Python numpy 模块,shape() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.shape()

项目:gcForest    作者:pylablanche    | 项目源码 | 文件源码
def _cascade_evaluation(self, X_test, y_test):
        """ Evaluate the accuracy of the cascade using X and y.

        :param X_test: np.array
            Array containing the test input samples.
            Must be of the same shape as training data.

        :param y_test: np.array
            Test target values.

        :return: float
            the cascade accuracy.
        """
        casc_pred_prob = np.mean(self.cascade_forest(X_test), axis=0)
        casc_pred = np.argmax(casc_pred_prob, axis=1)
        casc_accuracy = accuracy_score(y_true=y_test, y_pred=casc_pred)
        print('Layer validation accuracy = {}'.format(casc_accuracy))

        return casc_accuracy
项目:gcForest    作者:pylablanche    | 项目源码 | 文件源码
def _create_feat_arr(self, X, prf_crf_pred):
        """ Concatenate the original feature vector with the predicition probabilities
        of a cascade layer.

        :param X: np.array
            Array containing the input samples.
            Must be of shape [n_samples, data] where data is a 1D array.

        :param prf_crf_pred: list
            Prediction probabilities by a cascade layer for X.

        :return: np.array
            Concatenation of X and the predicted probabilities.
            To be used for the next layer in a cascade forest.
        """
        swap_pred = np.swapaxes(prf_crf_pred, 0, 1)
        add_feat = swap_pred.reshape([np.shape(X)[0], -1])
        feat_arr = np.concatenate([add_feat, X], axis=1)

        return feat_arr
项目:gcForest    作者:pylablanche    | 项目源码 | 文件源码
def fit(self, X, y):
        """ Training the gcForest on input data X and associated target y.

        :param X: np.array
            Array containing the input samples.
            Must be of shape [n_samples, data] where data is a 1D array.

        :param y: np.array
            1D array containing the target values.
            Must be of shape [n_samples]
        """
        if np.shape(X)[0] != len(y):
            raise ValueError('Sizes of y and X do not match.')

        mgs_X = self.mg_scanning(X, y)
        _ = self.cascade_forest(mgs_X, y)
项目:Homology_BG    作者:jyotikab    | 项目源码 | 文件源码
def postProcess(PDFeatures1,which):
        PDFeatures2 = np.copy(PDFeatures1)
        cols = np.shape(PDFeatures2)[1]
        for x in xrange(cols):
                indinf = np.where(np.isinf(PDFeatures2[:,x])==True)[0]
                if len(indinf) > 0:
                        PDFeatures2[indinf,x] = 0
                indnan = np.where(np.isnan(PDFeatures2[:,x])==True)[0]
                if len(indnan) > 0:
                        PDFeatures2[indnan,x] = 0

        indLN = np.where(PDFeatures2[:,0] < -1)[0]
        for x in indLN:
                PDFeatures2[x,0] = np.random.uniform(-0.75,-0.99,1)

        term1 = (PDFeatures2[:,2]+PDFeatures2[:,3]+PDFeatures2[:,5])/3.
        print term1

        PDFeatures2[:,1] = 1.-term1
        print "PDF",PDFeatures2[:,1]
        return PDFeatures2
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def get_batch():
    ran = random.randint(600, data_size)
    #print(ran)
    image = []
    label = []
    label_0 = []
    n_pic = ran
    # print(n_pic)
    for i in range(batch_size * n_steps):
        frame_0 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic+i), 0)
        frame_0 = cv2.resize(frame_0, (LONGITUDE, LONGITUDE))
        frame_0 = np.array(frame_0).reshape(-1)
        image.append(frame_0)
        #print(np.shape(image))
    for i in range(batch_size):
        frame_1 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic + batch_size * (i+1) ), 0)
        frame_1 = cv2.resize(frame_1, (LONGITUDE, LONGITUDE))
        frame_1 = np.array(frame_1).reshape(-1)
        label.append(frame_1)
    for i in range(batch_size):
        frame_2 = cv2.imread('./cropedoriginalUS2/%d.jpg' % (n_pic + batch_size * (i+1) ), 0)
        frame_2 = cv2.resize(frame_2, (LONGITUDE, LONGITUDE))
        frame_2 = np.array(frame_2).reshape(-1)
        label_0.append(frame_2)
    return image , label , label_0
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def get_train_batch(noise=0):
    ran = random.randint(600, data_size)
    #print(ran)
    image = []
    label = []
    label_0 = []
    n_pic = ran
    # print(n_pic)
    for i in range(batch_size ):
        frame_0 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic+i), 0)
        frame_0 = add_noise(frame_0, n = noise)
        frame_0 = cv2.resize(frame_0, (LONGITUDE, LONGITUDE))
        frame_0 = np.array(frame_0).reshape(-1)
        image.append(frame_0)
        #print(np.shape(image))
    for i in range(batch_size):
        frame_1 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic + batch_size * (i+1) ), 0)
        frame_1 = cv2.resize(frame_1, (LONGITUDE, LONGITUDE))
        frame_1 = np.array(frame_1).reshape(-1)
        label.append(frame_1)
    return image , label
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def get_train_batch(noise=500):
    ran = np.random.randint(600,5800,size=10,dtype='int')
    #print(ran)
    image = []
    label = []
    label_0 = []
    n_pic = ran
    # print(n_pic)
    for i in range(10):
        frame_0 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic[i]), 0)
        frame_0 = add_noise(frame_0, n = noise)
        frame_0 = cv2.resize(frame_0, (24, 24))
        frame_0 = np.array(frame_0).reshape(-1)
        frame_0 = frame_0 / 255.0
        image.append(frame_0)
        #print(np.shape(image))
    for i in range(10):
        frame_1 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic[i]), 0)
        frame_1 = cv2.resize(frame_1, (24, 24))
        frame_1 = np.array(frame_1).reshape(-1)
        frame_1 = gray2binary(frame_1)
        label.append(frame_1)
    return np.array(image,dtype='float') , np.array(label,dtype='float')
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def get_test_batch(noise=500):
    ran = np.random.randint(5800,6000,size=10,dtype='int')
    #print(ran)
    image = []
    label = []
    label_0 = []
    n_pic = ran
    # print(n_pic)
    for i in range(10):
        frame_0 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic[i]), 0)
        frame_0 = add_noise(frame_0, n = noise)
        frame_0 = cv2.resize(frame_0, (24, 24))
        frame_0 = np.array(frame_0).reshape(-1)
        frame_0 = frame_0 / 255.0
        image.append(frame_0)
        #print(np.shape(image))
    for i in range(10):
        frame_1 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic[i]), 0)
        frame_1 = cv2.resize(frame_1, (24, 24))
        frame_1 = np.array(frame_1).reshape(-1)
        frame_1 = gray2binary(frame_1)
        label.append(frame_1)
    return np.array(image,dtype='float') , np.array(label,dtype='float')
项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def get_data(datadir):
    #datadir = args.data
    # assume each image is 512x256 split to left and right
    imgs = glob.glob(os.path.join(datadir, '*.jpg'))
    data_X = np.zeros((len(imgs),3,img_cols,img_rows))
    data_Y = np.zeros((len(imgs),3,img_cols,img_rows))  
    i = 0
    for file in imgs:
        img = cv2.imread(file,cv2.IMREAD_COLOR)
        img = cv2.resize(img, (img_cols*2, img_rows)) 
        #print('{} {},{}'.format(i,np.shape(img)[0],np.shape(img)[1]))
        img = np.swapaxes(img,0,2)

        X, Y = split_input(img)

        data_X[i,:,:,:] = X
        data_Y[i,:,:,:] = Y
        i = i+1
    return data_X, data_Y
项目:Renewables_Scenario_Gen_GAN    作者:chennnnnyize    | 项目源码 | 文件源码
def load_solar_data():
    with open('solar label.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        rows = [row for row in reader]
    labels = np.array(rows, dtype=int)
    print(shape(labels))

    with open('solar.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        rows = [row for row in reader]
    rows = np.array(rows, dtype=float)
    rows=rows[:104832,:]
    print(shape(rows))
    trX = np.reshape(rows.T,(-1,576))
    print(shape(trX))
    m = np.ndarray.max(rows)
    print("maximum value of solar power", m)
    trY=np.tile(labels,(32,1))
    trX=trX/m
    return trX,trY
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def _set_x0(self, x0):
        if utils.is_str(x0):
            if type(x0) is not str:
                print(type(x0), x0)
            x0 = eval(x0)
        self.x0 = array(x0, dtype=float, copy=True)  # should not have column or row, is just 1-D
        if self.x0.ndim == 2 and 1 in self.x0.shape:
            utils.print_warning('input x0 should be a list or 1-D array, trying to flatten ' +
                                str(self.x0.shape) + '-array')
            if self.x0.shape[0] == 1:
                self.x0 = self.x0[0]
            elif self.x0.shape[1] == 1:
                self.x0 = array([x[0] for x in self.x0])
        if self.x0.ndim != 1:
            raise ValueError('x0 must be 1-D array')
        if len(self.x0) <= 1:
            raise ValueError('optimization in 1-D is not supported (code was never tested)')
        try:
            self.x0.resize(self.x0.shape[0])  # 1-D array, not really necessary?!
        except NotImplementedError:
            pass
    # ____________________________________________________________
    # ____________________________________________________________
项目:pycma    作者:CMA-ES    | 项目源码 | 文件源码
def fCauchy(ftrue, alpha, p):
    """Returns Cauchy model noisy value

    Cauchy with median 1e3*alpha and with p=0.2, zero otherwise

    P(Cauchy > 1,10,100,1000) = 0.25, 0.032, 0.0032, 0.00032

    """
    # expects ftrue to be a np.array
    popsi = np.shape(ftrue)
    fval = ftrue + alpha * np.maximum(0., 1e3 + (_rand(popsi) < p) *
                                          _randn(popsi) / (np.abs(_randn(popsi)) + 1e-199))
    tol = 1e-8
    fval = fval + 1.01 * tol
    idx = ftrue < tol
    try:
        fval[idx] = ftrue[idx]
    except IndexError: # fval is a scalar
        if idx:
            fval = ftrue
    return fval

### CLASS DEFINITION ###
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_nsx_data_variant_a(self, nsx_nb):
        """
        Extract nsx data from a 2.1 .nsx file
        """
        filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

        # get shape of data
        shape = (
            self.__nsx_databl_param['2.1']('nb_data_points', nsx_nb),
            self.__nsx_basic_header[nsx_nb]['channel_count'])
        offset = self.__nsx_params['2.1']('bytes_in_headers', nsx_nb)

        # read nsx data
        # store as dict for compatibility with higher file specs
        data = {1: np.memmap(
            filename, dtype='int16', shape=shape, offset=offset)}

        return data
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_nsx_data_variant_b(self, nsx_nb):
        """
        Extract nsx data (blocks) from a 2.2 or 2.3 .nsx file. Blocks can arise
        if the recording was paused by the user.
        """
        filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

        data = {}
        for data_bl in self.__nsx_data_header[nsx_nb].keys():
            # get shape and offset of data
            shape = (
                self.__nsx_data_header[nsx_nb][data_bl]['nb_data_points'],
                self.__nsx_basic_header[nsx_nb]['channel_count'])
            offset = \
                self.__nsx_data_header[nsx_nb][data_bl]['offset_to_data_block']

            # read data
            data[data_bl] = np.memmap(
                filename, dtype='int16', shape=shape, offset=offset)

        return data
项目:NeoAnalysis    作者:neoanalysis    | 项目源码 | 文件源码
def __read_nsx_data_variant_b(self, nsx_nb):
        """
        Extract nsx data (blocks) from a 2.2 or 2.3 .nsx file. Blocks can arise
        if the recording was paused by the user.
        """
        filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

        data = {}
        for data_bl in self.__nsx_data_header[nsx_nb].keys():
            # get shape and offset of data
            shape = (
                self.__nsx_data_header[nsx_nb][data_bl]['nb_data_points'],
                self.__nsx_basic_header[nsx_nb]['channel_count'])
            offset = \
                self.__nsx_data_header[nsx_nb][data_bl]['offset_to_data_block']

            # read data
            data[data_bl] = np.memmap(
                filename, dtype='int16', shape=shape, offset=offset)

        return data
项目:bayestsa    作者:thalesians    | 项目源码 | 文件源码
def unscentedTransform(X, Wm, Wc, f):
    Y = None
    Ymean = None
    fdim = None
    N = np.shape(X)[1]
    for j in range(0,N):
        fImage = f(X[:,j])
        if Y is None:
            fdim = np.size(fImage)
            Y = np.zeros((fdim, np.shape(X)[1]))
            Ymean = np.zeros(fdim)
        Y[:,j] = fImage
        Ymean += Wm[j] * Y[:,j]
    Ycov = np.zeros((fdim, fdim))
    for j in range(0, N):
        meanAdjustedYj = Y[:,j] - Ymean
        Ycov += np.outer(Wc[j] * meanAdjustedYj, meanAdjustedYj)
    return Y, Ymean, Ycov
项目:bayestsa    作者:thalesians    | 项目源码 | 文件源码
def predict(self):
        try:
            X, Wm, Wc = sigmaPoints(self.xa, self.Pa)
        except:
            warnings.warn('Encountered a matrix that is not positive definite in the sigma points calculation at the predict step')
            self.Pa = nearpd(self.Pa)
            X, Wm, Wc = sigmaPoints(self.xa, self.Pa)
        fX, x, Pxx = unscentedTransform(X, Wm, Wc, self.fa)
        x = np.asscalar(x)
        Pxx = np.asscalar(Pxx)

        Pxv = 0.
        N = np.shape(X)[1]
        for j in range(0, N):
            Pxv += Wc[j] * fX[0,j] * X[3,j]

        self.xa = np.array( ((x,), (0.,), (0.,), (0.,)) )
        self.Pa = np.array( ((Pxx, Pxv   , 0.      , 0.      ),
                             (Pxv, self.R, 0.      , 0.      ),
                             (0. , 0.    , self.Q  , self.cor),
                             (0. , 0.    , self.cor, self.R  )) )
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def precompute(self):

#         CSR_W = cuda_cffi.cusparse.CSR.to_CSR(self.st['W_gpu'],diag_type=True)

#         Dia_W_cpu = scipy.sparse.dia_matrix( (self.st['M'], self.st['M']),dtype=dtype)
#         Dia_W_cpu = scipy.sparse.dia_matrix( ( self.st['W'], 0 ), shape=(self.st['M'], self.st['M']) )
#         Dia_W_cpu = scipy.sparse.diags(self.st['W'], format="csr", dtype=dtype)
#         CSR_W = cuda_cffi.cusparse.CSR.to_CSR(Dia_W_cpu)


        self.st['pHp_gpu'] = self.CSRH.gemm(self.CSR)
        self.st['pHp']=self.st['pHp_gpu'].get()
        print('untrimmed',self.st['pHp'].nnz)
        self.truncate_selfadjoint(1e-5)
        print('trimmed', self.st['pHp'].nnz)
        self.st['pHp_gpu'] = cuda_cffi.cusparse.CSR.to_CSR(self.st['pHp'])
#         self.st['pHWp_gpu'] = self.CSR.conj().gemm(CSR_W,transA=cuda_cffi.cusparse.CUSPARSE_OPERATION_TRANSPOSE)
#         self.st['pHWp_gpu'] = self.st['pHWp_gpu'].gemm(self.CSR, transA=cuda_cffi.cusparse.CUSPARSE_OPERATION_NON_TRANSPOSE)
项目:pynufft    作者:jyhmiinlin    | 项目源码 | 文件源码
def plan(self, om, Nd, Kd, Jd):


        self.debug = 0  # debug

        n_shift = tuple(0*x for x in Nd)
        self.st = plan(om, Nd, Kd, Jd)

        self.Nd = self.st['Nd']  # backup
        self.sn = self.st['sn']  # backup
        self.ndims=len(self.st['Nd']) # dimension
        self.linear_phase(n_shift)  
        # calculate the linear phase thing
        self.st['pH'] = self.st['p'].getH().tocsr()
        self.st['pHp']=  self.st['pH'].dot(self.st['p'])
        self.NdCPUorder, self.KdCPUorder, self.nelem =     preindex_copy(self.st['Nd'], self.st['Kd'])
#         self.st['W'] = self.pipe_density()
        self.shape = (self.st['M'], numpy.prod(self.st['Nd']))

#         print('untrimmed',self.st['pHp'].nnz)
#         self.truncate_selfadjoint(1e-1)
#         print('trimmed', self.st['pHp'].nnz)
项目:corporadb    作者:nlesc-sherlock    | 项目源码 | 文件源码
def create_dummy_data(self):
    self.datasetname = 'sherlock'
    self.read_metadata_json(self.dataset.getMetadata())
    self.worddict, self.lenwords, self.randwords = self.dataset.loadVocabulary()
    # normalized probability matrix, words in a topic
    #self.wordprob = self.dataset.getWordsInTopicMatrix()
    #self.numtopics = numpy.shape(self.wordprob)[0]
    self.email_prob = self.dataset.getWordsInTopicMatrix()
    self.numtopics = numpy.shape(self.email_prob)[0]
    print(self.numtopics)
    # normalized probability matrix, emails in a topic
    self.num_emails = len(self.metadata)
    #self.email_prob = self.dataset.getDocsInTopicMatrix()
    self.wordprob = self.dataset.getDocsInTopicMatrix()
    #import pdb; pdb.set_trace()
    # distance matrix between topics
    self.distance_matrix = self.dataset.getTopicDistanceMatrix(self.wordprob)
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def generateWekaFile(X,Y,features,path,name):
    f = open(path + name + '.arff', 'w')
    f.write("@relation '" + name + "'\n\n")

    for feat in features:
        f.write("@attribute " + feat + " numeric\n")
    f.write("@attribute cluster {True,False}\n\n")

    f.write("@data\n\n")
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            if np.isnan(X[i,j]):
                f.write("?,")
            else:
                f.write(str(X[i,j]) + ",")
        if Y[i] == 1.0 or Y[i] == True:
            f.write("True\n")
        else:
            f.write("False\n")

    f.close()
项目:kernel_goodness_of_fit    作者:karlnapf    | 项目源码 | 文件源码
def mahalanobis_distance(difference, num_random_features):
    num_samples, _ = np.shape(difference)
    sigma = np.cov(np.transpose(difference))

    mu = np.mean(difference, 0)

    if num_random_features == 1:
        stat = float(num_samples * mu ** 2) / float(sigma)
    else:
        try:
            linalg.inv(sigma)
        except LinAlgError:
            print('covariance matrix is singular. Pvalue returned is 1.1')
            warnings.warn('covariance matrix is singular. Pvalue returned is 1.1')
            return 0
        stat = num_samples * mu.dot(linalg.solve(sigma, np.transpose(mu)))

    return chi2.sf(stat, num_random_features)
项目:kernel_goodness_of_fit    作者:karlnapf    | 项目源码 | 文件源码
def compute_pvalue(self, samples):

        samples = self._make_two_dimensional(samples)

        self.shape = samples.shape[1]

        stein_statistics = []


        for f in range(self.number_of_random_frequencies):
            # This is a little bit of a bug , but th holds even for this choice
            random_frequency = np.random.randn()
            matrix_of_stats = self.stein_stat(random_frequency=random_frequency, samples=samples)
            stein_statistics.append(matrix_of_stats)

        normal_under_null = np.hstack(stein_statistics)
        normal_under_null = self._make_two_dimensional(normal_under_null)

        return mahalanobis_distance(normal_under_null, normal_under_null.shape[1])
项目:SudokuVisionSolver    作者:tusharsircar95    | 项目源码 | 文件源码
def extractOuterGrid(img):
        rows,cols = np.shape(img)
        maxArea = 0
        point = [0,0]

        imgOriginal = img.copy()
        for i in range(rows):
            for j in range(cols):
                if img[i][j] == 255:
                    img,area,dummy = customFloodFill(img,[i,j],100,0)
                    if area > maxArea:
                        maxArea = area
                        point = [i,j]

        img = imgOriginal
        img,area,dummy = customFloodFill(img,[point[0],point[1]],100,0) 
        for i in range(rows):
            for j in range(cols):
                if img[i][j] == 100:
                    img[i][j] = 255
                else: img[i][j] = 0
        return img,point

# Draws a line on the image given its parameters in normal form
项目:SudokuVisionSolver    作者:tusharsircar95    | 项目源码 | 文件源码
def centerDigit(img):
    xMean,yMean,count = 0,0,0
    (x,y) = np.shape(img)
    for i in range(x):
        for j in range(y):
            if img[i][j] == 255:
                xMean,yMean,count = (xMean+i),(yMean+j),(count+1)
    if count == 0:
        return img

    xMean,yMean = (xMean / count),(yMean / count)
    xDisp,yDisp = (xMean - (x/2)),(yMean - (y/2))

    newImg = np.zeros((x,y),np.uint8)
    for i in range(x):
        for j in range(y):
            if img[i][j] == 255:
                newImg[i-xDisp][j-yDisp] = 255
    return newImg

# Given the cropped out digit, places it on a black background for matching with templates
项目:PortfolioTimeSeriesAnalysis    作者:MizioAnd    | 项目源码 | 文件源码
def outlier_identification(self, model, x_train, y_train):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print('\nOutlier shapes')
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        model.fit(x_train_split, y_train_split)
        y_predicted = model.predict(x_test_split)
        residuals = np.absolute(y_predicted - y_test_split)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        outliers_mask = residuals >= rmse_pred_vs_actual
        outliers_mask = np.concatenate([np.zeros((np.shape(y_train_split)[0],), dtype=bool), outliers_mask])
        not_an_outlier = outliers_mask == 0
        # Resample the training set from split, since the set was randomly split
        x_out = np.insert(x_train_split, np.shape(x_train_split)[0], x_test_split, axis=0)
        y_out = np.insert(y_train_split, np.shape(y_train_split)[0], y_test_split, axis=0)
        return x_out[not_an_outlier, ], y_out[not_an_outlier, ]
项目:multimodal_varinf    作者:tmoer    | 项目源码 | 文件源码
def __init__(self,to_plot = True):
        self.state = np.array([0,0])        
        self.observation_shape = np.shape(self.get_state())[0]

        if to_plot:
            plt.ion()
            fig = plt.figure()
            ax1 = fig.add_subplot(111,aspect='equal')
            #ax1.axis('off')
            plt.xlim([-0.5,5.5])
            plt.ylim([-0.5,5.5])

            self.g1 = ax1.add_artist(plt.Circle((self.state[0],self.state[1]),0.1,color='red'))
            self.fig = fig
            self.ax1 = ax1
            self.fig.canvas.draw()
            self.fig.canvas.flush_events()
项目:CRN_ProbabilisticInversion    作者:elaloy    | 项目源码 | 文件源码
def Dreamzs_finalize(MCMCPar,Sequences,Z,outDiag,fx,iteration,iloc,pCR,m_z,m_func):

    # Start with CR
    outDiag.CR = outDiag.CR[0:iteration-1,0:pCR.shape[1]+1]
    # Then R_stat
    outDiag.R_stat = outDiag.R_stat[0:iteration-1,0:MCMCPar.n+1]
    # Then AR 
    outDiag.AR = outDiag.AR[0:iteration-1,0:2] 
    # Adjust last value (due to possible sudden end of for loop)

    # Then Sequences
    Sequences = Sequences[0:iloc+1,0:MCMCPar.n+2,0:MCMCPar.seq]

    # Then the archive Z
    Z = Z[0:m_z,0:MCMCPar.n+2]


    if MCMCPar.savemodout==True:
       # remove zeros
       fx = fx[:,0:m_func]

    return Sequences,Z, outDiag, fx
项目:Saliency_Detection_Convolutional_Autoencoder    作者:arthurmeyer    | 项目源码 | 文件源码
def load_weights(model, sess, weight_file):
  """
  Load weights from given weight file (used to load pretrain weight of vgg model)

  Args:
    model            :         model to restore variable to
    sess             :         tensorflow session
    weight_file      :         weight file name
  """

  weights = np.load(weight_file)
  keys    = sorted(weights.keys())
  for i, k in enumerate(keys):
    if i <= 29:
      print('-- %s %s --' % (i,k))
      print(np.shape(weights[k]))
      sess.run(model.parameters_conv[i].assign(weights[k]))
项目:Neural-Photo-Editor    作者:ajbrock    | 项目源码 | 文件源码
def update_canvas(widget=None):
    global r, Z, res, rects, painted_rects
    if widget is None:
        widget = w
    # Update display values
    r = np.repeat(np.repeat(Z,r.shape[0]//Z.shape[0],0),r.shape[1]//Z.shape[1],1)

    # If we're letting freeform painting happen, delete the painted rectangles
    for p in painted_rects:
        w.delete(p)
    painted_rects = []

    for i in range(Z.shape[0]):
        for j in range(Z.shape[1]):
            w.itemconfig(int(rects[i,j]),fill = rb(255*Z[i,j]),outline = rb(255*Z[i,j]))

# Function to move the paintbrush
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def logscale_spec(spec, sr=44100, factor=20.):
    timebins, freqbins = np.shape(spec)

    scale = np.linspace(0, 1, freqbins) ** factor
    scale *= (freqbins-1)/max(scale)
    scale = np.unique(np.round(scale))

    # create spectrogram with new freq bins
    newspec = np.complex128(np.zeros([timebins, len(scale)]))
    for i in range(0, len(scale)):
        if i == len(scale)-1:
            newspec[:,i] = np.sum(spec[:,scale[i]:], axis=1)
        else:        
            newspec[:,i] = np.sum(spec[:,scale[i]:scale[i+1]], axis=1)

    # list center freq of bins
    allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
    freqs = []
    for i in range(0, len(scale)):
        if i == len(scale)-1:
            freqs += [np.mean(allfreqs[scale[i]:])]
        else:
            freqs += [np.mean(allfreqs[scale[i]:scale[i+1]])]

    return newspec, freqs
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def weightVariable(shape,std=1.0,name=None):
    # Create a set of weights initialized with truncated normal random values
    name = 'weights' if name is None else name
    return tf.get_variable(name,shape,initializer=tf.truncated_normal_initializer(stddev=std/math.sqrt(shape[0])))
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def biasVariable(shape,bias=0.1,name=None):
    # create a set of bias nodes initialized with a constant 0.1
    name = 'biases' if name is None else name
    return tf.get_variable(name,shape,initializer=tf.constant_initializer(bias))
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def max_pool(x,shape,name=None):
    # return an op that performs max pooling across a 2D image
    return tf.nn.max_pool(x,ksize=[1]+shape+[1],strides=[1]+shape+[1],padding='SAME',name=name)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def max_pool3d(x,shape,name=None):
    # return an op that performs max pooling across a 2D image
    return tf.nn.max_pool3d(x,ksize=[1]+shape+[1],strides=[1]+shape+[1],padding='SAME',name=name)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
    # Receptive Fields Summary
    try:
        W = layer.W
    except:
        W = layer
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) 
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))

    fig = mpl.figure(figOffset); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,np.shape(fields)[0]):
        im = grid[i].imshow(fields[i],cmap=cmap); 

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    # 
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def __init__(self,input,shape,name,strides=[1,1,1,1],std=1.0,bias=0.1):
        self.input = input
        self.units = shape[-1]
        self.shape = shape
        self.strides = strides
        self.name = name
        self.initialize(std=std,bias=bias)
        self.setupOutput()
        self.setupSummary()
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def initialize(self,std=1.0,bias=0.1):
        with tf.variable_scope(self.name):
            self.W = weightVariable(self.shape,std=std)     # YxX patch, Z contrast, outputs to N neurons
            self.b = biasVariable([self.shape[-1]],bias=bias)   # N bias variables to go with the N neurons
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def __init__(self,input,shape,name,strides=[1,1,1,1,1],std=1.0,bias=0.1):
        super(Conv3D,self).__init__(input,shape,name,strides,std,bias)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def __init__(self,input,shape,name):
        self.shape = shape
        super(MaxPool,self).__init__(input,name)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def setupOutput(self):
        with tf.variable_scope(self.name):
            self.output = max_pool(self.input,shape=self.shape)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = numpy.arange(num_labels) * num_classes
  labels_one_hot = numpy.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False):
    if fake_data:
      self._num_examples = 10000
    else:
      assert images.shape[0] == labels.shape[0], (
          "images.shape: %s labels.shape: %s" % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      self.imageShape = images.shape[1:]
      self.imageChannels = self.imageShape[2]

      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2] * images.shape[3])
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(numpy.float32)
      images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    try:
      if len(numpy.shape(self._labels)) == 1:
        self._labels = dense_to_one_hot(self._labels,len(numpy.unique(self._labels)))
    except:
      traceback.print_exc()
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def weightVariable(shape,std=1.0,name=None):
    # Create a set of weights initialized with truncated normal random values
    name = 'weights' if name is None else name
    return tf.get_variable(name,shape,initializer=tf.truncated_normal_initializer(stddev=std/math.sqrt(shape[0])))
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def biasVariable(shape,bias=0.1,name=None):
    # create a set of bias nodes initialized with a constant 0.1
    name = 'biases' if name is None else name
    return tf.get_variable(name,shape,initializer=tf.constant_initializer(bias))
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def max_pool(x,shape,name=None):
    # return an op that performs max pooling across a 2D image
    return tf.nn.max_pool(x,ksize=[1]+shape+[1],strides=[1]+shape+[1],padding='SAME',name=name)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
    # Receptive Fields Summary
    W = layer.W
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    fieldsN = min(fields.shape[0],maxFields)
    perRow = int(math.floor(math.sqrt(fieldsN)))
    perColumn = int(math.ceil(fieldsN/float(perRow)))

    fig = mpl.figure(figName); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,fieldsN):
        im = grid[i].imshow(fields[i],cmap=cmap);

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    #
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
    # Output summary
    W = layer.output
    wp = W.eval(feed_dict=feed_dict);
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
        fields = np.reshape(temp,[1]+fieldShape)
    else:           # Convolutional layer already has shape
        wp = np.rollaxis(wp,3,0)
        features, channels, iy,ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
    fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    tiled = []
    for i in range(0,perColumn*perRow,perColumn):
        tiled.append(np.hstack(fields2[i:i+perColumn]))

    tiled = np.vstack(tiled)
    if figOffset is not None:
        mpl.figure(figOffset); mpl.clf();

    mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def __init__(self,input,shape,name,std=1.0,bias=0.1):
        self.input = input
        self.units = shape[-1]
        self.shape = shape
        self.name = name
        self.initialize(std=std,bias=bias)
        self.setupOutput()
        self.setupSummary()
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def initialize(self,std=1.0,bias=0.1):
        with tf.variable_scope(self.name):
            self.W = weightVariable(self.shape,std=std)     # YxX patch, Z contrast, outputs to N neurons
            self.b = biasVariable([self.shape[-1]],bias=bias)   # N bias variables to go with the N neurons