Python numpy 模块,prod() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.prod()

项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_ctr_ticks(
        task_handle, high_tick, low_tick, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTicks
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_tick, low_tick, numpy.prod(high_tick.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_analog_f_64(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadAnalogF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    c_bool32,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_i_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryI16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_u_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_i_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryI32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.int32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_binary_u_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadBinaryU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_digital_u_16(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadDigitalU16
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint16, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_digital_u_32(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadDigitalU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_f_64(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterF64
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_u_32(task_handle, read_array, num_samps_per_chan, timeout):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterU32
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_counter_u_32_ex(
        task_handle, read_array, num_samps_per_chan, timeout,
        fill_mode=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCounterU32Ex
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.uint32, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, fill_mode.value,
        read_array, numpy.prod(read_array.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_ctr_freq(
        task_handle, freq, duty_cycle, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrFreq
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        freq, duty_cycle, numpy.prod(freq.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:nidaqmx-python    作者:ni    | 项目源码 | 文件源码
def _read_ctr_time(
        task_handle, high_time, low_time, num_samps_per_chan, timeout,
        interleaved=FillMode.GROUP_BY_CHANNEL):
    samps_per_chan_read = ctypes.c_int()

    cfunc = lib_importer.windll.DAQmxReadCtrTime
    if cfunc.argtypes is None:
        with cfunc.arglock:
            if cfunc.argtypes is None:
                cfunc.argtypes = [
                    lib_importer.task_handle, ctypes.c_int, ctypes.c_double,
                    ctypes.c_int,
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    wrapped_ndpointer(dtype=numpy.float64, flags=('C', 'W')),
                    ctypes.c_uint, ctypes.POINTER(ctypes.c_int),
                    ctypes.POINTER(c_bool32)]

    error_code = cfunc(
        task_handle, num_samps_per_chan, timeout, interleaved.value,
        high_time, low_time, numpy.prod(high_time.shape),
        ctypes.byref(samps_per_chan_read), None)
    check_for_error(error_code)

    return samps_per_chan_read.value
项目:squeezeDet-hand    作者:fyhtea    | 项目源码 | 文件源码
def _pooling_layer(
      self, layer_name, inputs, size, stride, padding='SAME'):
    """Pooling layer operation constructor.

    Args:
      layer_name: layer name.
      inputs: input tensor
      size: kernel size.
      stride: stride
      padding: 'SAME' or 'VALID'. See tensorflow doc for detailed description.
    Returns:
      A pooling layer operation.
    """

    with tf.variable_scope(layer_name) as scope:
      out =  tf.nn.max_pool(inputs, 
                            ksize=[1, size, size, 1], 
                            strides=[1, stride, stride, 1],
                            padding=padding)
      activation_size = np.prod(out.get_shape().as_list()[1:])
      self.activation_counter.append((layer_name, activation_size))
      return out
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None):
    with tf.variable_scope(name):
        stride_shape = [1, stride[0], stride[1], 1]
        filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = np.prod(filter_shape[:3])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = np.prod(filter_shape[:2]) * num_filters
        # initialize weights with random weights
        w_bound = np.sqrt(6. / (fan_in + fan_out))

        w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
                            collections=collections)
        b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
                            collections=collections)
        return tf.nn.conv2d(x, w, stride_shape, pad) + b
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None):
    with tf.variable_scope(name):
        stride_shape = [1, stride[0], stride[1], 1]
        filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = np.prod(filter_shape[:3])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = np.prod(filter_shape[:2]) * num_filters
        # initialize weights with random weights
        w_bound = np.sqrt(6. / (fan_in + fan_out))

        w = tf.get_variable("W", filter_shape, dtype, tf.random_uniform_initializer(-w_bound, w_bound),
                            collections=collections)
        b = tf.get_variable("b", [1, 1, 1, num_filters], initializer=tf.constant_initializer(0.0),
                            collections=collections)
        return tf.nn.conv2d(x, w, stride_shape, pad) + b
项目:ModernGL-Volume-Raycasting-Example    作者:ulricheck    | 项目源码 | 文件源码
def load_raw(filename, volsize):
    """ inspired by mhd_utils from github"""
    dim = 3
    element_channels = 1
    np_type = np.ubyte

    arr = list(volsize)
    volume = np.prod(arr[0:dim - 1])

    shape = (arr[dim - 1], volume, element_channels)
    with open(filename,'rb') as fid:
        data = np.fromfile(fid, count=np.prod(shape),dtype = np_type)
    data.shape = shape

    arr.reverse()
    data = data.reshape(arr)

    return data
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def discriminator_labeler(image, output_dim, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label')
        D_labels = tf.nn.sigmoid(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels, D_labels_logits, variables
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def discriminator_gen_labeler(image, output_dim, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label')
        D_labels = tf.nn.sigmoid(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels, D_labels_logits,variables
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def discriminator_on_z(image, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label')
        D_labels = tf.nn.tanh(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels,variables
项目:NumpyDL    作者:oujago    | 项目源码 | 文件源码
def decompose_size(size):
    """Computes the number of input and output units for a weight shape.

    Parameters
    ----------
    size 
        Integer shape tuple.

    Returns
    -------
    A tuple of scalars, `(fan_in, fan_out)`.
    """
    if len(size) == 2:
        fan_in = size[0]
        fan_out = size[1]

    elif len(size) == 4 or len(size) == 5:
        respective_field_size = np.prod(size[2:])
        fan_in = size[1] * respective_field_size
        fan_out = size[0] * respective_field_size

    else:
        fan_in = fan_out = int(np.sqrt(np.prod(size)))

    return fan_in, fan_out
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def _random_overlay(self, static_hidden=False):
        """Construct random max pool locations."""

        s = self.shapes[2]

        if static_hidden:
            args = np.random.randint(s[2], size=np.prod(s) / s[2] / s[4])
            overlay = np.zeros(np.prod(s) / s[4], np.bool)
            overlay[args + np.arange(len(args)) * s[2]] = True
            overlay = overlay.reshape([s[0], s[1], s[3], s[2]])
            overlay = np.rollaxis(overlay, -1, 2)
            return arrays.extend(overlay, s[4])
        else:
            args = np.random.randint(s[2], size=np.prod(s) / s[2])
            overlay = np.zeros(np.prod(s), np.bool)
            overlay[args + np.arange(len(args)) * s[2]] = True
            overlay = overlay.reshape([s[0], s[1], s[3], s[4], s[2]])
            return np.rollaxis(overlay, -1, 2)
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def finalization(self):
        '''
        Add sparse matrix multiplication on GPU
        Note: use "python-cuda-cffi" generated interface to access cusparse

        '''
        self.gpu_flag = 0

        self.CSR = cuda_cffi.cusparse.CSR.to_CSR(self.st['p'].astype(dtype), )
        self.CSRH = cuda_cffi.cusparse.CSR.to_CSR(self.st['p'].getH().tocsr().astype(dtype), )

        self.scikit_plan = cu_fft.Plan(self.st['Kd'], dtype, dtype)
#         self.pHp = cuda_cffi.cusparse.CSR.to_CSR(
#             self.st['pHp'].astype(dtype))

        self.gpu_flag = 1
        self.sn_gpu = pycuda.gpuarray.to_gpu(self.sn.astype(dtype))
#         tmp_array = skcuda.misc.ones((numpy.prod(self.st['Kd']),1),dtype=dtype)
#         tmp = cuda_cffi.cusolver.csrlsvqr(self.CSR, tmp_array)
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def plan(self, om, Nd, Kd, Jd):


        self.debug = 0  # debug

        n_shift = tuple(0*x for x in Nd)
        self.st = plan(om, Nd, Kd, Jd)

        self.Nd = self.st['Nd']  # backup
        self.sn = self.st['sn']  # backup
        self.ndims=len(self.st['Nd']) # dimension
        self.linear_phase(n_shift)  
        # calculate the linear phase thing
        self.st['pH'] = self.st['p'].getH().tocsr()
        self.st['pHp']=  self.st['pH'].dot(self.st['p'])
        self.NdCPUorder, self.KdCPUorder, self.nelem =     preindex_copy(self.st['Nd'], self.st['Kd'])
#         self.st['W'] = self.pipe_density()
        self.shape = (self.st['M'], numpy.prod(self.st['Nd']))

#         print('untrimmed',self.st['pHp'].nnz)
#         self.truncate_selfadjoint(1e-1)
#         print('trimmed', self.st['pHp'].nnz)
项目:how_to_convert_text_to_images    作者:llSourcell    | 项目源码 | 文件源码
def __call__(self, input_layer, output_size, scope=None, in_dim=None, stddev=0.02, bias_start=0.0):
        shape = input_layer.shape
        input_ = input_layer.tensor
        try:
            if len(shape) == 4:
                input_ = tf.reshape(input_, tf.pack([tf.shape(input_)[0], np.prod(shape[1:])]))
                input_.set_shape([None, np.prod(shape[1:])])
                shape = input_.get_shape().as_list()

            with tf.variable_scope(scope or "Linear"):
                matrix = self.variable("Matrix", [in_dim or shape[1], output_size], dt=tf.float32,
                                       init=tf.random_normal_initializer(stddev=stddev))
                bias = self.variable("bias", [output_size], init=tf.constant_initializer(bias_start))
                return input_layer.with_tensor(tf.matmul(input_, matrix) + bias, parameters=self.vars)
        except Exception:
            import ipdb; ipdb.set_trace()
项目:Face-Pose-Net    作者:fengju514    | 项目源码 | 文件源码
def _meshgrid(self, height, width):
    with tf.variable_scope('_meshgrid'):
      # This should be equivalent to:
      #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
      #                         np.linspace(-1, 1, height))
      #  ones = np.ones(np.prod(x_t.shape))
      #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
      x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])),
                        tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
      y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
                        tf.ones(shape=tf.pack([1, width])))

      x_t_flat = tf.reshape(x_t, (1, -1))
      y_t_flat = tf.reshape(y_t, (1, -1))

      ones = tf.ones_like(x_t_flat)
      grid = tf.concat(0, [x_t_flat, y_t_flat, ones])
      return grid
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_class_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_class_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model()
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:dsb3    作者:EliasVansteenkiste    | 项目源码 | 文件源码
def build_model():
    metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
    metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])
    metadata = utils.load_pkl(metadata_path)

    print 'Build model'
    model = patch_config.build_model(patch_size=(window_size, window_size, window_size))
    all_layers = nn.layers.get_all_layers(model.l_out)
    num_params = nn.layers.count_params(model.l_out)
    print '  number of parameters: %d' % num_params
    print string.ljust('  layer output shapes:', 36),
    print string.ljust('#params:', 10),
    print 'output shape:'
    for layer in all_layers:
        name = string.ljust(layer.__class__.__name__, 32)
        num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
        num_param = string.ljust(num_param.__str__(), 10)
        print '    %s %s %s' % (name, num_param, layer.output_shape)

    nn.layers.set_all_param_values(model.l_out, metadata['param_values'])
    return model
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def adjust_prediction(self, probability, image):
        crf = dcrf.DenseCRF(np.prod(probability.shape), 2)
        # crf = dcrf.DenseCRF(np.prod(probability.shape), 1)

        binary_prob = np.stack((1 - probability, probability), axis=0)
        unary = unary_from_softmax(binary_prob)
        # unary = unary_from_softmax(np.expand_dims(probability, axis=0))
        crf.setUnaryEnergy(unary)

        # per dimension scale factors
        sdims = [self.sdims] * 3
        smooth = create_pairwise_gaussian(sdims=sdims, shape=probability.shape)
        crf.addPairwiseEnergy(smooth, compat=2)

        if self.schan:
            # per channel scale factors
            schan = [self.schan] * 6
            appearance = create_pairwise_bilateral(sdims=sdims, schan=schan, img=image, chdim=3)
            crf.addPairwiseEnergy(appearance, compat=2)

        result = crf.inference(self.iter)
        crf_prediction = np.argmax(result, axis=0).reshape(probability.shape).astype(np.float32)

        return crf_prediction
项目:mpnum    作者:dseuss    | 项目源码 | 文件源码
def _sample_cond_single(rng, marginal_pmf, n_group, out, eps):
        """Single sample from conditional probab. (call :func:`self.sample`)"""
        n_sites = len(marginal_pmf[-1])
        # Probability of the incomplete output. Empty output has unit probab.
        out_p = 1.0
        # `n_out` sites of the output have been sampled. We will add
        # at most `n_group` sites to the output at a time.
        for n_out in range(0, n_sites, n_group):
            # Select marginal probability distribution on (at most)
            # `n_out + n_group` sites.
            p = marginal_pmf[min(n_sites, n_out + n_group)]
            # Obtain conditional probab. from joint `p` and marginal `out_p`
            p = p.get(tuple(out[:n_out]) + (slice(None),) * (len(p) - n_out))
            p = project_pmf(mp.prune(p).to_array() / out_p, eps, eps)
            # Sample from conditional probab. for next `n_group` sites
            choice = rng.choice(p.size, p=p.flat)
            out[n_out:n_out + n_group] = np.unravel_index(choice, p.shape)
            # Update probability of the partial output
            out_p *= np.prod(p.flat[choice])
        # Verify we have the correct partial output probability
        p = marginal_pmf[-1].get(tuple(out)).to_array()
        assert abs(p - out_p) <= eps
项目:mpnum    作者:dseuss    | 项目源码 | 文件源码
def _rcanonicalize(self, to_site):
        """Left-canonicalizes all local tensors _ltens[:to_site] in place

        :param to_site: Index of the site up to which canonicalization is to be
            performed

        """
        assert 0 <= to_site < len(self), 'to_site={!r}'.format(to_site)

        lcanon, rcanon = self._lt.canonical_form
        for site in range(lcanon, to_site):
            ltens = self._lt[site]
            q, r = qr(ltens.reshape((-1, ltens.shape[-1])))
            # if ltens.shape[-1] > prod(ltens.phys_shape) --> trivial comp.
            # can be accounted by adapting rank here
            newtens = (q.reshape(ltens.shape[:-1] + (-1,)),
                       matdot(r, self._lt[site + 1]))
            self._lt.update(slice(site, site + 2), newtens,
                            canonicalization=('left', None))