices]
        return new_epc
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def time_slice(self, t_start, t_stop):
        '''
        Creates a new :class:`SpikeTrain` corresponding to the time slice of
        the original :class:`SpikeTrain` between (and including) times
        :attr:`t_start` and :attr:`t_stop`. Either parameter can also be None
        to use infinite endpoints for the time interval.
        '''
        _t_start = t_start
        _t_stop = t_stop
        if t_start is None:
            _t_start = -np.inf
        if t_stop is None:
            _t_stop = np.inf
        indices = (self >= _t_start) & (self <= _t_stop)
        new_st = self[indices]

        new_st.t_start = max(_t_start, self.t_start)
        new_st.t_stop = min(_t_stop, self.t_stop)
        if self.waveforms is not None:
            new_st.waveforms = self.waveforms[indices]

        return new_st
项目:bayestsa    作者:thalesians    | 项目源码 | 文件源码
def __call__(self, params):
        print '???', params
        sd1 = params[0]
        sd2 = params[1]
        cor = params[2]

        if sd1 < 0. or sd1 > 10. or sd2 < 0. or sd2 > 10. or cor < -1. or cor > 1.:
            return np.inf

        bandwidth = maths.stats.choleskysqrt2d(sd1, sd2, cor)
        bandwidthdet = la.det(bandwidth)
        bandwidthinv = la.inv(bandwidth)

        diff = sample[self.__iidx] - sample[self.__jidx]
        temp = diff.dot(bandwidthinv.T)
        temp *= temp
        e = np.exp(np.sum(temp, axis=1))
        s = np.sum(e**(-.25) - 4 * e**(-.5))

        cost = self.__n / bandwidthdet + (2. / bandwidthdet) * s
        print '!!!', cost
        return cost / 10000.
项目:dc_stat_think    作者:justinbois    | 项目源码 | 文件源码
def test_ecdf_formal_custom():
    assert dcst.ecdf_formal(0.1, [0, 1, 2, 3]) == 0.25
    assert dcst.ecdf_formal(-0.1, [0, 1, 2, 3]) == 0.0
    assert dcst.ecdf_formal(0.1, [3, 2, 0, 1]) == 0.25
    assert dcst.ecdf_formal(-0.1, [3, 2, 0, 1]) == 0.0
    assert dcst.ecdf_formal(2, [3, 2, 0, 1]) == 0.75
    assert dcst.ecdf_formal(1, [3, 2, 0, 1]) == 0.5
    assert dcst.ecdf_formal(3, [3, 2, 0, 1]) == 1.0
    assert dcst.ecdf_formal(0, [3, 2, 0, 1]) == 0.25

    with pytest.raises(RuntimeError) as excinfo:
        dcst.ecdf_formal([np.nan, np.inf], [0, 1, 2, 3])
    excinfo.match('Input cannot have NaNs.')

    correct = np.array([1.0, 1.0])
    result = dcst.ecdf_formal([3.1, np.inf], [3, 2, 0, 1])
    assert np.allclose(correct, result, atol=atol)
项目:dc_stat_think    作者:justinbois    | 项目源码 | 文件源码
def test_draw_bs_pairs_linreg_nan():
    x = np.array([])
    y = np.array([])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan])
    y = np.array([np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan, 1])
    y = np.array([1, np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([0, 1, 5])
    y = np.array([1, np.inf, 3])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('All entries in arrays must be finite.')
项目:dc_stat_think    作者:justinbois    | 项目源码 | 文件源码
def test_pearson_r_edge():
    x = np.array([])
    y = np.array([])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan])
    y = np.array([np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan, 1])
    y = np.array([1, np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([0, 1, 5])
    y = np.array([1, np.inf, 3])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('All entries in arrays must be finite.')
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def make_3d_mask(img_shape, center, radius, shape='sphere'):
    mask = np.zeros(img_shape)
    radius = np.rint(radius)
    center = np.rint(center)
    sz = np.arange(int(max(center[0] - radius, 0)), int(max(min(center[0] + radius + 1, img_shape[0]), 0)))
    sy = np.arange(int(max(center[1] - radius, 0)), int(max(min(center[1] + radius + 1, img_shape[1]), 0)))
    sx = np.arange(int(max(center[2] - radius, 0)), int(max(min(center[2] + radius + 1, img_shape[2]), 0)))
    sz, sy, sx = np.meshgrid(sz, sy, sx)
    if shape == 'cube':
        mask[sz, sy, sx] = 1.
    elif shape == 'sphere':
        distance2 = ((center[0] - sz) ** 2
                     + (center[1] - sy) ** 2
                     + (center[2] - sx) ** 2)
        distance_matrix = np.ones_like(mask) * np.inf
        distance_matrix[sz, sy, sx] = distance2
        mask[(distance_matrix <= radius ** 2)] = 1
    elif shape == 'gauss':
        z, y, x = np.ogrid[:mask.shape[0], :mask.shape[1], :mask.shape[2]]
        distance = ((z - center[0]) ** 2 + (y - center[1]) ** 2 + (x - center[2]) ** 2)
        mask = np.exp(- 1. * distance / (2 * radius ** 2))
        mask[(distance > 3 * radius ** 2)] = 0
    return mask
项目:WGAN_GP    作者:daigo0927    | 项目源码 | 文件源码
def __init__(self, datadir,
                 target_size = 108, image_size = 64,
                 split = 5, num_utilize = np.inf):

        self.datadir = datadir
        self.target_size = target_size
        self.image_size = image_size
        self.split = split

        self.image_paths = []
        for d in self.datadir:
            self.image_paths += glob(d + '/*.jpg')
        self.data_size = min(len(self.image_paths), num_utilize)
        print('data size : {}'.format(self.data_size))
        self.image_paths = np.random.choice(self.image_paths,
                                            self.data_size,
                                            replace = False)
        self.data = None
项目:pyshearlab    作者:stefanloock    | 项目源码 | 文件源码
def SLcomputePSNR(X, Xnoisy):
    """
    SLcomputePSNR Compute peak signal to noise ratio (PSNR).

    Usage:

        PSNR = SLcomputePSNR(X, Xnoisy)

    Input:

        X:      2D or 3D signal.
        Xnoisy: 2D or 3D noisy signal.

    Output:

        PSNR: The peak signal to noise ratio (in dB).
    """

    MSEsqrt = np.linalg.norm(X-Xnoisy) / np.sqrt(X.size)
    if MSEsqrt == 0:
        return np.inf
    else:
        return 20 * np.log10(255 / MSEsqrt)
项目:nn4nlp-code    作者:neubig    | 项目源码 | 文件源码
def decoding(self, src_encodings):
        src_len = len(src_encodings)

        # NOTE: should transpose before calling `mst` method!
        s_arc, s_label = self.cal_scores(src_encodings)
        s_arc_values = s_arc.npvalue().transpose()  # src_len, src_len
        s_label_values = np.asarray([x.npvalue() for x in s_label]).transpose((2, 1, 0))  # src_len, src_len, n_labels

        # weights = np.zeros((src_len + 1, src_len + 1))
        # weights[0, 1:(src_len + 1)] = np.inf
        # weights[1:(src_len + 1), 0] = np.inf
        # weights[1:(src_len + 1), 1:(src_len + 1)] = s_arc_values[batch]
        weights = s_arc_values
        pred_heads = mst(weights)
        pred_labels = [np.argmax(labels[head]) for head, labels in zip(pred_heads, s_label_values)]

        return pred_heads, pred_labels
项目:atoolbox    作者:liweitianux    | 项目源码 | 文件源码
def __init__(self, image, freq, pixelsize, ra0, dec0,
                 minvalue=1e-4, maxvalue=np.inf, mask=None,
                 projection="CAR"):
        self.image = image  # [K] (brightness temperature)
        self.freq = freq  # [MHz]
        self.pixelsize = pixelsize  # [arcsec]
        self.ra0 = ra0  # [deg]
        self.dec0 = dec0  # [deg]
        self.minvalue = minvalue
        self.maxvalue = maxvalue
        self.mask = mask
        self.projection = projection
        logger.info("SkyModel: Loaded image @ %.2f [MHz], " % freq +
                    "%.1f [arcsec/pixel]" % pixelsize)
        logger.info("Image size: %dx%d" % self.shape)
        logger.info("FoV size: %.2fx%.2f [deg^2]" % self.fov)
项目:histwords    作者:williamleif    | 项目源码 | 文件源码
def make_data_frame(words, years, feature_dict):
    """
    Makes a pandas dataframe for word, years, and dictionary of feature funcs.
    Each feature func should take (word, year) and return feature value.
    Constructed dataframe has flat csv style structure and missing values are removed.
    """

    temp = collections.defaultdict(list)
    feature_dict["word"] = lambda word, year : word
    feature_dict["year"] = lambda word, year : year
    for word in words:
        for year in years:
            for feature, feature_func in feature_dict.iteritems():
                temp[feature].append(feature_func(word, year))
    df = pd.DataFrame(temp)
    df = df.replace([np.inf, -np.inf], np.nan)
    df = df.dropna()
    return df
项目:rlflow    作者:tpbarron    | 项目源码 | 文件源码
def run_test_episode(env, policy, episode_len=np.inf, render=False):
    """
    Run an episode and return the reward
    """
    episode_itr = 0
    total_reward = 0.0
    done = False
    obs = env.reset()
    while not done and episode_itr < episode_len:
        if render:
            env.render()

        obs = apply_prediction_preprocessors(policy, obs)
        action = policy.predict(obs)
        action = apply_prediction_postprocessors(policy, action)

        obs, reward, done, _ = env.step(action)

        total_reward += reward
        episode_itr += 1

    return total_reward
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def logpdf(self, samples):
        '''
        Calculates the log of the probability density function.

        Parameters
        ----------
        samples : array_like
            n-by-2 matrix of samples where n is the number of samples.

        Returns
        -------
        vals : ndarray
            Log of the probability density function evaluated at `samples`.
        '''
        samples = np.copy(np.asarray(samples))
        samples = self.__rotate_input(samples)
        inner = np.all(np.bitwise_and(samples > 0.0, samples < 1.0), axis=1)
        outer = np.invert(inner)
        vals = np.zeros(samples.shape[0])
        vals[inner] = self._logpdf(samples[inner, :])
        # Assign zero mass to border
        vals[outer] = -np.inf
        return vals
项目:mixedvines    作者:asnelt    | 项目源码 | 文件源码
def _logcdf(self, samples):
        lower = np.full(2, -np.inf)
        upper = norm.ppf(samples)
        limit_flags = np.zeros(2)
        if upper.shape[0] > 0:

            def func1d(upper1d):
                '''
                Calculates the multivariate normal cumulative distribution
                function of a single sample.
                '''
                return mvn.mvndst(lower, upper1d, limit_flags, self.theta)[1]

            vals = np.apply_along_axis(func1d, -1, upper)
        else:
            vals = np.empty((0, ))
        old_settings = np.seterr(divide='ignore')
        vals = np.log(vals)
        np.seterr(**old_settings)
        vals[np.any(samples == 0.0, axis=1)] = -np.inf
        vals[samples[:, 0] == 1.0] = np.log(samples[samples[:, 0] == 1.0, 1])
        vals[samples[:, 1] == 1.0] = np.log(samples[samples[:, 1] == 1.0, 0])
        return vals
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def munch(self, data, panel_params):
        ranges = self.range(panel_params)

        data.loc[data['x'] == -np.inf, 'x'] = ranges.x[0]
        data.loc[data['x'] == np.inf, 'x'] = ranges.x[1]
        data.loc[data['y'] == -np.inf, 'y'] = ranges.y[0]
        data.loc[data['y'] == np.inf, 'y'] = ranges.y[1]

        dist = self.distance(data['x'], data['y'], panel_params)
        bool_idx = data['group'].iloc[1:].values != \
            data['group'].iloc[:-1].values
        dist[bool_idx] = np.nan

        # Munch
        munched = munch_data(data, dist)
        return munched
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def test_remove_missing():
    df = pd.DataFrame({'a': [1.0, np.NaN, 3, np.inf],
                       'b': [1, 2, 3, 4]})
    df2 = pd.DataFrame({'a': [1.0, 3, np.inf],
                       'b': [1, 3, 4]})
    df3 = pd.DataFrame({'a': [1.0, 3],
                       'b': [1, 3]})

    with warnings.catch_warnings(record=True) as w:
        res = remove_missing(df, na_rm=True, vars=['b'])
        res.equals(df)

        res = remove_missing(df)
        res.equals(df2)

        res = remove_missing(df, na_rm=True, finite=True)
        res.equals(df3)
        assert len(w) == 1
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def test_removes_infinite_values():
    df = mtcars.copy()
    df.loc[[0, 5], 'wt'] = [np.inf, -np.inf]
    p = ggplot(df, aes(x='wt')) + geom_bar()

    with pytest.warns(UserWarning) as record:
        p._build()

    def removed_2_row_with_infinites(record):
        for item in record:
            msg = str(item.message).lower()
            if '2 rows' in msg and 'non-finite' in msg:
                return True
        return False

    assert removed_2_row_with_infinites(record)
项目:MOSFiT    作者:guillochon    | 项目源码 | 文件源码
def process(self, **kwargs):
        """Process module."""
        self._times = kwargs[self.key('dense_times')]
        self._alpha = kwargs[self.key('alpha')]
        self._beta = kwargs[self.key('beta')]
        self._t_peak = kwargs[self.key('tpeak')]
        self._lum_scale = kwargs[self.key('lumscale')]
        self._rest_t_explosion = kwargs[self.key('resttexplosion')]

        ts = [
            np.inf
            if self._rest_t_explosion > x else (x - self._rest_t_explosion)
            for x in self._times
        ]

        luminosities = [
            self._lum_scale * (1.0 - np.exp(-t / self._t_peak)) **
            self._alpha * (t / self._t_peak) ** (-self._beta) for t in ts
        ]
        luminosities = [0.0 if isnan(x) else x for x in luminosities]

        return {self.dense_key('luminosities'): luminosities}
项目:MOSFiT    作者:guillochon    | 项目源码 | 文件源码
def process(self, **kwargs):
        """Process module."""
        self._times = kwargs[self.key('dense_times')]
        self._mnickel = kwargs[self.key('fnickel')] * kwargs[
            self.key('mejecta')]
        self._rest_t_explosion = kwargs[self.key('resttexplosion')]

        # From 1994ApJS...92..527N
        ts = [
            np.inf
            if self._rest_t_explosion > x else (x - self._rest_t_explosion)
            for x in self._times
        ]
        luminosities = [
            self._mnickel * (self.NI56_LUM * np.exp(-t / self.NI56_LIFE) +
                             self.CO56_LUM * np.exp(-t / self.CO56_LIFE))
            for t in ts
        ]
        luminosities = [0.0 if isnan(x) else x for x in luminosities]

        return {self.dense_key('luminosities'): luminosities}
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def pick_n_hidden(data, repeat=1, verbose=False, **kwargs):
    """A helper function to pick the number of hidden factors / clusters to use."""
    # TODO: Use an efficient search strategy
    max_score = - np.inf
    n = 1
    all_scores = []
    while True:
        scores = []
        for _ in range(repeat):
            out = Corex(n_hidden=n, gpu=False, **kwargs).fit(data)
            m = out.moments
            scores.append(m["TC_no_overlap"])
        score = max(scores)
        if verbose:
            print(("n: {}, score: {}".format(n, score)))
        all_scores.append((score, n))
        if score < 0.95 * max_score:
            break
        else:
            n += 1
            if score > max_score:
                max_score = score
    return all_scores
项目:cleverhans    作者:tensorflow    | 项目源码 | 文件源码
def help_generate_np_gives_adversarial_example(self, ord):
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        x_adv = self.attack.generate_np(x_val, eps=.5, ord=ord,
                                        clip_min=-5, clip_max=5)
        if ord == np.inf:
            delta = np.max(np.abs(x_adv - x_val), axis=1)
        elif ord == 1:
            delta = np.sum(np.abs(x_adv - x_val), axis=1)
        elif ord == 2:
            delta = np.sum(np.square(x_adv - x_val), axis=1)**.5
        self.assertClose(delta, 0.5)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)
        self.assertTrue(np.mean(orig_labs == new_labs) < 0.5)
项目:cleverhans    作者:tensorflow    | 项目源码 | 文件源码
def test_attack_strength(self):
        """
        If clipping is not done at each iteration (not passing clip_min and
        clip_max to fgm), this attack fails by
        np.mean(orig_labels == new_labels) == .39.
        """
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        x_adv = self.attack.generate_np(x_val, eps=1.0, ord=np.inf,
                                        clip_min=0.5, clip_max=0.7,
                                        nb_iter=5)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)
        self.assertTrue(np.mean(orig_labs == new_labs) < 0.1)
项目:mss_pytorch    作者:Js-Mim    | 项目源码 | 文件源码
def ExpM(self):
        """
            Approximate a signal via element-wise exponentiation. As appears in :
            S.I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller,
            "Deep Neural Networks for Dynamic Range Compression in Mastering Applications,"
            in proc. of the 140th Audio Engineering Society Convention, Paris, 2016.
        Args:
            sTarget:   (2D ndarray) Magnitude Spectrogram of the target component
            nResidual: (2D ndarray) Magnitude Spectrogram of the residual component
        Returns:
            mask:      (2D ndarray) Array that contains time frequency gain values

        """
        print('Exponential mask')
        self._mask = np.divide(np.log(self._sTarget.clip(self._eps, np.inf)**self._alpha),\
                               np.log(self._nResidual.clip(self._eps, np.inf)**self._alpha))
项目:mitre    作者:gerberlab    | 项目源码 | 文件源码
def prior_contribution_phylogeny_parameters(self, state):
        """ Evaluate prior probability of phylogeny mean/std

        Log scale.

        """
        mean_prior = scipy.stats.norm.logpdf(
            state.phylogeny_mean,
            loc = self.phylogeny_lambda_l,
            scale = np.sqrt(self.phylogeny_mean_hyperprior_variance)
        )
        if (0. <= state.phylogeny_std and
            state.phylogeny_std <= self.phylogeny_std_upper_bound):
            std_prior = -1.0*np.log(self.phylogeny_std_upper_bound)
        else:
            std_prior = -np.inf
        return mean_prior + std_prior
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):
        #Test function
        fx = lambda x, y: np.sin(2*np.pi*x)
        fy = lambda x, y: np.sin(2*np.pi*y)
        sol = lambda x, y: 2*np.pi*(np.cos(2*np.pi*x)+np.cos(2*np.pi*y))

        Fc = cartF2(self.M, fx, fy)
        F = self.M.projectFaceVector(Fc)

        divF = self.M.faceDiv.dot(F)
        divF_ana = call2(sol, self.M.gridCC)

        err = np.linalg.norm((divF-divF_ana), np.inf)

        # self.M.plotImage(divF-divF_ana, showIt=True)

        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):
        # fun: i (cos(y)) + j (cos(z)) + k (cos(x))
        # sol: i (sin(z)) + j (sin(x)) + k (sin(y))

        funX = lambda x, y, z: np.cos(2*np.pi*y)
        funY = lambda x, y, z: np.cos(2*np.pi*z)
        funZ = lambda x, y, z: np.cos(2*np.pi*x)

        solX = lambda x, y, z: 2*np.pi*np.sin(2*np.pi*z)
        solY = lambda x, y, z: 2*np.pi*np.sin(2*np.pi*x)
        solZ = lambda x, y, z: 2*np.pi*np.sin(2*np.pi*y)

        Ec = cartE3(self.M, funX, funY, funZ)
        E = self.M.projectEdgeVector(Ec)

        Fc = cartF3(self.M, solX, solY, solZ)
        curlE_ana = self.M.projectFaceVector(Fc)

        curlE = self.M.edgeCurl.dot(E)

        err = np.linalg.norm((curlE - curlE_ana), np.inf)
        # err = np.linalg.norm((curlE - curlE_ana)*self.M.area, 2)

        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):
        #Test function
        fun = lambda x, y, z: (np.cos(x)+np.cos(y)+np.cos(z))
        # i (sin(x)) + j (sin(y)) + k (sin(z))
        solX = lambda x, y, z: -np.sin(x)
        solY = lambda x, y, z: -np.sin(y)
        solZ = lambda x, y, z: -np.sin(z)

        phi = call3(fun, self.M.gridN)
        gradE = self.M.nodalGrad.dot(phi)

        Ec = cartE3(self.M, solX, solY, solZ)
        gradE_ana = self.M.projectEdgeVector(Ec)

        err = np.linalg.norm((gradE-gradE_ana), np.inf)

        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):
        #Test function
        fun = lambda x, y: (np.cos(x)+np.cos(y))
        # i (sin(x)) + j (sin(y)) + k (sin(z))
        solX = lambda x, y: -np.sin(x)
        solY = lambda x, y: -np.sin(y)

        phi = call2(fun, self.M.gridN)
        gradE = self.M.nodalGrad.dot(phi)

        Ec = cartE2(self.M, solX, solY)
        gradE_ana = self.M.projectEdgeVector(Ec)

        err = np.linalg.norm((gradE-gradE_ana), np.inf)

        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):

        funR = lambda r, z: np.sin(2.*np.pi*r)
        funZ = lambda r, z: np.sin(2.*np.pi*z)

        sol = lambda r, t, z: (2*np.pi*r*np.cos(2*np.pi*r) + np.sin(2*np.pi*r))/r + 2*np.pi*np.cos(2*np.pi*z)

        Fc = cylF2(self.M, funR, funZ)
        Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]]
        F = self.M.projectFaceVector(Fc)

        divF = self.M.faceDiv.dot(F)
        divF_ana = call3(sol, self.M.gridCC)

        err = np.linalg.norm((divF-divF_ana), np.inf)
        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):

        funR = lambda r, z: np.sin(2.*np.pi*z) * np.cos(np.pi*r)
        funZ = lambda r, z: np.sin(3.*np.pi*z) * np.cos(2.*np.pi*r)

        Fc = cylF2(self.M, funR, funZ)
        Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]]
        F = self.M.projectFaceVector(Fc)

        aveF = self.M.aveF2CCV * F

        aveF_anaR = funR(self.M.gridCC[:, 0], self.M.gridCC[:, 2])
        aveF_anaZ = funZ(self.M.gridCC[:, 0], self.M.gridCC[:, 2])

        aveF_ana = np.hstack([aveF_anaR, aveF_anaZ])

        err = np.linalg.norm((aveF-aveF_ana), np.inf)
        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):
        #Test function
        fx = lambda x: -2*np.pi*np.sin(2*np.pi*x)
        sol = lambda x: np.cos(2*np.pi*x)


        xc = sol(self.M.gridCC)

        gradX_ana = fx(self.M.gridFx)

        bc = np.array([1,1])
        self.M.setCellGradBC('dirichlet')
        gradX = self.M.cellGrad.dot(xc) + self.M.cellGradBC*bc

        err = np.linalg.norm((gradX-gradX_ana), np.inf)

        return err
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def getError(self):
        #Test function
        fx = lambda x, y: 2*np.pi*np.cos(2*np.pi*x)*np.sin(2*np.pi*y)
        fy = lambda x, y: 2*np.pi*np.cos(2*np.pi*y)*np.sin(2*np.pi*x)
        sol = lambda x, y: np.sin(2*np.pi*x)*np.sin(2*np.pi*y)

        xc = call2(sol, self.M.gridCC)

        Fc = cartF2(self.M, fx, fy)
        gradX_ana = self.M.projectFaceVector(Fc)

        self.M.setCellGradBC('dirichlet')
        gradX = self.M.cellGrad.dot(xc)

        err = np.linalg.norm((gradX-gradX_ana), np.inf)

        return err