Python numpy 模块,int64() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.int64()

项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def sparse_tuple_from(sequences, dtype=np.int32):
    r"""Creates a sparse representention of ``sequences``.
    Args:

        * sequences: a list of lists of type dtype where each element is a sequence

    Returns a tuple with (indices, values, shape)
    """
    indices = []
    values = []

    for n, seq in enumerate(sequences):
        indices.extend(zip([n]*len(seq), range(len(seq))))
        values.extend(seq)

    indices = np.asarray(indices, dtype=np.int64)
    values = np.asarray(values, dtype=dtype)
    shape = np.asarray([len(sequences), indices.max(0)[1]+1], dtype=np.int64)

    return tf.SparseTensor(indices=indices, values=values, shape=shape)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def draw_tracks(self, out, colored=False, color_type='unique', min_track_length=4, max_track_length=4):
        """
        color_type: {age, unique}
        """

        N = 20
        # inds = self.confident_tracks(min_length=min_track_length)
        # if not len(inds): 
        #     return

        # ids, pts = self.latest_ids[inds], self.latest_pts[inds]
        # lengths = self.tm_.lengths[inds]

        ids, pts, lengths = self.latest_ids, self.latest_pts, self.tm_.lengths

        if color_type == 'unique': 
            cwheel = colormap(np.linspace(0, 1, N))
            cols = np.vstack([cwheel[tid % N] for idx, tid in enumerate(ids)])
        elif color_type == 'age': 
            cols = colormap(lengths)
        else: 
            raise ValueError('Color type {:} undefined, use age or unique'.format(color_type))

        if not colored: 
            cols = np.tile([0,240,0], [len(self.tm_.tracks), 1])

        for col, pts in izip(cols.astype(np.int64), self.tm_.tracks.itervalues()): 
            cv2.polylines(out, [np.vstack(pts.items).astype(np.int32)[-max_track_length:]], False, 
                          tuple(col), thickness=1)
            tl, br = np.int32(pts.latest_item)-2, np.int32(pts.latest_item)+2
            cv2.rectangle(out, (tl[0], tl[1]), (br[0], br[1]), tuple(col), -1)
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def sparse_tuple_from(sequences, dtype=np.int32):
    r"""Creates a sparse representention of ``sequences``.
    Args:

        * sequences: a list of lists of type dtype where each element is a sequence

    Returns a tuple with (indices, values, shape)
    """
    indices = []
    values = []

    for n, seq in enumerate(sequences):
        indices.extend(zip([n]*len(seq), range(len(seq))))
        values.extend(seq)

    indices = np.asarray(indices, dtype=np.int64)
    values = np.asarray(values, dtype=dtype)
    shape = np.asarray([len(sequences), indices.max(0)[1]+1], dtype=np.int64)

    return tf.SparseTensor(indices=indices, values=values, shape=shape)
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def _get_slice_(self, t_start, t_stop):

        x_beg = numpy.int64(t_start // self.SAMPLES_PER_RECORD)
        r_beg = numpy.mod(t_start, self.SAMPLES_PER_RECORD)
        x_end = numpy.int64(t_stop // self.SAMPLES_PER_RECORD)
        r_end = numpy.mod(t_stop, self.SAMPLES_PER_RECORD)

        if x_beg == x_end:
            g_offset = x_beg * self.bytes_per_block_div + self.block_offset_div
            data_slice = numpy.arange(g_offset + r_beg * self.nb_channels, g_offset + r_end * self.nb_channels, dtype=numpy.int64)
            yield data_slice
        else:
            for count, nb_blocks in enumerate(numpy.arange(x_beg, x_end + 1, dtype=numpy.int64)):
                g_offset = nb_blocks * self.bytes_per_block_div + self.block_offset_div
                if count == 0:
                    data_slice = numpy.arange(g_offset + r_beg * self.nb_channels, g_offset + self.block_size_div, dtype=numpy.int64)
                elif (count == (x_end - x_beg)):
                    data_slice = numpy.arange(g_offset, g_offset + r_end * self.nb_channels, dtype=numpy.int64)
                else:
                    data_slice = numpy.arange(g_offset, g_offset + self.block_size_div, dtype=numpy.int64)

                yield data_slice
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def _get_slice_(self, t_start, t_stop):

        x_beg = numpy.int64(t_start // self.SAMPLES_PER_RECORD)
        r_beg = numpy.mod(t_start, self.SAMPLES_PER_RECORD)
        x_end = numpy.int64(t_stop // self.SAMPLES_PER_RECORD)
        r_end = numpy.mod(t_stop, self.SAMPLES_PER_RECORD)

        data_slice  = []

        if x_beg == x_end:
            g_offset = x_beg * self.SAMPLES_PER_RECORD + self.OFFSET_PER_BLOCK[0]*(x_beg + 1) + self.OFFSET_PER_BLOCK[1]*x_beg
            data_slice = numpy.arange(g_offset + r_beg, g_offset + r_end, dtype=numpy.int64)
        else:
            for count, nb_blocks in enumerate(numpy.arange(x_beg, x_end + 1, dtype=numpy.int64)):
                g_offset = nb_blocks * self.SAMPLES_PER_RECORD + self.OFFSET_PER_BLOCK[0]*(nb_blocks + 1) + self.OFFSET_PER_BLOCK[1]*nb_blocks
                if count == 0:
                    data_slice += numpy.arange(g_offset + r_beg, g_offset + self.SAMPLES_PER_RECORD, dtype=numpy.int64).tolist()
                elif (count == (x_end - x_beg)):
                    data_slice += numpy.arange(g_offset, g_offset + r_end, dtype=numpy.int64).tolist()
                else:
                    data_slice += numpy.arange(g_offset, g_offset + self.SAMPLES_PER_RECORD, dtype=numpy.int64).tolist()
        return data_slice
项目:pyelastix    作者:almarklein    | 项目源码 | 文件源码
def _get_dtype_maps():
    """ Get dictionaries to map numpy data types to ITK types and the 
    other way around.
    """

    # Define pairs
    tmp = [ (np.float32, 'MET_FLOAT'),  (np.float64, 'MET_DOUBLE'),
            (np.uint8, 'MET_UCHAR'),    (np.int8, 'MET_CHAR'),
            (np.uint16, 'MET_USHORT'),  (np.int16, 'MET_SHORT'),
            (np.uint32, 'MET_UINT'),    (np.int32, 'MET_INT'),
            (np.uint64, 'MET_ULONG'),   (np.int64, 'MET_LONG') ]

    # Create dictionaries
    map1, map2 = {}, {}
    for np_type, itk_type in tmp:
        map1[np_type.__name__] = itk_type
        map2[itk_type] = np_type.__name__

    # Done
    return map1, map2
项目:xpandas    作者:alan-turing-institute    | 项目源码 | 文件源码
def test_dataframe_data_types():
    s1 = XSeries([pd.Series([1, 2, 3], index=['a', 'b', 'c']),
                      pd.Series([4, 5, 6], index=['d', 'e', 'g'])])
    s2 = XSeries([1, 2, 3])
    s3 = XSeries([{"k1": "v1"}, {"k2": 'v2'}])
    s4 = XSeries(['f', 's', 't'])

    df = XDataFrame({
        'first_col': s1,
        'second_col': s2,
        'third_col': s3,
        'fourth_col': s4
    })

    assert df['first_col'].data_type == pd.Series
    assert df['second_col'].data_type == np.int64
    assert df['third_col'].data_type == dict
    assert df['fourth_col'].data_type == str

    assert type(df[['first_col']]) == XDataFrame
    assert type(df[['first_col', 'second_col']]) == XDataFrame
项目:xpandas    作者:alan-turing-institute    | 项目源码 | 文件源码
def test_dataframe_sub_frame_data_types():
    s1 = XSeries([pd.Series([1, 2, 3], index=['a', 'b', 'c']),
                      pd.Series([4, 5, 6], index=['d', 'e', 'g'])])
    s2 = XSeries([1, 2, 3])
    s3 = XSeries([{"k1": "v1"}, {"k2": 'v2'}])
    s4 = XSeries(['f', 's', 't'])

    df = XDataFrame({
        'first_col': s1,
        'second_col': s2,
        'third_col': s3,
        'fourth_col': s4
    })

    sub_df = df.loc[:2]

    assert type(sub_df) == XDataFrame
    assert sub_df['first_col'].data_type == pd.Series
    assert sub_df['second_col'].data_type == np.int64
    assert sub_df['third_col'].data_type == dict
    assert sub_df['fourth_col'].data_type == str

    assert type(sub_df[['first_col']]) == XDataFrame
    assert type(sub_df[['first_col', 'second_col']]) == XDataFrame
项目:cellranger    作者:10XGenomics    | 项目源码 | 文件源码
def save_h5(f, group, key, namedtuple):
    """ Save a namedtuple to an h5 file under a group and subgroup """
    if VERSION_KEY in f.root:
        version = int(getattr(f.root, VERSION_KEY))
        if version != VERSION:
            raise ValueError("Attempted to write analysis HDF5 version %d data to a version %d file" % (VERSION, version))
    else:
        ds = f.create_array(f.root, VERSION_KEY, np.int64(VERSION))

    subgroup = f.create_group(group, '_'+key)
    for field in namedtuple._fields:
        arr = getattr(namedtuple, field)
        if not hasattr(arr, 'dtype'):
            raise ValueError('%s/%s must be a numpy array or scalar' % (group,key))

        atom = tables.Atom.from_dtype(arr.dtype)
        if len(arr.shape) > 0:
            if arr.size > 0:
                ds = f.create_carray(subgroup, field, atom, arr.shape)
            else:
                ds = f.create_earray(subgroup, field, atom, arr.shape)
            ds[:] = arr
        else:
            ds = f.create_array(subgroup, field, arr)
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _validate(self, machine, n=10):
        N = n * n

        # same row same z
        z = tf.random_normal(shape=[n, self.arch['z_dim']])
        z = tf.tile(z, [1, n])
        z = tf.reshape(z, [N, -1])
        z = tf.Variable(z, trainable=False, dtype=tf.float32)       

        # same column same y 
        y = tf.range(0, 10, 1, dtype=tf.int64)
        y = tf.reshape(y, [-1, 1])
        y = tf.tile(y, [n, 1])

        Xh = machine.generate(z, y) # 100, 64, 64, 3
        # Xh = gray2jet(Xh)
        # Xh = make_png_thumbnail(Xh, n)
        Xh = make_png_jet_thumbnail(Xh, n)
        return Xh
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _validate(self, machine, n=10):
        N = n * n
        z = np.random.normal(0., 1., size=[n, self.arch['z_dim']])
        z = np.concatenate([z] * n, axis=1)
        z = np.reshape(z, [N, -1]).astype(np.float32)  # consecutive rows
        y = np.asarray(
            [[5,   0,  0 ],
             [9,   0,  0 ],
             [12,  0,  0 ],
             [17,  0,  0 ],
             [19,  0,  0 ],
             [161, 0,  0 ],
             [170, 0,  0 ],
             [170, 16, 0 ],
             [161, 9,  4 ],
             [19,  24, 50]],
            dtype=np.int64)
        y = np.concatenate([y] * n, axis=0)
        Z = tf.constant(z)
        Y = tf.constant(y)
        Xh = machine.generate(Z, Y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _validate(self, machine, n=10):
        N = n * n

        # same row same z
        z = tf.random_normal(shape=[n, self.arch['z_dim']])
        z = tf.tile(z, [1, n])
        z = tf.reshape(z, [N, -1])
        z = tf.Variable(z, trainable=False, dtype=tf.float32)       

        # same column same y 
        y = tf.range(0, 10, 1, dtype=tf.int64)
        y = tf.reshape(y, [-1,])
        y = tf.tile(y, [n,])

        Xh = machine.generate(z, y) # 100, 64, 64, 3
        Xh = make_png_thumbnail(Xh, n)
        return Xh
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def _process_items(self, index, rgb_im, depth_im, bbox, pose): 
            def _process_bbox(bbox): 
                return AttrDict(category=bbox['category'], 
                                target=UWRGBDDataset.target_hash[str(bbox['category'])], 
                                coords=np.int64([bbox['left'], bbox['top'], bbox['right'], bbox['bottom']]))

            # Compute bbox from pose and map (v2 support)
            if self.version == 'v1': 
                if bbox is not None: 
                    bbox = [_process_bbox(bb) for bb in bbox]
                    bbox = filter(lambda bb: bb.target in UWRGBDDataset.train_ids_set, bbox)

            if self.version == 'v2': 
                if bbox is None and hasattr(self, 'map_info'): 
                    bbox = self.get_bboxes(pose)

            # print 'Processing pose', pose, bbox
            return AttrDict(index=index, img=rgb_im, depth=depth_im, 
                            bbox=bbox if bbox is not None else [], pose=pose)
项目:DeepLearning_PlantDiseases    作者:MarkoArsenovic    | 项目源码 | 文件源码
def Saliency_map(image,model,preprocess,ground_truth,use_gpu=False,method=util.GradType.GUIDED):
    vis_param_dict['method'] = method
    img_tensor = preprocess(image)
    img_tensor.unsqueeze_(0)
    if use_gpu:
        img_tensor=img_tensor.cuda()
    input = Variable(img_tensor,requires_grad=True)

    if  input.grad is not None:
        input.grad.data.zero_()

    model.zero_grad()
    output = model(input)
    ind=torch.LongTensor(1)
    if(isinstance(ground_truth,np.int64)):
        ground_truth=np.asscalar(ground_truth)
    ind[0]=ground_truth
    ind=Variable(ind)
    energy=output[0,ground_truth]
    energy.backward() 
    grad=input.grad
    if use_gpu:
        return np.abs(grad.data.cpu().numpy()[0]).max(axis=0)
    return np.abs(grad.data.numpy()[0]).max(axis=0)
项目:corporadb    作者:nlesc-sherlock    | 项目源码 | 文件源码
def connectToDB(dbName=None, userName=None, dbPassword=None, dbHost=None,
                dbPort=None, dbCursor=psycopg2.extras.DictCursor):
    '''
    Connect to a specified PostgreSQL DB and return connection and cursor objects.
    '''
    # Start DB connection
    try:
        connectionString = "dbname='" + dbName + "'"
        if userName != None and userName != '':
            connectionString += " user='" + userName + "'"
        if dbHost != None and dbHost != '':
            connectionString += " host='" + dbHost + "'"
        if dbPassword != None and dbPassword != '':
            connectionString += " password='" + dbPassword + "'"
        if dbPort != None:
            connectionString += " port='" + str(dbPort) + "'"
        connection  = psycopg2.connect(connectionString)
        register_adapter(numpy.float64, addapt_numpy_float64)
        register_adapter(numpy.int64, addapt_numpy_int64)
    except:
        raise
    # if the connection succeeded get a cursor
    cursor = connection.cursor(cursor_factory=dbCursor)
    return connection, cursor
项目:autolab_core    作者:BerkeleyAutomation    | 项目源码 | 文件源码
def _check_valid_data(self, data):
        """Checks that the incoming data is a 2 x #elements ndarray of ints.

        Parameters
        ----------
        data : :obj:`numpy.ndarray`
            The data to verify.

        Raises
        ------
        ValueError
            If the data is not of the correct shape or type.
        """
        if data.dtype.type != np.int8 and data.dtype.type != np.int16 \
                and data.dtype.type != np.int32 and data.dtype.type != np.int64 \
                and data.dtype.type != np.uint8 and data.dtype.type != np.uint16 \
                and data.dtype.type != np.uint32 and data.dtype.type != np.uint64:
            raise ValueError('Must initialize image coords with a numpy int ndarray')
        if data.shape[0] != 2:
            raise ValueError('Illegal data array passed to image coords. Must have 2 coordinates')
        if len(data.shape) > 2:
            raise ValueError('Illegal data array passed to point cloud. Must have 1 or 2 dimensions')
项目:LLSIF-AutoTeamBuilder    作者:Joshua1989    | 项目源码 | 文件源码
def level_up(self, skill_level=None, slot_num=None, level=None, bond=None):
        is_valid = lambda x, min_val, max_val: x is None or (type(x) in [int, np.int64] and x <= max_val and x >= min_val)
        check = [is_valid(level, 1, self.max_level),
                 is_valid(bond, 0, self.max_bond),
                 is_valid(skill_level, 1, 8),
                 is_valid(slot_num, self.min_slot_num, self.max_slot_num)]
        is_none = [x is None for x in [level, bond, slot_num, skill_level]]
        if not all(check):
            attr_name = np.array(['Level', 'Bond', 'Skill Level', 'Slot Number'])
            print(self)
            print('{0} must be integer within valid range!'.format(', '.join(attr_name[[not x for x in check]])))
            raise
        not_none = [not x for x in is_none]
        new_attr = np.array([self.level, self.bond, self.slot_num, 0 if self.skill is None else self.skill.level], dtype=int)
        new_attr[not_none] = np.array([level, bond, slot_num, 0 if skill_level is None else skill_level])[not_none]
        self.level, self.bond, self.slot_num, skill_level = new_attr
        if self.skill is not None and skill_level in list(range(1,9)): 
            self.skill.set_level(skill_level)
        self.smile, self.pure, self.cool, self.hp = [self.stats_list[self.level-1][i] for i in [0,1,2,5]]
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def drop_inconsistent_keys(self, columns, obj):
        """Drop inconsistent keys

        Drop inconsistent keys from a ValueCounts or Histogram object.

        :param list columns: columns key to retrieve desired datatypes
        :param object obj: ValueCounts or Histogram object to drop inconsistent keys from
        """

        # has array been converted first? if so, set correct comparison
        # datatype
        comp_dtype = []
        for col in columns:
            dt = np.dtype(self.var_dtype[col]).type()
            is_converted = isinstance(
                dt, np.number) or isinstance(
                dt, np.datetime64)
            if is_converted:
                comp_dtype.append(np.int64)
            else:
                comp_dtype.append(self.var_dtype[col])
        # keep only keys of types in comp_dtype
        obj.remove_keys_of_inconsistent_type(prefered_key_type=comp_dtype)
        return obj
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def get_bin_center(self, bin_label):
        """Return bin center for a given bin index

        :param bin_label: bin label for which to find the bin center
        :returns: bin center, can be float, int, timestamp
        """

        if not self.bin_specs:
            return None
        bin_idx = np.int64(bin_label)
        if 'bin_edges' in self.bin_specs:
            bin_edges = self.bin_specs['bin_edges']
            if bin_idx < 0 or bin_idx >= len(bin_edges):
                raise RuntimeError('bin_label "%s" does not fit in bin edges' % bin_label)
            # NOTE: computation below also works with timestamps! Order is
            # important.
            bin_width = bin_edges[bin_idx + 1] - bin_edges[bin_idx]
            bin_width_half = bin_width / 2.
            bin_center = bin_edges[bin_idx] + bin_width_half
        else:
            width = self.bin_specs['bin_width']
            offset = self.bin_specs.get('bin_offset', 0.)
            # NOTE: this notation also works with timestamps!
            bin_center = offset + (bin_idx + 0.5) * width
        return bin_center
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def get_left_bin_edge(self, bin_label):
        """Return left bin edge for a given bin index

        :param bin_label: bin label for which to find the left bin edge
        :returns: bin edge, can be float, int, timestamp
        """

        # check bin specifications and specified value
        if not self.bin_specs:
            return None
        bin_idx = np.int64(bin_label)
        if 'bin_edges' in self.bin_specs:
            bin_edges = self.bin_specs['bin_edges']
            if bin_idx < 0 or bin_idx >= len(bin_edges):
                raise RuntimeError('bin label "{}" does not fit in bin edges'.format(bin_label))
            bin_edge_left = bin_edges[bin_idx]
        else:
            width = self.bin_specs['bin_width']
            offset = self.bin_specs.get('bin_offset', 0.)
            # NOTE: this notation also works with timestamps!
            bin_edge_left = offset + (bin_idx * width)
        return bin_edge_left
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def get_right_bin_edge(self, bin_label):
        """Return right bin edge for a given bin index

        :param bin_label: bin label for which to find the right bin edge.
        :returns: bin edge, can be float, int, timestamp
        """

        # check bin specifications and specified value
        if not self.bin_specs:
            return None
        bin_idx = np.int64(bin_label)
        if 'bin_edges' in self.bin_specs:
            bin_edges = self.bin_specs['bin_edges']
            if bin_idx < 0 or bin_idx >= len(bin_edges) - 1:
                raise RuntimeError('bin label "{}" does not fit in bin_edges'.format(bin_label))
            bin_edge_right = bin_edges[bin_idx + 1]
        else:
            width = self.bin_specs['bin_width']
            offset = self.bin_specs.get('bin_offset', 0.)
            # NOTE: this notation also works with timestamps!
            bin_edge_right = offset + (bin_idx + 1) * width
        return bin_edge_right
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def to_int(val, **kwargs):
    """Convert input to int

    :param val: value to be evaluated
    :returns: evaluated value
    :rtype: np.int64
    """

    try:
        if pd.isnull(val):
            return kwargs['nan']
    except BaseException:
        pass
    if isinstance(val, np.int64) or isinstance(val, int):
        return np.int64(val)
    if kwargs.get('convert_inconsistent_dtypes', True):
        try:
            return np.int64(val)
        except BaseException:
            pass
    return kwargs['nan']
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def bool_to_int(val):
    """Convert input boolean to int

    :param val: value to be evaluated
    :returns: evaluated value
    :rtype: np.int64
    """

    try:
        if pd.isnull(val):
            return kwargs['nan']
    except BaseException:
        pass
    if isinstance(val, np.bool_) or isinstance(val, bool):
        return np.int64(val)
    if kwargs.get('convert_inconsistent_dtypes', False):
        try:
            return np.int64(val)
        except BaseException:
            pass
    return kwargs['nan']
项目:prysm    作者:brandondube    | 项目源码 | 文件源码
def guarantee_array(variable):
    ''' Guarantees that a varaible is a numpy ndarray and supports -, *, +, and other operators

    Args:
        variable (`number` or `numpy.ndarray`): variable to coalesce

    Returns:
        (type).  Which supports * / and other operations with arrays

    '''
    if type(variable) in [float, np.ndarray, np.int32, np.int64, np.float32, np.float64, np.complex64, np.complex128]:
        return variable
    elif type(variable) is int:
        return float(variable)
    elif type(variable) is list:
        return np.asarray(variable)
    else:
        raise ValueError(f'variable is of invalid type {type(variable)}')
项目:sourcetracker2    作者:biota    | 项目源码 | 文件源码
def validate_gibbs_parameters(alpha1, alpha2, beta, restarts,
                              draws_per_restart, burnin, delay):
    '''Return `True` if params numerically acceptable. See `gibbs` for docs.'''
    real_vals = [alpha1, alpha2, beta]
    int_vals = [restarts, draws_per_restart, burnin, delay]
    # Check everything is real.
    if all(np.isreal(val) for val in real_vals + int_vals):
        # Check that integer values are some type of int.
        int_check = all(isinstance(val, (int, np.int32, np.int64)) for val in
                        int_vals)
        # All integer values must be > 0.
        pos_int = all(val > 0 for val in int_vals)
        # All real values must be non-negative.
        non_neg = all(val >= 0 for val in real_vals)
        return int_check and pos_int and non_neg and real_vals
    else:  # Failed to be all numeric values.
        False
项目:Modeling-Cloth    作者:the3dadvantage    | 项目源码 | 文件源码
def initalize(ob, key):
    '''Set up the indexing for viewing each edge per vert per face loop'''
    obm = get_bmesh(ob)
    ed_pairs_per_v = []
    for f in obm.faces:
        for v in f.verts:
            set = []
            for e in f.edges:
                if v in e.verts:
                    set.append(e.index)
            ed_pairs_per_v.append(set)    
    data[ob.name]['ed_pairs_per_v'] = np.array(ed_pairs_per_v)
    data[ob.name]['zeros'] = np.zeros(len(data[ob.name]['ed_pairs_per_v']) * 3).reshape(len(data[ob.name]['ed_pairs_per_v']), 3)
    key_coords = get_key_coords(ob, key)
    ed1 = get_edge_idx(ob)
    #linked = np.array([len(i.link_faces) for i in obm.edges]) > 0
    data[ob.name]['edges'] = get_edge_idx(ob)#[linked]
    dif = key_coords[data[ob.name]['edges'][:,0]] - key_coords[data[ob.name]['edges'][:,1]]
    data[ob.name]['mags'] = np.sqrt(np.einsum('ij,ij->i', dif, dif))
    mat_idx = np.zeros(len(ob.data.polygons), dtype=np.int64)
    ob.data.polygons.foreach_get('material_index', mat_idx)
    data[ob.name]['mat_index'] = mat_idx
    if 'material' not in data[ob.name]:
        print('ran this')
        material_setup(ob)
项目:Modeling-Cloth    作者:the3dadvantage    | 项目源码 | 文件源码
def triangulate(ob='empty', proxy=False):
    '''Requires a mesh. Returns an index array for viewing
    the coordinates as triangles. Store this!!! rather than recalculating
    every time. !!!Could use for_each_get with the mesh and polygons if
    all the faces have 3 points!!! Could also write bmesh to mesh and use
    foreach_get'''    
    if ob == 'empty':
        ob = bpy.context.object
    if proxy:
        mods = True
    else:
        mods = False
    proxy = ob.to_mesh(bpy.context.scene, mods, 'PREVIEW')
    obm = get_bmesh(proxy)        
    bmesh.ops.triangulate(obm, faces=obm.faces)
    obm.to_mesh(proxy)        
    count = len(proxy.polygons)    
    tri_idx = np.zeros(count * 3, dtype=np.int64)        
    proxy.polygons.foreach_get('vertices', tri_idx)        
    bpy.data.meshes.remove(proxy)
    obm.free()
    return tri_idx.reshape(count, 3)
项目:extra-trees    作者:allrod5    | 项目源码 | 文件源码
def _validate_X_predict(
            self, X: np.ndarray, check_input: bool) -> np.ndarray:
        if check_input:
            X = check_array(X, dtype=DTYPE, accept_sparse="csr")
            if issparse(X) and (X.indices.dtype != np.intc or
                                X.indptr.dtype != np.intc):
                raise ValueError(
                    "No support for np.int64 index based sparse matrices")

        n_features = X.shape[1]
        if self.n_features_ != n_features:
            raise ValueError(
                "Number of features of the model must match the input."
                " Model n_features is %s and input n_features is %s "
                % (self.n_features_, n_features))

        return X
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_int(self):
        for st, ut, s in [(np.int8, np.uint8, 8),
                          (np.int16, np.uint16, 16),
                          (np.int32, np.uint32, 32),
                          (np.int64, np.uint64, 64)]:
            for i in range(1, s):
                assert_equal(hash(st(-2**i)), hash(-2**i),
                             err_msg="%r: -2**%d" % (st, i))
                assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (st, i - 1))
                assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (st, i))

                i = max(i - 1, 1)
                assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (ut, i - 1))
                assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (ut, i))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_basic(self):
        dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128,
               np.longdouble, np.clongdouble]
        for dt in dts:
            c = np.ones(53, dtype=np.bool)
            assert_equal(np.where( c, dt(0), dt(1)), dt(0))
            assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
            assert_equal(np.where(True, dt(0), dt(1)), dt(0))
            assert_equal(np.where(False, dt(0), dt(1)), dt(1))
            d = np.ones_like(c).astype(dt)
            e = np.zeros_like(d)
            r = d.astype(dt)
            c[7] = False
            r[7] = e[7]
            assert_equal(np.where(c, e, e), e)
            assert_equal(np.where(c, d, e), r)
            assert_equal(np.where(c, d, e[0]), r)
            assert_equal(np.where(c, d[0], e), r)
            assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
            assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
            assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
            assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
            assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
            assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
            assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_dtype_mix(self):
        c = np.array([False, True, False, False, False, False, True, False,
                     False, False, True, False])
        a = np.uint32(1)
        b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
                      dtype=np.float64)
        r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
                     dtype=np.float64)
        assert_equal(np.where(c, a, b), r)

        a = a.astype(np.float32)
        b = b.astype(np.int64)
        assert_equal(np.where(c, a, b), r)

        # non bool mask
        c = c.astype(np.int)
        c[c != 0] = 34242324
        assert_equal(np.where(c, a, b), r)
        # invert
        tmpmask = c != 0
        c[c == 0] = 41247212
        c[tmpmask] = 0
        assert_equal(np.where(c, b, a), r)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_einsum_misc(self):
        # This call used to crash because of a bug in
        # PyArray_AssignZero
        a = np.ones((1, 2))
        b = np.ones((2, 2, 1))
        assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

        # The iterator had an issue with buffering this reduction
        a = np.ones((5, 12, 4, 2, 3), np.int64)
        b = np.ones((5, 12, 11), np.int64)
        assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
                        np.einsum('ijklm,ijn->', a, b))

        # Issue #2027, was a problem in the contiguous 3-argument
        # inner loop implementation
        a = np.arange(1, 3)
        b = np.arange(1, 5).reshape(2, 2)
        c = np.arange(1, 9).reshape(4, 2)
        assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
                    [[[1,  3], [3,  9], [5, 15], [7, 21]],
                    [[8, 16], [16, 32], [24, 48], [32, 64]]])
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_datetime_y2038(self):
        # Test parsing on either side of the Y2038 boundary
        a = np.datetime64('2038-01-19T03:14:07')
        assert_equal(a.view(np.int64), 2**31 - 1)
        a = np.datetime64('2038-01-19T03:14:08')
        assert_equal(a.view(np.int64), 2**31)

        # Test parsing on either side of the Y2038 boundary with
        # a manually specified timezone offset
        with assert_warns(DeprecationWarning):
            a = np.datetime64('2038-01-19T04:14:07+0100')
            assert_equal(a.view(np.int64), 2**31 - 1)
        with assert_warns(DeprecationWarning):
            a = np.datetime64('2038-01-19T04:14:08+0100')
            assert_equal(a.view(np.int64), 2**31)

        # Test parsing a date after Y2038
        a = np.datetime64('2038-01-20T13:21:14')
        assert_equal(str(a), '2038-01-20T13:21:14')
项目:top-k-rec    作者:domainxz    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser(description="Generate the beta abd theta files after latent Dirichlet allocation (LDA) process.");
    parser.add_argument('-i', '--input', required=True, help="The input file where each line starts with the number of word as well as the sparse representation of word distribution");
    parser.add_argument('-o', '--output', required=True, help="The output path");
    args  = parser.parse_args();
    tfidf = pickle.load(open(args.input));
    feat  = tfidf.toarray().astype(np.int64);
    model = lda.LDA(n_topics=50, n_iter=1500, random_state=2017);
    model.fit(feat);
    fid   = open(os.path.join(args.output, 'init.beta'), 'w');
    beta  = model.topic_word_;
    for row in range(beta.shape[0]):
        fid.write('%f'%beta[row,0]);
        for col in range(1, beta.shape[1]):
            fid.write(' %f'%beta[row,col]);
        fid.write('\n');
    fid.close();
    fid   = open(os.path.join(args.output, 'init.theta'), 'w');
    theta = model.doc_topic_
    for row in range(theta.shape[0]):
        fid.write('%f'%theta[row,0]);
        for col in range(1, theta.shape[1]):
            fid.write(' %f'%theta[row,col]);
        fid.write('\n');
    fid.close();
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_sparse_dot(self):
        x_d = np.array([0, 7, 2, 3], dtype=np.float32)
        x_r = np.array([0, 2, 2, 3], dtype=np.int64)
        x_c = np.array([4, 3, 2, 3], dtype=np.int64)

        x_sparse = sparse.csr_matrix((x_d, (x_r, x_c)), shape=(4, 5))
        x_dense = x_sparse.toarray()

        W = np.random.random((5, 4))

        backends = [KTF]
        if KTH.th_sparse_module:
            # Theano has some dependency issues for sparse
            backends.append(KTH)

        for K in backends:
            t_W = K.variable(W)
            k_s = K.eval(K.dot(K.variable(x_sparse), t_W))
            k_d = K.eval(K.dot(K.variable(x_dense), t_W))

            assert k_s.shape == k_d.shape
            assert_allclose(k_s, k_d, atol=1e-05)
项目:cupy    作者:cupy    | 项目源码 | 文件源码
def test_dtype2(self, dtype):
        dtype = numpy.dtype(dtype)

        # randint does not support 64 bit integers
        if dtype in (numpy.int64, numpy.uint64):
            return

        iinfo = numpy.iinfo(dtype)
        size = (10000,)

        x = random.randint(iinfo.min, iinfo.max + 1, size, dtype)
        self.assertEqual(x.dtype, dtype)
        self.assertLessEqual(iinfo.min, min(x))
        self.assertLessEqual(max(x), iinfo.max)

        # Lower bound check
        with self.assertRaises(ValueError):
            random.randint(iinfo.min - 1, iinfo.min + 10, size, dtype)

        # Upper bound check
        with self.assertRaises(ValueError):
            random.randint(iinfo.max - 10, iinfo.max + 2, size, dtype)
项目:pymapd    作者:mapd    | 项目源码 | 文件源码
def test_load_columnar_pandas_all(self, con, all_types_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_": np.array([0, 1], dtype=np.int8),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table_columnar(all_types_table, data, preserve_index=False)
项目:pymapd    作者:mapd    | 项目源码 | 文件源码
def test_load_table_creates(self, con, not_a_table):
        pd = pytest.importorskip("pandas")
        import numpy as np

        data = pd.DataFrame({
            "boolean_": [True, False],
            "smallint_cast": np.array([0, 1], dtype=np.int8),
            "smallint_": np.array([0, 1], dtype=np.int16),
            "int_": np.array([0, 1], dtype=np.int32),
            "bigint_": np.array([0, 1], dtype=np.int64),
            "float_": np.array([0, 1], dtype=np.float32),
            "double_": np.array([0, 1], dtype=np.float64),
            "varchar_": ["a", "b"],
            "text_": ['a', 'b'],
            "time_": [datetime.time(0, 11, 59), datetime.time(13)],
            "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
            "date_": [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1)],
        }, columns=['boolean_', 'smallint_', 'int_', 'bigint_', 'float_',
                    'double_', 'varchar_', 'text_', 'time_', 'timestamp_',
                    'date_'])
        con.load_table(not_a_table, data, create=True)
项目:dask-ml    作者:dask    | 项目源码 | 文件源码
def test_pca_int_dtype_upcast_to_double(svd_solver):
    # Ensure that all int types will be upcast to float64
    X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
    X_i64 = X_i64.astype(np.int64)
    X_i32 = X_i64.astype(np.int32)

    dX_i64 = da.from_array(X_i64, chunks=X_i64.shape)
    dX_i32 = da.from_array(X_i32, chunks=X_i32.shape)

    pca_64 = dd.PCA(n_components=3, svd_solver=svd_solver,
                    random_state=0).fit(dX_i64)
    pca_32 = dd.PCA(n_components=3, svd_solver=svd_solver,
                    random_state=0).fit(dX_i32)

    assert pca_64.components_.dtype == np.float64
    assert pca_32.components_.dtype == np.float64
    assert pca_64.transform(dX_i64).dtype == np.float64
    assert pca_32.transform(dX_i32).dtype == np.float64

    assert_array_almost_equal(pca_64.components_, pca_32.components_,
                              decimal=5)
项目:dask-ml    作者:dask    | 项目源码 | 文件源码
def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean",
                                  batch_size=None,
                                  metric_kwargs=None):
    if batch_size is None:
        batch_size = max(X.chunks[0])
    XD = X.to_delayed().flatten().tolist()
    func = delayed(metrics.pairwise_distances_argmin_min, pure=True, nout=2)
    blocks = [func(x, Y, metric=metric, batch_size=batch_size,
                   metric_kwargs=metric_kwargs)
              for x in XD]
    argmins, mins = zip(*blocks)

    argmins = [da.from_delayed(block, (chunksize,), np.int64)
               for block, chunksize in zip(argmins, X.chunks[0])]
    # Scikit-learn seems to always use float64
    mins = [da.from_delayed(block, (chunksize,), 'f8')
            for block, chunksize in zip(mins, X.chunks[0])]
    argmins = da.concatenate(argmins)
    mins = da.concatenate(mins)
    return argmins, mins
项目:dtnn    作者:atomistic-machine-learning    | 项目源码 | 文件源码
def predict(dbpath, features, sess, y):
    U0 = []
    U0_pred = []
    count = 0
    with connect(dbpath) as conn:
        n_structures = conn.count()
        for row in conn.select():
            U0.append(row['U0'])

            at = row.toatoms()
            feed_dict = {
                features['numbers']:
                    np.array(at.numbers).astype(np.int64),
                features['positions']:
                    np.array(at.positions).astype(np.float32)
            }
            U0_p = sess.run(y, feed_dict=feed_dict)
            U0_pred.append(U0_p)
            if count % 1000 == 0:
                print(str(count) + ' / ' + str(n_structures))
            count += 1
    return U0, U0_pred
项目:house-of-enlightenment    作者:house-of-enlightenment    | 项目源码 | 文件源码
def diffuse(self, pixels, delta_t):
        self.pixels.append(np.empty([self.X_MAX, self.Y_MAX], dtype=float))

        if delta_t < 5:
            return

        v = self.diffusion_constant
        h0 = self.pixels[1]
        h, idx = self.hCalc()
        hDiff = (h - h0 * idx)
        h = hDiff * delta_t * v + h0

        # pylint: disable=no-member
        pix = np.array(pixels[:, :][:], dtype=np.int64)
        color = (pix[:, :, 0] << 16) | (pix[:, :, 1] << 8) | (pix[:, :, 2])
        f = np.where(color == 0xFF0000, 0xFFFF, np.where(color == 0xFF00, 0 - 0xFFFF,
                                                         0))[:self.X_MAX, :self.Y_MAX]
        h = h + f
        h = np.clip(h, 0, 0xFFFF)
        self.pixels[2] = np.clip(h, 0, 0xFFFF)

    ##
    # This is the differences between node i,j and it's closest neighbors
    # it's used in calculateing spatial derivitives
    #
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def get_label_batch(label_data, batch_size, batch_index):
    nrof_examples = np.size(label_data, 0)
    j = batch_index*batch_size % nrof_examples
    if j+batch_size<=nrof_examples:
        batch = label_data[j:j+batch_size]
    else:
        x1 = label_data[j:nrof_examples]
        x2 = label_data[0:nrof_examples-j]
        batch = np.vstack([x1,x2])
    batch_int = batch.astype(np.int64)
    return batch_int
项目:rca-evaluation    作者:sieve-microservices    | 项目源码 | 文件源码
def is_monotonic(serie):
    if serie.dtype == np.float64:
        return pd.algos.is_monotonic_float64(serie.values, False)[0]
    elif serie.dtype == np.int64:
        return pd.algos.is_monotonic_int64(serie.values, False)[0]
    else:
        raise ValueError("unexpected column type: %s" % serie.dtype)
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def get_offset(data_dtype, dtype_offset):

    if dtype_offset == 'auto':
        if data_dtype in ['uint16', numpy.uint16]:
            dtype_offset = 32768
        elif data_dtype in ['int16', numpy.int16]:
            dtype_offset = 0
        elif data_dtype in ['int32', numpy.int32]:
            dtype_offset = 0
        elif data_dtype in ['int64', numpy.int64]:
            dtype_offset = 0
        elif data_dtype in ['float32', numpy.float32]:
            dtype_offset = 0
        elif data_dtype in ['int8', numpy.int8]:
            dtype_offset = 0
        elif data_dtype in ['uint8', numpy.uint8]:
            dtype_offset = 127
        elif data_dtype in ['float64', numpy.float64]:
            dtype_offset = 0
        if comm.rank == 0:
            print_and_log(['data type offset for %s is automatically set to %d' %(data_dtype, dtype_offset)], 'debug', logger)
    else:
        try:
            dtype_offset = int(dtype_offset)
        except Exception:
            if comm.rank == 0:
                print_and_log(["Offset %s is not valid" %dtype_offset], 'error', logger)
            sys.exit(1)

    return dtype_offset
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def _get_t_start_t_stop(self, idx, chunk_size, padding=(0,0)):

        t_start     = idx*numpy.int64(chunk_size)+padding[0]
        t_stop      = (idx+1)*numpy.int64(chunk_size)+padding[1]

        if t_stop > self.duration:
            t_stop = self.duration

        if t_start < 0:
            t_start = 0

        return t_start, t_stop
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def duration(self):
        if self.is_stream:
            duration = 0
            for source in self._sources:
                duration += source.duration
            return duration
        else:
            return numpy.int64(self._shape[0])
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

        t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)
        local_shape     = t_stop - t_start

        if nodes is None:
            nodes = numpy.arange(self.nb_channels, dtype=numpy.int32)

        local_chunk = numpy.zeros((local_shape, len(nodes)), dtype=self.data_dtype)

        for count, i in enumerate(nodes):
            local_chunk[:, count] = self.data.get_entity(numpy.int64(i)).get_data(t_start, numpy.int64(local_shape))[0]

        return self._scale_data_to_float32(local_chunk)
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def gather_array(data, mpi_comm, root=0, shape=0, dtype='float32'):
    # gather 1D or 2D numpy arrays
    assert isinstance(data, numpy.ndarray)
    assert len(data.shape) < 3
    # first we pass the data size
    size  = data.size
    sizes = mpi_comm.gather(size, root=root) or []
    # now we pass the data
    displacements = [int(sum(sizes[:i])) for i in range(len(sizes))]
    if dtype is 'float32':
        gdata         = numpy.empty(int(sum(sizes)), dtype=numpy.float32)
        mpi_comm.Gatherv([data.flatten(), size, MPI.FLOAT], [gdata, (sizes, displacements), MPI.FLOAT], root=root)
    elif dtype is 'float64':
        gdata         = numpy.empty(int(sum(sizes)), dtype=numpy.float64)
        mpi_comm.Gatherv([data.flatten(), size, MPI.DOUBLE], [gdata, (sizes, displacements), MPI.DOUBLE], root=root)
    elif dtype is 'int32':
        gdata         = numpy.empty(int(sum(sizes)), dtype=numpy.int32)
        mpi_comm.Gatherv([data.flatten(), size, MPI.INT], [gdata, (sizes, displacements), MPI.INT], root=root)
    elif dtype is 'int64':
        gdata = numpy.empty(int(sum(sizes)), dtype=numpy.int64)
        mpi_comm.Gatherv([data.flatten(), size, MPI.LONG], [gdata, (sizes, displacements), MPI.LONG], root=root)

    if len(data.shape) == 1:
        return gdata
    else:
        if shape == 0:
            num_lines = data.shape[0]
            if num_lines > 0:
                return gdata.reshape((num_lines, gdata.size//num_lines))
            else:
                return gdata.reshape((0, gdata.shape[1]))
        if shape == 1:
            num_columns = data.shape[1]
            if num_columns > 0:
                return gdata.reshape((gdata.size//num_columns, num_columns))
            else:
                return gdata.reshape((gdata.shape[0], 0))
项目:skiprnn-2017-telecombcn    作者:imatge-upc    | 项目源码 | 文件源码
def generate_batch(batch_size, sampling_period, signal_duration, start_period, end_period,
                   start_target_period, end_target_period):
    """
    Generate a stratified batch of examples. There are two classes:
        class 0: sine waves with period in [start_target_period, end_target_period]
        class 1: sine waves with period in [start_period, start_target_period] U [end_target_period, end_period]
    :param batch_size: number of samples per batch
    :param sampling_period: sampling period in milliseconds
    :param signal_duration: duration of the sine waves in milliseconds

    :return x: batch of examples
    :return y: batch of labels
    """
    seq_length = int(signal_duration / sampling_period)

    n_elems = 1
    x = np.empty((batch_size, seq_length, n_elems))
    y = np.empty(batch_size, dtype=np.int64)

    t = np.linspace(0, signal_duration - sampling_period, seq_length)

    for idx in range(int(batch_size/2)):
        period = random.uniform(start_target_period, end_target_period)
        phase_shift = random.uniform(0, period)
        x[idx, :, 0] = generate_example(t, 1./period, phase_shift)
        y[idx] = 0
    for idx in range(int(batch_size/2), batch_size):
        period = random_disjoint_interval(start_period, end_period,
                                          start_target_period, end_target_period)
        phase_shift = random.uniform(0, period)
        x[idx, :, 0] = generate_example(t, 1./period, phase_shift)
        y[idx] = 1
    return x, y