我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.ceil()。
def make_grid(I, ncols=8): assert isinstance(I, np.ndarray), 'plugin error, should pass numpy array here' assert I.ndim == 4 and I.shape[1] == 3 nimg = I.shape[0] H = I.shape[2] W = I.shape[3] ncols = min(nimg, ncols) nrows = int(np.ceil(float(nimg) / ncols)) canvas = np.zeros((3, H * nrows, W * ncols)) i = 0 for y in range(nrows): for x in range(ncols): if i >= nimg: break canvas[:, y * H:(y + 1) * H, x * W:(x + 1) * W] = I[i] i = i + 1 return canvas
def saveHintonPlot(self, matrix, num_tests, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" fig,ax = plt.subplots(1,1) if not max_weight: max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(0.5*w/num_tests)) # Need to scale so that it is between 0 and 0.5 rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis() plt.savefig(self.figures_path + self.save_prefix + '-Hinton.eps') plt.close()
def fftfilt(b, x, *n): N_x = len(x) N_b = len(b) N = 2**np.arange(np.ceil(np.log2(N_b)),np.floor(np.log2(N_x))) cost = np.ceil(N_x / (N - N_b + 1)) * N * (np.log2(N) + 1) N_fft = int(N[np.argmin(cost)]) N_fft = int(N_fft) # Compute the block length: L = int(N_fft - N_b + 1) # Compute the transform of the filter: H = np.fft.fft(b,N_fft) y = np.zeros(N_x, x.dtype) i = 0 while i <= N_x: il = np.min([i+L,N_x]) k = np.min([i+N_fft,N_x]) yt = np.fft.ifft(np.fft.fft(x[i:il],N_fft)*H,N_fft) # Overlap.. y[i:k] = y[i:k] + yt[:k-i] # and add i += L return y
def laplace_gpu(y_gpu, mode='valid'): shape = np.array(y_gpu.shape).astype(np.uint32) dtype = y_gpu.dtype block_size = (16,16,1) grid_size = (int(np.ceil(float(shape[1])/block_size[0])), int(np.ceil(float(shape[0])/block_size[1]))) shared_size = int((2+block_size[0])*(2+block_size[1])*dtype.itemsize) preproc = _generate_preproc(dtype, shape) mod = SourceModule(preproc + kernel_code, keep=True) if mode == 'valid': laplace_fun_gpu = mod.get_function("laplace_valid") laplace_gpu = cua.empty((y_gpu.shape[0]-2, y_gpu.shape[1]-2), y_gpu.dtype) if mode == 'same': laplace_fun_gpu = mod.get_function("laplace_same") laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1]), y_gpu.dtype) laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata, block=block_size, grid=grid_size, shared=shared_size) return laplace_gpu
def split(args): if args.skip or args.is_multi_genome: return {'chunks': [{'__mem_gb': cr_constants.MIN_MEM_GB}]} chunks = [] min_clusters = cr_constants.MIN_N_CLUSTERS max_clusters = args.max_clusters if args.max_clusters is not None else cr_constants.MAX_N_CLUSTERS_DEFAULT matrix_mem_gb = np.ceil(MEM_FACTOR * cr_matrix.GeneBCMatrix.get_mem_gb_from_matrix_h5(args.matrix_h5)) for n_clusters in xrange(min_clusters, max_clusters + 1): chunk_mem_gb = max(matrix_mem_gb, cr_constants.MIN_MEM_GB) chunks.append({ 'n_clusters': n_clusters, '__mem_gb': chunk_mem_gb, }) return {'chunks': chunks}
def expand_to_chunk_size(self, chunk_size, offset=Vec(0,0,0, dtype=int)): """ Align a potentially non-axis aligned bbox to the grid by growing it to the nearest grid lines. Required: chunk_size: arraylike (x,y,z), the size of chunks in the dataset e.g. (64,64,64) Optional: offset: arraylike (x,y,z), the starting coordinate of the dataset """ chunk_size = np.array(chunk_size, dtype=np.float32) result = self.clone() result = result - offset result.minpt = np.floor(result.minpt / chunk_size) * chunk_size result.maxpt = np.ceil(result.maxpt / chunk_size) * chunk_size return result + offset
def shrink_to_chunk_size(self, chunk_size, offset=Vec(0,0,0, dtype=int)): """ Align a potentially non-axis aligned bbox to the grid by shrinking it to the nearest grid lines. Required: chunk_size: arraylike (x,y,z), the size of chunks in the dataset e.g. (64,64,64) Optional: offset: arraylike (x,y,z), the starting coordinate of the dataset """ chunk_size = np.array(chunk_size, dtype=np.float32) result = self.clone() result = result - offset result.minpt = np.ceil(result.minpt / chunk_size) * chunk_size result.maxpt = np.floor(result.maxpt / chunk_size) * chunk_size return result + offset
def _draw_single_box(image, xmin, ymin, xmax, ymax, display_str, font, color='black', thickness=4): draw = ImageDraw.Draw(image) (left, right, top, bottom) = (xmin, xmax, ymin, ymax) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) text_bottom = bottom # Reverse list and print from bottom to top. text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle( [(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text( (left + margin, text_bottom - text_height - margin), display_str, fill='black', font=font) return image
def resize_image(image,target_shape, pad_value = 0): assert isinstance(target_shape, list) or isinstance(target_shape, tuple) add_shape, subs_shape = [], [] image_shape = image.shape shape_difference = np.asarray(target_shape, dtype=int) - np.asarray(image_shape,dtype=int) for diff in shape_difference: if diff < 0: subs_shape.append(np.s_[int(np.abs(np.ceil(diff/2))):int(np.floor(diff/2))]) add_shape.append((0, 0)) else: subs_shape.append(np.s_[:]) add_shape.append((int(np.ceil(1.0*diff/2)),int(np.floor(1.0*diff/2)))) output = np.pad(image, tuple(add_shape), 'constant', constant_values=(pad_value, pad_value)) output = output[subs_shape] return output
def logTickValues(self, minVal, maxVal, size, stdTicks): ## start with the tick spacing given by tickValues(). ## Any level whose spacing is < 1 needs to be converted to log scale ticks = [] for (spacing, t) in stdTicks: if spacing >= 1.0: ticks.append((spacing, t)) if len(ticks) < 3: v1 = int(np.floor(minVal)) v2 = int(np.ceil(maxVal)) #major = list(range(v1+1, v2)) minor = [] for v in range(v1, v2): minor.extend(v + np.log10(np.arange(1, 10))) minor = [x for x in minor if x>minVal and x<maxVal] ticks.append((None, minor)) return ticks
def renderSymbol(symbol, size, pen, brush, device=None): """ Render a symbol specification to QImage. Symbol may be either a QPainterPath or one of the keys in the Symbols dict. If *device* is None, a new QPixmap will be returned. Otherwise, the symbol will be rendered into the device specified (See QPainter documentation for more information). """ ## Render a spot with the given parameters to a pixmap penPxWidth = max(np.ceil(pen.widthF()), 1) if device is None: device = QtGui.QImage(int(size+penPxWidth), int(size+penPxWidth), QtGui.QImage.Format_ARGB32) device.fill(0) p = QtGui.QPainter(device) try: p.setRenderHint(p.Antialiasing) p.translate(device.width()*0.5, device.height()*0.5) drawSymbol(p, symbol, size, pen, brush) finally: p.end() return device
def processBlocks(lines,header,obstimes,svset,headlines,sats): obstypes = header['# / TYPES OF OBSERV'][1:] blocks = Panel4D(labels=obstimes, items=list(svset), major_axis=obstypes, minor_axis=['data','lli','ssi']) ttime1 = 0 ttime2 = 0 for i in range(len(headlines)): linesinblock = len(sats[i])*int(np.ceil(header['# / TYPES OF OBSERV'][0]/5)) block = ''.join(lines[headlines[i]+1:headlines[i]+linesinblock+1]) t1 = time.time() bdf = _block2df(block,obstypes,sats[i],len(sats[i])) ttime1 += (time.time()-t1) t2 = time.time() blocks.loc[obstimes[i],sats[i]] = bdf ttime2 += (time.time()-t2) print("{0:.2f} seconds for _block2df".format(ttime1)) print("{0:.2f} seconds for panel assignments".format(ttime2)) return blocks
def reset(self): """ Resets the state of the generator""" self.step = 0 Y = np.argmax(self.Y,1) labels = np.unique(Y) idx = [] smallest = len(Y) for i,label in enumerate(labels): where = np.where(Y==label)[0] if smallest > len(where): self.slabel = i smallest = len(where) idx.append(where) self.idx = idx self.labels = labels self.n_per_class = int(self.batch_size // len(labels)) self.n_batches = int(np.ceil((smallest//self.n_per_class)))+1 self.update_probabilities()
def __init__(self, X, Y, batch_size,cropsize=0, truncate=False, sequential=False, random=True, val=False, class_weights=None): assert len(X) == len(Y), 'X and Y must be the same length {}!={}'.format(len(X),len(Y)) if sequential: print('Using sequential mode') print ('starting normal generator') self.X = X self.Y = Y self.rnd_idx = np.arange(len(Y)) self.Y_last_epoch = [] self.val = val self.step = 0 self.i = 0 self.cropsize=cropsize self.truncate = truncate self.random = False if sequential or val else random self.batch_size = int(batch_size) self.sequential = sequential self.c_weights = class_weights if class_weights else dict(zip(np.unique(np.argmax(Y,1)),np.ones(len(np.argmax(Y,1))))) assert set(np.argmax(Y,1)) == set([int(x) for x in self.c_weights.keys()]), 'not all labels in class weights' self.n_batches = int(len(X)//batch_size if truncate else np.ceil(len(X)/batch_size)) if self.random: self.randomize()
def calc_row_col(self, num_ex, num_items): num_rows_per_ex = int(np.ceil(num_items / self.max_num_col)) if num_items > self.max_num_col: num_col = self.max_num_col num_row = num_rows_per_ex * num_ex else: num_row = num_ex num_col = num_items def calc(ii, jj): col = jj % self.max_num_col row = num_rows_per_ex * ii + int(jj / self.max_num_col) return row, col return num_row, num_col, calc
def card_strength(self, include_gem=True): # Base attribute value from naked card base_attr = np.array([getattr(self, attr.lower()) for attr in attr_list], dtype=float) # Bonus from bond bond_bonus = np.array([self.bond*(attr==self.main_attr) for attr in attr_list], dtype=float) # Compute card-only attribute: base+bond card_only_attr = base_attr + bond_bonus if not include_gem: strength = np.array(card_only_attr, dtype=int).tolist() else: gem_type_list = ['Kiss', 'Perfume', 'Ring', 'Cross'] gem_matrix = {gem_type:np.zeros(3) for gem_type in gem_type_list} for gem in self.equipped_gems: gem_type = gem.name.split()[1] if gem_type in gem_type_list: gem_matrix[gem_type][attr_list.index(gem.attribute)] = gem.value / 100**(gem.effect=='attr_boost') strength = card_only_attr.copy() for gem_type in gem_type_list: if gem_type in ['Kiss', 'Perfume']: strength += gem_matrix[gem_type] elif gem_type in ['Ring', 'Cross']: strength += np.ceil(card_only_attr*gem_matrix[gem_type]) strength = np.array(strength, dtype=int) return {k.lower()+'*':v for k,v in zip(attr_list, strength)}
def vis_square(data): """Take an array of shape (n, height, width) or (n, height, width, 3) and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)""" # normalize data for display data = (data - data.min()) / (data.max() - data.min()) # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = (((0, n ** 2 - data.shape[0]), (0, 1), (0, 1)) # add some space between filters + ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one) data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imshow(data, interpolation='nearest'); plt.axis('off')
def process(self, wave): wave.check_mono() if wave.sample_rate != self.sr: raise Exception("Wrong sample rate") n = int(np.ceil(2 * wave.num_frames / float(self.w_len))) m = (n + 1) * self.w_len / 2 swindow = self.make_signal_window(n) win_ratios = [self.window / swindow[t * self.w_len / 2 : t * self.w_len / 2 + self.w_len] for t in range(n)] wave = wave.zero_pad(0, int(m - wave.num_frames)) wave = audio.Wave(signal.hilbert(wave), wave.sample_rate) result = np.zeros((self.n_bins, n)) for b in range(self.n_bins): w = self.widths[b] wc = 1 / np.square(w + 1) filter = self.filters[b] band = fftfilt(filter, wave.zero_pad(0, int(2 * w))[:,0]) band = band[int(w) : int(w + m), np.newaxis] for t in range(n): frame = band[t * self.w_len / 2: t * self.w_len / 2 + self.w_len,:] * win_ratios[t] result[b, t] = wc * np.real(np.conj(np.dot(frame.conj().T, frame))) return audio.Spectrogram(result, self.sr, self.w_len, self.w_len / 2)
def n2mfrow(nr_plots): """ Compute the rows and columns given the number of plots. This is a port of grDevices::n2mfrow from R """ if nr_plots <= 3: nrow, ncol = nr_plots, 1 elif nr_plots <= 6: nrow, ncol = (nr_plots + 1) // 2, 2 elif nr_plots <= 12: nrow, ncol = (nr_plots + 2) // 3, 3 else: nrow = int(np.ceil(np.sqrt(nr_plots))) ncol = int(np.ceil(nr_plots/nrow)) return (nrow, ncol)
def get_padding_type(kernel_params, input_shape, output_shape): '''Translates Caffe's numeric padding to one of ('SAME', 'VALID'). Caffe supports arbitrary padding values, while TensorFlow only supports 'SAME' and 'VALID' modes. So, not all Caffe paddings can be translated to TensorFlow. There are some subtleties to how the padding edge-cases are handled. These are described here: https://github.com/Yangqing/caffe2/blob/master/caffe2/proto/caffe2_legacy.proto ''' k_h, k_w, s_h, s_w, p_h, p_w = kernel_params s_o_h = np.ceil(input_shape.height / float(s_h)) s_o_w = np.ceil(input_shape.width / float(s_w)) if (output_shape.height == s_o_h) and (output_shape.width == s_o_w): return 'SAME' v_o_h = np.ceil((input_shape.height - k_h + 1.0) / float(s_h)) v_o_w = np.ceil((input_shape.width - k_w + 1.0) / float(s_w)) if (output_shape.height == v_o_h) and (output_shape.width == v_o_w): return 'VALID' return None
def plot_weight_matrix(Z, outname, save=True): num = Z.shape[0] fig = plt.figure(1, (80, 80)) fig.subplots_adjust(left=0.05, right=0.95) grid = AxesGrid(fig, (1, 4, 2), # similar to subplot(142) nrows_ncols=(int(np.ceil(num / 10.)), 10), axes_pad=0.04, share_all=True, label_mode="L", ) for i in range(num): im = grid[i].imshow(Z[i, :, :, :].mean( axis=0), cmap='gray') for i in range(grid.ngrids): grid[i].axis('off') for cax in grid.cbar_axes: cax.toggle_label(False) if save: fig.savefig(outname, bbox_inches='tight') fig.clear()
def __init__(self, h, x0=None, **kwargs): assert type(h) is list, 'h must be a list' assert len(h) in [2, 3], "TreeMesh is only in 2D or 3D." if '_levels' in kwargs.keys(): self._levels = kwargs.pop('_levels') BaseTensorMesh.__init__(self, h, x0, **kwargs) if self._levels is None: self._levels = int(np.log2(len(self.h[0]))) # self._levels = levels self._levelBits = int(np.ceil(np.sqrt(self._levels)))+1 self.__dirty__ = True #: The numbering is dirty! if '_cells' in kwargs.keys(): self._cells = kwargs.pop('_cells') else: self._cells.add(0)
def _optim(self, xys): idx = np.arange(len(xys)) self.batch_size = np.ceil(len(xys) / self.nbatches) batch_idx = np.arange(self.batch_size, len(xys), self.batch_size) for self.epoch in range(1, self.max_epochs + 1): # shuffle training examples self._pre_epoch() shuffle(idx) # store epoch for callback self.epoch_start = timeit.default_timer() # process mini-batches for batch in np.split(idx, batch_idx): # select indices for current batch bxys = [xys[z] for z in batch] self._process_batch(bxys) # check callback function, if false return for f in self.post_epoch: if not f(self): break
def dec_round(num, dprec=4, rnd='down', rto_zero=False): """ Round up/down numeric ``num`` at specified decimal ``dprec``. Parameters ---------- num: float dprec: int Decimal position for truncation. rnd: str (default: 'down') Set as 'up' or 'down' to return a rounded-up or rounded-down value. rto_zero: bool (default: False) Use a *round-towards-zero* method, e.g., ``floor(-3.5) == -3``. Returns ---------- float (default: rounded-up) """ dprec = 10**dprec if rnd == 'up' or (rnd == 'down' and rto_zero and num < 0.): return np.ceil(num*dprec)/dprec elif rnd == 'down' or (rnd == 'up' and rto_zero and num < 0.): return np.floor(num*dprec)/dprec return np.round(num, dprec)
def update(self, es, **kwargs): if es.countiter < 2: self.initialize(es) self.fit = es.fit.fit else: ft1, ft2 = self.fit[int(self.index_to_compare)], self.fit[int(np.ceil(self.index_to_compare))] ftt1, ftt2 = es.fit.fit[(es.popsize - 1) // 2], es.fit.fit[int(np.ceil((es.popsize - 1) / 2))] pt2 = self.index_to_compare - int(self.index_to_compare) # ptt2 = (es.popsize - 1) / 2 - (es.popsize - 1) // 2 # not in use s = 0 if 1 < 3: s += pt2 * sum(es.fit.fit <= self.fit[int(np.ceil(self.index_to_compare))]) s += (1 - pt2) * sum(es.fit.fit < self.fit[int(self.index_to_compare)]) s -= es.popsize / 2. s *= 2. / es.popsize # the range was popsize, is 2 self.s = (1 - self.c) * self.s + self.c * s es.sigma *= exp(self.s / self.damp) # es.more_to_write.append(10**(self.s)) #es.more_to_write.append(10**((2 / es.popsize) * (sum(es.fit.fit < self.fit[int(self.index_to_compare)]) - (es.popsize + 1) / 2))) # # es.more_to_write.append(10**(self.index_to_compare - sum(self.fit <= es.fit.fit[es.popsize // 2]))) # # es.more_to_write.append(10**(np.sign(self.fit[int(self.index_to_compare)] - es.fit.fit[es.popsize // 2]))) self.fit = es.fit.fit
def __init__(self, env, n, max_path_length, scope=None): if scope is None: # initialize random scope scope = str(uuid.uuid4()) envs_per_worker = int(np.ceil(n * 1.0 / singleton_pool.n_parallel)) alloc_env_ids = [] rest_alloc = n start_id = 0 for _ in range(singleton_pool.n_parallel): n_allocs = min(envs_per_worker, rest_alloc) alloc_env_ids.append(list(range(start_id, start_id + n_allocs))) start_id += n_allocs rest_alloc = max(0, rest_alloc - envs_per_worker) singleton_pool.run_each(worker_init_envs, [(alloc, scope, env) for alloc in alloc_env_ids]) self._alloc_env_ids = alloc_env_ids self._action_space = env.action_space self._observation_space = env.observation_space self._num_envs = n self.scope = scope self.ts = np.zeros(n, dtype='int') self.max_path_length = max_path_length
def view_samples(self, show=True): """Displays the samples.""" if not self.samples: return # Nothing to show... plt.figure("Sample views") num = len(self.samples) rows = math.floor(num ** .5) cols = math.ceil(num / rows) for idx, img in enumerate(self.samples): plt.subplot(rows, cols, idx+1) plt.imshow(img, interpolation='nearest') if show: plt.show() # EXPERIMENT: Try breaking out each output encoder by type instead of # concatenating them all together. Each type of sensors would then get its own # HTM. Maybe keep the derivatives with their source? #
def make_train_test_split(prms): ''' # I will just make one split and consider the last 5% of the iamges as the val images. # Randomly sampling in this data is a bad idea, because many images appear together as # pairs. Selecting from the end will maximize the chances of using unique and different # imahes in the train and test splits. ''' # Read the source pairs. fid = open(prms['paths']['pairList']['raw'],'r') lines = fid.readlines() fid.close() numIm, numPairs = int(lines[0].split()[0]), int(lines[0].split()[1]) lines = lines[1:] #Make train and val splits N = len(lines) trainNum = int(np.ceil(0.95 * N)) trainLines = lines[0:trainNum] testLines = lines[trainNum:] _write_pairs(prms['paths']['pairList']['train'], trainLines, numIm) _write_pairs(prms['paths']['pairList']['test'] , testLines, numIm) ## # Get the list of tar files for downloading the image data
def gen_samples(self, z0=None, n=32, batch_size=32, use_transform=True): assert n % batch_size == 0 samples = [] if z0 is None: z0 = np_rng.uniform(-1., 1., size=(n, self.nz)) else: n = len(z0) batch_size = max(n, 64) n_batches = int(np.ceil(n/float(batch_size))) for i in range(n_batches): zmb = floatX(z0[batch_size * i:min(n, batch_size * (i + 1)), :]) xmb = self._gen(zmb) samples.append(xmb) samples = np.concatenate(samples, axis=0) if use_transform: samples = self.inverse_transform(samples, npx=self.npx, nc=self.nc) samples = (samples * 255).astype(np.uint8) return samples
def __init__(self, opt_engine, topK=16, grid_size=None, nps=320, model_name='tmp'): QWidget.__init__(self) self.topK = topK if grid_size is None: self.n_grid = int(np.ceil(np.sqrt(self.topK))) self.grid_size = (self.n_grid, self.n_grid) # (width, height) else: self.grid_size = grid_size self.select_id = 0 self.ims = None self.vis_results = None self.width = int(np.round(nps/ (4 * float(self.grid_size[1])))) * 4 self.winWidth = self.width * self.grid_size[0] self.winHeight = self.width * self.grid_size[1] self.setFixedSize(self.winWidth, self.winHeight) self.opt_engine = opt_engine self.frame_id = -1 self.sr = save_result.SaveResult(model_name=model_name)
def rasta_plp_extractor(x, sr, plp_order=0, do_rasta=True): spec = log_power_spectrum_extractor(x, int(sr*0.02), int(sr*0.01), 'hamming', False) bark_filters = int(np.ceil(freq2bark(sr//2))) wts = get_fft_bark_mat(sr, int(sr*0.02), bark_filters) bark_spec = np.matmul(wts, spec) if do_rasta: bark_spec = np.where(bark_spec == 0.0, np.finfo(float).eps, bark_spec) log_bark_spec = np.log(bark_spec) rasta_log_bark_spec = rasta_filt(log_bark_spec) bark_spec = np.exp(rasta_log_bark_spec) post_spec = postaud(bark_spec, sr/2.) if plp_order > 0: lpcas = do_lpc(post_spec, plp_order) else: lpcas = post_spec return lpcas
def _wav_to_framed_samples(wav_audio, hparams): """Transforms the contents of a wav file into a series of framed samples.""" y = audio_io.wav_data_to_samples(wav_audio, hparams.sample_rate) hl = hparams.spec_hop_length n_frames = int(np.ceil(y.shape[0] / hl)) frames = np.zeros((n_frames, hl), dtype=np.float32) # Fill in everything but the last frame which may not be the full length cutoff = (n_frames - 1) * hl frames[:n_frames - 1, :] = np.reshape(y[:cutoff], (n_frames - 1, hl)) # Fill the last frame remain_len = len(y[cutoff:]) frames[n_frames - 1, :remain_len] = y[cutoff:] return frames
def comp_ola_deconv(fs_gpu, ys_gpu, L_gpu, alpha, beta): """ Computes the division in Fourier space needed for direct deconvolution """ sfft = fs_gpu.shape block_size = (16,16,1) grid_size = (int(np.ceil(np.float32(sfft[0]*sfft[1])/block_size[0])), int(np.ceil(np.float32(sfft[2])/block_size[1]))) mod = cu.module_from_buffer(cubin) comp_ola_deconv_Kernel = mod.get_function("comp_ola_deconv_Kernel") z_gpu = cua.zeros(sfft, np.complex64) comp_ola_deconv_Kernel(z_gpu.gpudata, np.int32(sfft[0]), np.int32(sfft[1]), np.int32(sfft[2]), fs_gpu.gpudata, ys_gpu.gpudata, L_gpu.gpudata, np.float32(alpha), np.float32(beta), block=block_size, grid=grid_size) return z_gpu
def crop_gpu2cpu(x_gpu, sz, offset=(0,0)): sfft = x_gpu.shape block_size = (16, 16 ,1) grid_size = (int(np.ceil(np.float32(sfft[1])/block_size[1])), int(np.ceil(np.float32(sfft[0])/block_size[0]))) if x_gpu.dtype == np.float32: mod = cu.module_from_buffer(cubin) cropKernel = mod.get_function("crop_Kernel") elif x_gpu.dtype == np.complex64: mod = cu.module_from_buffer(cubin) cropKernel = mod.get_function("crop_ComplexKernel") x_cropped_gpu = cua.empty(tuple((int(sz[0]),int(sz[1]))), np.float32) cropKernel(x_cropped_gpu.gpudata, np.int32(sz[0]), np.int32(sz[1]), x_gpu.gpudata, np.int32(sfft[0]), np.int32(sfft[1]), np.int32(offset[0]), np.int32(offset[1]), block=block_size , grid=grid_size) return x_cropped_gpu
def comp_ola_sdeconv(gx_gpu, gy_gpu, xx_gpu, xy_gpu, Ftpy_gpu, f_gpu, L_gpu, alpha, beta, gamma=0): """ Computes the division in Fourier space needed for sparse deconvolution """ sfft = xx_gpu.shape block_size = (16,16,1) grid_size = (int(np.ceil(np.float32(sfft[0]*sfft[1])/block_size[0])), int(np.ceil(np.float32(sfft[2])/block_size[1]))) mod = cu.module_from_buffer(cubin) comp_ola_sdeconv_Kernel = mod.get_function("comp_ola_sdeconv_Kernel") z_gpu = cua.zeros(sfft, np.complex64) comp_ola_sdeconv_Kernel(z_gpu.gpudata, np.int32(sfft[0]), np.int32(sfft[1]), np.int32(sfft[2]), gx_gpu.gpudata, gy_gpu.gpudata, xx_gpu.gpudata, xy_gpu.gpudata, Ftpy_gpu.gpudata, f_gpu.gpudata, L_gpu.gpudata, np.float32(alpha), np.float32(beta), np.float32(gamma), block=block_size, grid=grid_size) return z_gpu
def impad_gpu(y_gpu, sf): sf = np.array(sf) shape = (np.array(y_gpu.shape) + sf).astype(np.uint32) dtype = y_gpu.dtype block_size = (16,16,1) grid_size = (int(np.ceil(float(shape[1])/block_size[0])), int(np.ceil(float(shape[0])/block_size[1]))) preproc = _generate_preproc(dtype, shape) mod = SourceModule(preproc + kernel_code, keep=True) padded_gpu = cua.empty((int(shape[0]), int(shape[1])), dtype) impad_fun = mod.get_function("impad") upper_left = np.uint32(np.floor(sf / 2.)) original_size = np.uint32(np.array(y_gpu.shape)) impad_fun(padded_gpu.gpudata, y_gpu.gpudata, upper_left[1], upper_left[0], original_size[0], original_size[1], block=block_size, grid=grid_size) return padded_gpu
def laplace_stack_gpu(y_gpu, mode='valid'): """ This funtion computes the Laplacian of each slice of a stack of images """ shape = np.array(y_gpu.shape).astype(np.uint32) dtype = y_gpu.dtype block_size = (6,int(np.floor(512./6./float(shape[0]))),int(shape[0])) grid_size = (int(np.ceil(float(shape[1])/block_size[0])), int(np.ceil(float(shape[0])/block_size[1]))) shared_size = int((2+block_size[0])*(2+block_size[1])*(2+block_size[2]) *dtype.itemsize) preproc = _generate_preproc(dtype, (shape[1],shape[2])) mod = SourceModule(preproc + kernel_code, keep=True) laplace_fun_gpu = mod.get_function("laplace_stack_same") laplace_gpu = cua.empty((y_gpu.shape[0], y_gpu.shape[1], y_gpu.shape[2]), y_gpu.dtype) laplace_fun_gpu(laplace_gpu.gpudata, y_gpu.gpudata, block=block_size, grid=grid_size, shared=shared_size) return laplace_gpu
def morph(roi): ratio = min(28. / np.size(roi, 0), 28. / np.size(roi, 1)) roi = cv2.resize(roi, None, fx=ratio, fy=ratio, interpolation=cv2.INTER_NEAREST) dx = 28 - np.size(roi, 1) dy = 28 - np.size(roi, 0) px = ((int(dx / 2.)), int(np.ceil(dx / 2.))) py = ((int(dy / 2.)), int(np.ceil(dy / 2.))) squared = np.pad(roi, (py, px), 'constant', constant_values=0) return squared
def computePad(dims,depth): y1=y2=x1=x2=0; y,x = [numpy.ceil(dims[i]/float(2**depth)) * (2**depth) for i in range(-2,0)] x = float(x); y = float(y); y1 = int(numpy.floor((y - dims[-2])/2)); y2 = int(numpy.ceil((y - dims[-2])/2)) x1 = int(numpy.floor((x - dims[-1])/2)); x2 = int(numpy.ceil((x - dims[-1])/2)) return y1,y2,x1,x2
def view_waveforms_clusters(data, halo, threshold, templates, amps_lim, n_curves=200, save=False): nb_templates = templates.shape[1] n_panels = numpy.ceil(numpy.sqrt(nb_templates)) mask = numpy.where(halo > -1)[0] clust_idx = numpy.unique(halo[mask]) fig = pylab.figure() square = True center = len(data[0] - 1)//2 for count, i in enumerate(xrange(nb_templates)): if square: pylab.subplot(n_panels, n_panels, count + 1) if (numpy.mod(count, n_panels) != 0): pylab.setp(pylab.gca(), yticks=[]) if (count < n_panels*(n_panels - 1)): pylab.setp(pylab.gca(), xticks=[]) subcurves = numpy.where(halo == clust_idx[count])[0] for k in numpy.random.permutation(subcurves)[:n_curves]: pylab.plot(data[k], '0.5') pylab.plot(templates[:, count], 'r') pylab.plot(amps_lim[count][0]*templates[:, count], 'b', alpha=0.5) pylab.plot(amps_lim[count][1]*templates[:, count], 'b', alpha=0.5) xmin, xmax = pylab.xlim() pylab.plot([xmin, xmax], [-threshold, -threshold], 'k--') pylab.plot([xmin, xmax], [threshold, threshold], 'k--') #pylab.ylim(-1.5*threshold, 1.5*threshold) ymin, ymax = pylab.ylim() pylab.plot([center, center], [ymin, ymax], 'k--') pylab.title('Cluster %d' %i) if nb_templates > 0: pylab.tight_layout() if save: pylab.savefig(os.path.join(save[0], 'waveforms_%s' %save[1])) pylab.close() else: pylab.show() del fig
def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask image_mask = np.zeros(image.shape, dtype=np.int16) #run over all the nodules in the lungs for ca in cands.values: #get middel x-,y-, and z-worldcoordinate of the nodule #radius = np.ceil(ca[4])/2 ## original: replaced the ceil with a very minor increase of 1% .... radius = (ca[4])/2 + 0.51 * spacing[0] # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net . coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule #noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) # original, uniform spacing noduleRange_z = seq(-radius, radius, spacing[0]) noduleRange_y = seq(-radius, radius, spacing[1]) noduleRange_x = seq(-radius, radius, spacing[2]) #x = y = z = -2 #create the mask for x in noduleRange_x: for y in noduleRange_y: for z in noduleRange_z: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: ### original (contrained to a uniofrm RESIZE) if (np.linalg.norm((image_coord-coords) * spacing)) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask
def vis_square(visu_path, data, type): """Take an array of shape (n, height, width) or (n, height, width , 3) and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)""" # normalize data for display data = (data - data.min()) / (data.max() - data.min()) # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = (((0, n ** 2 - data.shape[0]), (0, 1), (0, 1)) # add some space between filters + ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one) data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white) # tilethe filters into an im age data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imshow(data[:, :, 0]) plt.axis('off') if type: plt.savefig('./{}/weights.png'.format(visu_path), format='png') else: plt.savefig('./{}/activation.png'.format(visu_path), format='png')
def get_irlb_mem_gb_from_matrix_dim(nonzero_entries): irlba_mem_gb = round(np.ceil(1.0 * nonzero_entries / cr_constants.NUM_IRLB_MATRIX_ENTRIES_PER_MEM_GB)) + cr_constants.IRLB_BASE_MEM_GB return cr_constants.MATRIX_MEM_GB_MULTIPLIER * max(cr_constants.MIN_MEM_GB, irlba_mem_gb)
def compute_percentile_from_distribution(counter, percentile): """ Takes a Counter object (or value:frequency dict) and computes a single percentile. Uses Type 7 interpolation from: Hyndman, R.J.; Fan, Y. (1996). "Sample Quantiles in Statistical Packages". """ assert 0 <= percentile <= 100 n = np.sum(counter.values()) h = (n-1)*(percentile/100.0) lower_value = None cum_sum = 0 for value, freq in sorted(counter.items()): cum_sum += freq if cum_sum > np.floor(h) and lower_value is None: lower_value = value if cum_sum > np.ceil(h): return lower_value + (h-np.floor(h)) * (value-lower_value) # Test for compute_percentile_from_distribution() #def test_percentile(x, p): # c = Counter() # for xi in x: # c[xi] += 1 # my_res = np.array([compute_percentile_from_distribution(c, p_i) for p_i in p], dtype=float) # numpy_res = np.percentile(x, p) # print np.sum(np.abs(numpy_res - my_res))
def get_mem_gb_from_matrix_dim(nonzero_entries): ''' Estimate memory usage of loading a matrix. ''' matrix_mem_gb = round(np.ceil(1.0 * nonzero_entries / cr_constants.NUM_MATRIX_ENTRIES_PER_MEM_GB)) return cr_constants.MATRIX_MEM_GB_MULTIPLIER * max(cr_constants.MIN_MEM_GB, matrix_mem_gb)
def split(args): # Need to store umi_info and a json with a dict containing 1 key per barcode umi_info_mem_gb = 2*int(np.ceil(vdj_umi_info.get_mem_gb(args.umi_info))) bc_diversity = len(cr_utils.load_barcode_whitelist(args.barcode_whitelist)) assemble_summary_mem_gb = tk_stats.robust_divide(bc_diversity, DICT_BCS_PER_MEM_GB) return { 'chunks': [{ '__mem_gb': int(np.ceil(max(cr_constants.MIN_MEM_GB, umi_info_mem_gb + assemble_summary_mem_gb))), }] }
def split(args): chunks = [] for reads_per_bc_file, bam, gem_group in itertools.izip(args.reads_per_bc, args.barcode_chunked_bams, args.chunk_gem_groups): subsample_rate = args.subsample_rate[str(gem_group)] with open(reads_per_bc_file) as f: reads_per_bc = [] for line in f: _, reads = line.strip().split() reads_per_bc.append(float(reads) * subsample_rate) max_reads = np.max(reads_per_bc + [0.0]) # vdj_asm is hard-coded to use a maximum of 200k reads / BC. max_reads = min(MAX_READS_PER_BC, max_reads) # The assembly step takes roughly num_reads * MEM_BYTES_PER_READ bytes of memory to complete each BC. mem_gb = max(2.0, int(np.ceil(MEM_BYTES_PER_READ * max_reads / 1e9))) chunks.append({ 'chunked_bam': bam, 'gem_group': gem_group, '__mem_gb': mem_gb, }) # If there were no input reads, create a dummy chunk if not chunks: chunks.append({'chunked_bam': None}) return {'chunks': chunks, 'join': {'__threads': 4}}